[荐]《比的基本性质》说课稿15篇
作为一名教学工作者,就有可能用到说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。怎么样才能写出优秀的说课稿呢?以下是小编收集整理的《比的基本性质》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
《比的基本性质》说课稿1
各位评委:大家好,今天我说课的内容是人教版小学六年级数学下册第三单元第一课时《比例的意义和基本性质》。下面我将自己的设计理念、对教材的解读、对目标的预设以及教学流程和板书设计向大家作简要的阐述。
[设计理念]
这是一节概念课,但我并不是对知识简单的复述,而是通过学生的探究活动,展现学生“活生生”的思维过程。让学生通过观察比较,发现规律,从特殊到一般抽象概括出意义和性质,培养了学生主动探索知识和概括知识的能力。
[说教材]
《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
[说教学目标]
1、知识技能目标:使学生了解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的'区别。
2、教学思考与解决问题目标:充分发挥多媒体教学的优势,启发学生的创造性思维,培养他们探索和解决问题的能力。
3、情感态度目标:激发学生的学习兴趣,引导学生自主参与知识探究全过程,培养学生初步的观察,分析,比较,判断,概括的能力,发展学生的思维。
[说教学重点、难点]
重点:理解比例的意义,探究比例的基本性质。
难点:探究比例的基本性质和应用意义,判断两个比能否组成比例。
[说教法、学法]
说教法
我采用”自主探究”的教学模式,贯彻自主性原则,重视学生学习和探索过程,注重学生的情感体验,组织,指导并参与学生的探究活动,允许学生对所学知识有不同的理解和体验,提高学生的科学文化素质和技能素质。
说学法
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。
[说教学过程]
一、创设情境引发思考
通过多媒体出示有关国旗的四幅情境图,让学生说说图的内容,并找找图中共有的东西。接着出示四面国旗的长和宽的具体数据,并提示国旗的制作有特定的制作标准,然后让学生去思考,猜测。
二、探究新知主动参与
这里分成二部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。
第一部分:比例的意义
1、根据学生的发现,让学生任意地选择其中的两面国旗,先写出长和宽的比,再求出比值进行验证自己的猜测对不对。
2、把学生的计算结果出示在黑板上(四面国旗都有)接着请学生仔细观察计算结果发现了什么,发现他们的比值都相等。从而引出比例的意义——表示两个比相等的式子,叫做比例。
3、揭示了比例的意义后及时进行练习(p33的做一做)。判断几组比能否组成比例,为什么?让学生说理巩固概念。
4、回到四面国旗,让学生找比组成比例。(可以是国旗的长与宽的比,也可以是每两面国旗长之比,宽之比)在这里的时候适时引导,鼓励学生打开思路,从不同的角度去寻找,以加深对比例意义的认识。
第二部分:比例的基本性质
1、教学比例的各部分名称。这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力。在学生自学课本时,引导学生注意内项和外项的位置。认识了比例的各部分名称后让学生说说比与比例的区别。
2、教学比例的基本性质。观察黑板上的比例中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果?再让学生归纳出比例的基本性质——在比例里,两个外项的积等于两个内项的积,然后探讨写分数形式,归纳“交叉相乘”积相等。
3、揭示了比例的基本性质后及时进行练习(p34的做一做)。应用比例的基本性质,判断下面两个比能不能组成比例,为什么?让学生说理巩固概念。
4、小结判断两个比能否组成比例,可以根据比例的意义,也可以根据比例的基本性质。
三、巩固练习形成技能
基础练习
1、写两个比值是4的比,并组成比例;写出两个比值是1/4的比,并组成比例;这里先让学生写,然后请其他学生判断他写的比例对不对。(可以用比例的意义,也可以用比例的基本性质)
2、猜数游戏,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。
发展练习:
1、把乘积相等的式子改写成比例。(6×16=8×123×40=8×15)这个练习是巩固比例的基本性质,意图是让不同的学生在数学上得到不同的发展。因为有学生可能只能改写一个,而有学生可能改写4个,还有学生可能改写8个。
2、如果5a=3b,那么a:b=():()这个练习意图是让学生在有未知数的方程中学会运用比例的基本性质解决问题。
四、课堂小结回归目标
这堂课我们学习了什么,你有什么收获?
[说板书设计]
通过简单明了的数学式子反应出比例的意义和比例的基本性质。
《比的基本性质》说课稿2
一、说教材
(一)、教材分析:
等式性质是学生了解了一元一次方程概念后的一章重点内容,是解方程必备知识,对解一元一次方程中的移项、合并同类项起着至关重要的作用。学生对等式的性质进行探索与研究过程中所涉及的转化思想、归纳方法是学生研究数学乃至其它学科所必备的思想。
(二)、教学目标:
a、知识目标:
通过网络教学让学生探索等式具有的性质并予以归纳达到解方程的目的
b、能力目标:
通过网上观察图片、实验和游戏,培养学生探索能力、观察能力、归纳能力和应用知识的能力以及动手操作能力
c、情感目标:
通过网络模拟实验和网络互评,增强合作交流意识、团队意识和创作精神。
(三)、教学重点:
新课标强调获得知识的过程远比知识本身更有价值,因而要注重发展学生应用的能力所以把本课重点确定为:等式基本性质的归纳。
(四)、教学难点:
根据7年级学生的年龄特征和认知特点,从特殊到一般,从具体到抽象,适合7年级学生思维能力,而本课难点决定利用等式基本性质解一元一次方程,为恰恰是这一特征的体现。
二、说教法
㈠教学方法:
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1、网络模拟实验操作法
2、“看——议——讲”结合法
3、归纳法
4、讨论法
5、网络游戏结合法
6、成果展示法
㈡教学方法的理论依据:
(1)以学生为主体
学生参于数学活动为主线,培养学生创新能力和实践能力为主旋。
(2)由内向外原则
启发学生从书本知识回到社会实践,学以致用,落实教学目标。
(3)创感思维培养原则
新的世纪是一个创感的时代,不断培养学生的创感精神是新世纪给予数学教学新的要求,利用网络游戏、flash动画等不但提高学生兴趣,更培养学生的创作精神。
三、说学法
教学的宗旨是让学生学会学习,教师要为学生构建一个学习的平台,学生是独立行走的人。
本课主要引导学生利用网络采取观察、模拟实验,猜想、探究、合作、互评、网络游戏、欣赏、创作等学习方法。
这些符合方法本阶段学生特点:
1 、学生逻辑思维从经验型逐步向理论型发展。观察能力、记忆能力和想象能力也随着迅速发展。
2、好动、好奇、好表现,是本阶段学生的特点
3、学生的创感思维在初一已处在一定阶段,对事物的'认识已有一个层次,通过网络教育,加深学生对创感思维的培养. 四、说程序
本课课程设计如下:导入探索、新授知识,知识应用,归纳小结,布置作业
(一)导入探索:
1:学生登入本局域网观看教师制作的网络课件图片
想一想,和尚将扁担放中间,那么两桶水有什么要求? 设计意图:通过形象导入能激起学生学习的欲望和探索的渴求,从中引出等式的概念。
(二)模拟试验
提问:你发现了什么,将天平与等式联系起来,你又有什么收获
设计意图:使学生对等式的性质有形象的认识,形成一个感性的阶段,更培养了学生操作能力,打开学习的思维空间,激发学习兴趣. (三)归纳性质
(1)学生利用局域网观看教师课件,且自己总结出等式的性质。
设计意图:通过多媒体课件,引导学生有意识地去发现规律,掌握规律。培养学生动手操作的能力、实验观察能力和抽象概括的能力。提高学生的学习兴趣。
(2)知识应用:利用局域网,登入教师网络课件,完成如下题目,要求:在电脑上完成且将答案利用网络传给其它同学进行互改互评。
设计意图:让学生体会根据等式的基本性质从已知等式出发可以变形得到新的等式。为即将用等式解方程打下基础。网络互评,不但培养学生纠正错误能力和实际操作能力,更培养了团队精神。
(四)讲解例题。
设计意图:题目的安排低起点,小台阶,循序渐进,符合学生接受知识的特点,培养学生的灵活性,多角度思考数学问题的方法。
(五)课堂练习
学生以小组形式上网搜索用等式性质解方程的题目,并且解出.若遇问题可以用网络手段(QQ,在线解答、发帖子等)寻求帮助,然后小组汇报你的收获与解题亮点。
设计意图:充分利用网络资源为教学服务,提升学生的探究意识,培养学生寻找问题解决问题的能力,增强学生的团队精神. 学生是参于学习活动主体,体现活动民主,自由的课堂理念。
(六)归纳总结
1、对自己说,你有什么收获?对老师说,你还有什么困惑?
2、观看网络资源《等式性质》开发的游戏和flash动画
设计意图:共同回顾学习内容,有助于学生将知识和方法系统化,条理化,同时兼顾以人为本的思想,关注学生的学习体会和感受。 利用等式性质开发的网络资源更是开拓了学生的视野,将知识运用于实践,培养学生的创作灵感
(七)布置作业
1、 作业根据难度分成ABCD四种模型中,选择你最喜欢的一种做。
2、利用等式性质设计你喜欢的物品、图片或者游戏等,并将你的成果放在你的QQ空间、个人主页或者老师的博客上。
设计意图:作业设计具有梯度性,设计ABCD四个梯度作业,真正做到因材施教。第二题,将知识不限于书本,从书本走上社会实践,将知识结构灵活运用,既是新课标的要求,又提升学生创感思维。
四、说应用
1、利用网络中的图片资源和flash资源《和尚挑水》导入,动静结合,引起学生的学习兴趣,调动学生的学习积极性。使学生对于等式的概念有直观、形象的认识。
2、学生上网操作网上模拟天平训练,不但让学生更直观更贴切地巩固等式的性质,帮助学生解决本课重点即对等式性质归纳,更培养了学生的创感精神。
3、学生自己从网上搜索相关题目且采用网络互评,不但培养学生纠正错误能力和实际操作能力,更培养学生团队精神。帮助学生突破利用等式解一元一次方程这一教学难点。
4、总结中欣赏了网络资源flash动画和游戏,既加深了学生对等式性质的理解,又开拓了学生视野,培养了学生创新精神,更丰富了创感思维,又是对等式性质进行提升和巩固。
《比的基本性质》说课稿3
一、说教材
1、教学内容:
《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等的基础上教学的,是本套教材教学内容的第三个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
2、教学目标:
根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:
(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
3、教学重、难点:
理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
二、说教法、学法:
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识
三、[教学设计]
一、创设情境引发思考
多媒体出示有关国旗的四幅情境图,让学生说说图的内容,并找找图中共有的东西。接着出示四面国旗的长和宽的具体数据,并提示国旗的指定有着特定的制作标准,然后让学生去思考,猜测。
二、探究新知主动参与
这里分成二部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。
第一部分:比例的意义
1、根据学生的发现,让学生任意地选择其中的两面国旗,先写出长和宽的比,再求出比值进行验证自己的猜测对不对。
2、把学生的计算结果出示在黑板上(四面国旗都有)接着请学生仔细观察计算结果发现了什么,发现他们的比值都相等。从而引出比例的意义。
3、揭示了比例的意义后及时进行练习。判断几组比能否组成比例,为什么?让学生说理巩固概念。
4、回到四面国旗,让学生找比组成比例。(可以是国旗的长与宽的比,每两面国旗长之比,宽之比)这里教师要适时引导,鼓励学生打开思路,从不同的角度去寻找,以加深对比例意义的认识。
第二部分:比例的基本性质
1、教学比例的各部分名称。这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力。在学生自学课本时,老师写出比例的两种形式,引导学生注意内项和外项的位置。认识了比例的各部分名称后让学生说说比与比例的区别。
2、教学比例的基本性质。观察黑板上的比例中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果,然后引导他们回答两个内项的积与两个外项的积有什么关系?再让学生归纳出比例的.基本性质,探讨写分数形式,归纳“交叉相乘”积相等。
3、练习,p34的做一做
4、小结判断两个比能否组成比例,可以根据比例的意义,也可以根据比例的基本性质。
三、巩固练习形成技能
基础练习
1、写两个比值是0.4的比,并组成比例。这里先让学生写,然后请其他学生判断他写的比例对不对。(可以用比例的意义,也可以用比例的基本性质)
2、猜数游戏,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。
发展练习:
1、把乘积相等的式子改写成比例。这个练习是巩固比例的基本性质,意图是让不同的学生在数学上得到不同的发展。因为有学生可能只能改写一个,而有学生可能改写4个,还有学生可能改写8个。
2、如果5a=3b,那么a:b=():()
四、课堂小结,回归目标
这堂课我们学习了什么,你有什么收获?
《比的基本性质》说课稿4
一、说教材
小学数学冀教版第十册第单元《等式的基本性质》是学生已经掌握了方程的意义的基础上学习的。《等式的基本性质》是本单元的重点,更是今后学习解方程的基础。
我搜集了人教版的教材近行对比,发现:虽然版本不同,内容编排不同但是数学学习内容大体相同,都以学生的动手实践,自主探究与合作交流为学生学习数学的主要方式。整个过程中,教师只是探究活动的组织者、引导者、合作者。在这里值得一提的就是我们现在的版本把等式的基本性质一和性质二都是以文字的内容具体的呈现了出来,而人教版教材是通过游戏的方式呈现的,具体的性质内容是在后来的解方程当中逐步体现的。我个人觉得现在的版本还是可取的。
二、说教学目标
根据大纲的要求和教材的特点,结合五年级学生的特点我制定了如下教学目标:
知识目标:
1、理解并能用语言表述等式的'基本性质,能用等式的基本性质解决简单问题。
能力目标:
1、在用算式表示试验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。
2、通过学习理解并能运用等式的基本性质解决简单问题。
情感目标:培养学生讨论归纳的意识和习惯,养成认真观察、深入思考的良好思维品质。
结合学生的实际情况,我把教学重难点确定为:
教学重点:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
教学难点:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
教学具准备:天平,教学课件,学生导学案等材料
三、说学情分析
学生已经习惯进行高效课堂模式下的学习,具有一定的探究与合作交流能力。在学习了方程的意义的基础上,再加上对天平已有知识的经验积累,应该根据我的教学设计能够一步步研究出等式的基本性质。当然由于学生的理解能力的差异,对于学困生还是应该照顾到。为了实现上述教学目标,我精心进行教学设计,引领学生课堂生成:
四、说教学过程(以学生的自主探究为主)
(一)、速算比赛:
6。6÷11= 128÷3。2= 250×12= 60×0。2=
36÷180= 2。6×10= 190×0。4= 74÷0。2=
这几道题是一直以来坚持的口算训练。不过在处理上采取了比赛的方式,时间是一分钟,我公布答案后学生迅速自评,并由组长算出组内共算对了多少道题,以此作为标准评出优胜小组,并及时进行加分评价。
(二)、创设情境
教师导语:刚才的比赛中某某组表现的很棒,为他们组赢得了宝贵的2分,希望在接下来的学习中继续发扬这种精神,同时老师更希望其他组能有出色的表现。上节课我们用了什么仪器了方程的意义呢?(学生肯定会异口同声的说是天平)教师随机出示天平。每组一台。我们这节课还利用天平学习,学习什么呢?请大家看导学案并齐读课题和目标。教师相机板书。
(三)、独学导学一
导学一:
小实验1、根据图片演示实验。列式为()
实验2、在天平左边的托盘里再放入20克的砝码,这时天平出现什么情况?接着再天平右边的托盘里放入20克砝码。根据这时天平的情况列式()
实验3接着再在天平左右两边同时放入100克砝码,天平会怎么样?可以列出等式()
实验4接着在天平左边的托盘里再拿走20克的砝码,在天平右边的托盘里再拿走20克的砝码。天平会怎样可以列出等式()?
总结:通过上面的实验:观察上面的4个等式,你发现了什么?
学生根据我的设计大多数同学根据已有经验会很快列出算式,可能有同学会利用我给出的天平来验证,独学充分后教师要做好评价。
(四)、对学、群学。
学生充分独学后,对子之间交流进入对学阶段。对子之间交流,交流完后组长组织组内组内总结展示。小组长要根据情况确定待展同学。教师巡视观察那个组利用天平利用的效果好准备接下来的精英展示。教师要关注学困生。特别是双差生。教师还要做评价。
(五)、精英展示
我这个环节准备一组或两组展示。展示的方式可以是一人也可以是多名同学一块展示。教师要做好规律的总结提升和及时的评价,特别是听展。教师利用课件出示学生列出的每个等式。
五、完成导学二。
导学二(1)根据图片写等式
(2)根据图片写等式:
比较上面两组等式,你发现了什么规律?
有了学习经验,这个环节应该很顺利。还是按照高效模式进行,在教学中注意利用教学课件突破学生理解上的难点。有的小组可能还会出现加减的情况,教师要适当引导到倍数关系。
达标训练:(1)30+x=100(2)x — 71=4
30+ x—30=100()x–71+()=4()
x=()x=()
(3)21 x=105(4)x ÷21=3
21x÷()=105()x÷21×()=3()
x=()x=()
学生理解了等式的基本性质理论,我觉得由理论到实践应该给学生一个过渡空间,所以我设计了这一环节。学生独立完成后挑选组长进行展示,此时教师重点强调学生填空的依据,这样就更好的巩固了刚学完的理论。完成后教师小结。引导学生谈收获。
最后是达标测评。我选的是教材42页的第一题。学生做完后教师公布答案,学生互评。教师要做好评价。
《比的基本性质》说课稿5
一、教学内容的说明
《分数的基本性质》一课是青岛版小学数学五年级下册第二单元的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。本课在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习约分、通分、分数计算的基础。
教学重点
理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点
归纳分数基本性质的过程及运用分数的基本性质解决实际问题。
二、教学目标的确定
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的应用意识、问题意识及合作意识。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物是相互联系、发展变化的辩证唯物主义观点,体会分数的基本性质在社会生活中的作用。
三、教学方法的选择
教法:树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。
学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
四、教学媒体的运用
在教学媒体方面,我选择了多种教学媒体综合运用的方式,优化数学的学习过程。正方形纸片,彩笔,直尺等学具准备;通过多媒体教学课件等教具准备,将现代信息技术的运用融合到数学课堂中。
五、教学过程的设计
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了“创设情境,引发思考——复习旧知,引出新知——动手实践,初步感知——引导观察,发现规律——巩固练习,加深理解——课堂小结,任务结尾”六个环节。
(一)创设情境,引发思考
1、教师利用多媒体课件播放动画,故事引入:上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手比一比,从直观上让学生感受到这几个分数大小可能是相等的。而这几个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢?
2、利用信息技术,创设有趣的故事情境,学生的积极性被调动,纷纷发表自己的不同看法。激发学生学习兴趣,并揭示课题。
(二)复习旧知,引出新知
1、要解决的问题
(1)再现学生的原有知识,建立知识之间的联系,作好迁移的准备。
(2)向学生渗透事物之间相互联系的辨证唯物主义观点,使学生经历猜想的数学活动过程,发展合情推理能力。
2、教学安排
(1)动手操作表示分数
(2)交流分数引导猜想
利用新旧知识的类比进行猜想,鼓励学生根据自己已有的知识经验大胆猜想,建立知识之间的联系,渗透猜想是一种合情的推理。
(三)动手实践,初步感知
1、引导学生利用已有的学习经验找到与1/2大小相等的分数,既能验证1/2=2/4=4/8,又能说明与1/2相等的分数有许多。
2、运用所学知识说明9/12与3/4大小为什么相等?
(1)学生通过自主探索、合作互助的学习方式,自主选择探究的学具和方法,充分尊重学生个人的`思维特性。这样设计给学生提供的充足的时间和空间,引起多种知识和方法的整体构建,培养了学生的创新思维。
可能会从如下几方面证明:
①折
纸比较的方式
②画图观察的方式
③用分数、小数的关系发现
④运用商不变的规律发现
⑤其他方法发现
(2)组织交流证明方法和结果,交流时教师及时引导学生针对学生的不同方法给予不同的评价。
(四)引导观察,发现规律
1、解决的问题
(1)观察发现分数的基本性质
(2)培养学生观察--探索--抽象--概括的能力。
2、教学安排
(1)提出问题:通过验证这两组分数确实相等,那么,它们的分子、分母有什么变化规律呢?
(2)全班交流:不论学生的观察结果是什么,教师要顺应学生的思维,针对学生的观察方法,进行引导性评价①观察角度的独特性②观察事物的有序性③观察事物的全面性等。(注意观察的顺序从左到右、从右到左)
引导层次一:你发现了1/2和2/4两个数之间的这样的规律,在这个等式中任意两个数都有这样的规律吗?引导学生对1/2和4/8、2/4和4/8每组中两个数之间规律的观察。
引导层次二:在1/2=2/4=4/8中数之间有这样的规律,在9/12=6/8=3/4中呢?
引导层次三:用自己的话把你观察到的规律概括出来。
引导层次四:除了有这样的规律,你还观察到了什么?(以上注意两个方面:1。观察顺序2。数的拓展)
(4)引导学生初步总结分数的基本性质并板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。
在这一环节,教师引导学生在观察与分析、探索与思考的基础上不断生成新问题,发现并归纳出分数的基本性质。让学生经历了观察发现、抽象概括的整个过程,发挥学生学习的主动性。
让学生回答阿凡提说了什么话?师生共同讨论!
(五)巩固练习,加深理解
1、解决的问题
(1)完善对分数基本性质的理解。
(2)回忆探究发现规律的全过程,再次体验探究的方法。
(3)对学生自主练习实施分层评价,在练习中培养学生解决问题的能力,发展应用意识,在评价反思中使学生获得成功的体验。
2、教学安排
通过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善,同时培养了学生的问题意识。
解决实际问题
基础层次题是分数基本性质的直接运用,提高层次题是培养学生灵活运用知识解决问题。设计分层练习以求达到巩固知识的效果,结合小学生的年龄特点设计,体现情感性、、趣味性、层次性、开放性,力图使不同层次的学生有不同的收获,不同的学生通过测试评价,都能建立起自信。
(六)课堂小结,任务结尾
为了使学生对本节课所学内容有一个整体的感知,我让学生共同回忆本节课研究了哪些问题,通过这些问题的解决你有哪些收获?使学生在讨论的过程中,进一步体会分数的基本性质,感受知识之间的内在联系,同时增强对迁移推理、猜想验证等数学思想的认识。
运用你今天所学的知识,试试能否为三只小狗找到自己的家游戏,通过提问方式找到前两只小狗的家以后紧接着追问剩下的房子是第三只小狗的家吗?
出示思考题
6/9=4/6
(通分、约分的方式都能得到正确的结论,思考的过程对后面通分、约分部分学习起到较好的铺垫作用。)
六、反思课堂教学评价
《新课程标准》指出评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学,应建立评价目标多元化、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感态度,帮助学生认识自我,建立信心。
情感是课堂教学的灵魂,是课堂教学的催化剂,是师生情感的黏合剂,我们要善于用教师的激情激发学生学习的热情,是课堂教学充满生命活力的关键要素。因此,我注重“过程与结果”相结合;注重“动手操作与动脑思考”相结合,“奠定基础、获得方法与情感体验”相结合,努力通过多元多样的评价,激励学生的学习和改进教学,建立学生学习的自信。
以上是我对分数的基本性质这节课的说明,通过设计给我以许多新的思考,很不成熟,但我仍然深切地感受到,在新课程理念的指导下,课堂的教学方式、学习方式、评价方式都在发生着巨大的变化。恳请在座的专家批评指正,谢谢!
《比的基本性质》说课稿6
今天我说课的内容是《分式的基本性质》。
下面我将从:教材分析、教学目标、教法分析、教学过程分析、教学设计说明等几个方面对我的教学设计进行说明。
一、教材分析
1、教材的地位及作用
“分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式”的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学生情况分析
学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。
3、教学重难点分析
根据以上学习任务和学情分析,确定本节课的教学重难点如下:
教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。
教学难点:灵活运用分式的基本性质,进行分式化简、变形。
二、教学目标
教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:
1、了解分式的基本性质。灵活运用“性质”进行分式的变形。
2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。
3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
三、教法分析
1、教学方法
基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。
2、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的'能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。
因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
四、教学准备
多媒体课件,小黑板
五、教学过程
活动1:复习分数的基本性质
在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:
1、下列分数是否相等?可以进行变形的依据是什么?
2、分数的基本性质是什么?怎样用式子表示?
老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。
设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。
这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。
活动2:类比得出分式的基本性质
因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:
1、类比分数的基本性质,你能猜想出分式有什么性质吗?
2、你能用语言来描述分式的基本性质吗?
3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?
老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。
设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。
同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:
1、分式与分数有相同的形式,只是分式的分子和分母都是整式;
2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。
在此基础上,我们进一步总结得到:
1、分式的基本性质:
分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。
2、分式的基本性质中应该注意:
(1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;
(2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;
(3)此性质的隐含条件是:分式中,B≠0。
设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。
我在这里的设计,主要原因是:
1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。
2、体验“类比”思想和方法,有利于学生学习能力的提高;
3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。
活动3:初步应用分式的基本性质
课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。
1)课本第10页例2填空:
2)设计意图:例2是分式基本性质的运用,让学生研究每一题的特点,紧扣“性质”进行分析,以期达到理解并掌握性质的目的。
活动4:练习巩固拓展知识
课堂练习:
(1)课本第11页4.下列各组中的两个分式是否相等?为什么?
(2)不改变分式的值,使分子、分母里的系数变为整数:
教师展示练习学生独立思考,老师巡堂并进行个别辅导,然后,对于第1题,进行个别提问;第2题,叫两名学生到黑板演示。
设计意图:练习第1题承接着例题而来,让学生更好地体会“性质”的应用,并为下一节学习分式的约分做铺垫;第2题,强化训练为了培养学生用“性质”解决问题的能力。
拓展训练:
课本第11页5.不改变分式的值,使下列分式分子和分母都不含“-”号
学生组内讨论,老师巡堂参与交流,引导学生发现规律,并综合各小组的不同意见,有针对性地进行讲解,归纳出变号法则。
分式的变号法则(板书)
分式本身及其分子、分母这三处的正负号中,同时改变两处,分式的值不改变,即:
设计意图:介绍分式的变号法则,是为了让学生结合有理数的除法法则,更深刻地理解分式的基本性质。
活动5:小结评价布置作业
小结:
1)分式的基本性质是什么?
2)运用分式基本性质时要注意什么?
3)分式变号的法则是怎样的?
展示问题,学生思考,并在老师的引导下,学生自己进行整理、归纳。
设计意图:通过小结,使学生对本节所学内容进一步系统化,使学生的知识结构更合理、更完善。
小结完成后,为了同学能够有针对性地进行小结,我准备了三个问题:
1)这节课你学到了什么?
2)这节课给你的印象最深的是什么?
3)你如何评价你自己、同学或老师的表现?
但在课堂上,不要限制他们,让他们畅所欲言,学生会有教师想象不到的精彩。
【布置作业】
下课铃响了,我布置作业:
1、课本P65的习题4;
补充作业:
布置作业:课本第12页习题16.1第12题;
设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
《比的基本性质》说课稿7
一、说教材
1、教学内容:
《比例的意义和基本性质》是人教版第十二册第三单元第一二课时的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
2、教学目标:
根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:
(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
3、教学重、难点:
理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
4、教法、学法:
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。
二、说程序设计
课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。
(一)复习导入
让学生根据所给信息写出两个比。目的`就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。
(二)教学新课
分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。
第一部分:先出示几个比,让学生计算它们的比值,然后通过观察、比较,给这些比分类。通过学生自己的观察、发现,根据比值是否相等来分类。接着追问:“两个比的比值相等,那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象,然后列举一个反例,让学生对比观察,引导学生发现他们之间的共同特点,抽象概括出比例的意义。教学比例的意义后,及时组织练习。第一个是判断导入部分的四个比能否组成比例,并说明理由。第二个练习是,判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的能力。第三个练习是写出比值是4的两个比,并组成比例。三个练习,每一个都在逐步的延伸,意在达到熟练运用比例的意义解决问题的能力。
第二部分:在认识比例的各部分名称时,我让学生看课件自学,然后让他们自己说说比例里各部分的名称。
在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。
(三)巩固练习
在巩固练习环节中,第1题是三个判断题,是对基本概念的巩固。第2题是根据比例的基本性质写出比例,这里需要从学生逆向思维的角度去解决问题。第3题是用四个数组比例,这题学生在组的过程中没有方法和顺序,那么在交流过程中就需要教师去引导学生发现方法,总结规律,使学生不仅把题做对,而且指导自己更好解决问题。第4题是拓展题,让学生根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是下节课要研究的内容“解比例”。
教学反思
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,知道了比例从生活中来,从而进一步认识到了数学在生活中有着广泛的应用,激发了学生学好数学的信心和积极情感。
一、创设探究空间,经历探索过程
我大胆地组织学生探究比例的基本性质,没有根据教材上所提供的现成问题“分别算一算比例的两个外项和两个内项的积,你发现了什么?”机械地执行,而是大胆放手,用四个数组成等式这一开放练习产生新鲜有用的教学资源,我通过引导让学生展开讨论,进行有效的探究,体验了探究的成功。
二、找准知识与生活的契合点,学以致用
为了充分体现数学知识与现实生活的联系,在课的最后我安排了与生活联系的数学问题,让学生来测测我们学校的旗杆的高度,把数学和实际紧密地联系起来,这样既渗透了学数学用数学的教学思想,同时也潜移默化的帮助学生树立了学好文化知识有利于社会发展的意识
《比的基本性质》说课稿8
各位老师:
大家好!我叫***,来自**。我说课的题目是《概率的基本性质》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时。下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1、教材所处的地位和作用
本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册第二章统计的延伸,又是后面"古典概型"及"几何概型"的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。
2、教学的重点和难点
重点:概率的加法公式及其应用;事件的关系与运算。
难点:互斥事件与对立事件的区别与联系
二、教学目标分析
1.知识与技能目标
⑴了解随机事件间的基本关系与运算;
⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。
2、过程与方法:
⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;
⑵通过学生自主探究,合作探究培养学生的动手探索的能力。
3、情感态度与价值观:
通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。
三、教法分析
采用实验观察、质疑启发、类比联想、探究归纳的教学方法。
四、教学过程分析
1、创设情境,引入新课
在掷骰子的试验中,我们可以定义许多事件,如:
c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜
c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜
c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜
D1=﹛出现的点数不大于1﹜D2=﹛出现的点数大于3﹜
D3=﹛出现的点数小于5﹜,E=﹛出现的点数小于7﹜
f=﹛出现的点数大于6﹜,G=﹛出现的点数为偶数﹜
H=﹛出现的点数为奇数﹜
⑴以引入例中的事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。
⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。进而引导学生思考,是否可以把事件和集合对应起来。
「设计意图」引出我们接下来要学习的主要内容:事件之间的关系与运算
2、探究新知
㈠事件的关系与运算
⑴经过上面的思考,我们得出:
试验的可能结果的全体←→全集
↓↓
每一个事件←→子集
这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。
集合的并→两事件的并事件(和事件)
集合的交→两事件的交事件(积事件)
在此过程中要注意帮助学生区分集合关系与事件关系之间的不同。
(例如:两集合A∪B,表示此集合中的任意元素或者属于集合A或者属于集合B;而两事件A和B的并事件A∪B发生,表示或者事件A发生,或者事件B发生。)
「设计意图」为更好地理解互斥事件和对立事件打下基础,
⑵思考:①若只掷一次骰子,则事件c1和事件c2有可能同时发生么?
②在掷骰子实验中事件G和事件H是否一定有一个会发生?
「设计意图」这两道思考题都很容易得到答案,主要目的是为引出接下来将要学习的互斥事件和对立事件,让学生从实际案例中体验它们各自的'特征以及它们之间的区别与联系。
⑶总结出互斥事件和对立事件的概念,并通过多媒体的图形演示使学生们能更好地理解它们的特征以及它们之间的区别与联系。
⑷练习:通过多媒体显示两道练习,目的是让学生们能够及时巩固对互斥事件和对立事件的学习,加深理解。
㈡概率的基本性质:
⑴回顾:频率=频数/试验的次数
我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质、
(通过对频率的理解并结合前面投硬币的实验来总结出概率的基本性质,师生共同交流得出结果)
3、典型例题探究
例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;事件B:命中环数为10环;
事件c:命中环数小于6环;事件D:命中环数为6、7、8、9、10环、
分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚
例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是1/4,取到方块(事件B)的概率是1/4,问:
(1)取到红色牌(事件c)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解;事件c与事件D是对立事件,因此P(D)=1—P(c).
「设计意图」通过这两道例题,进一步巩固学生对本节课知识的掌握,并将所学知识应用到实际解决问题中去。
4、课堂小结
⑴理解事件的关系和运算
⑵掌握概率的基本性质
「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。
5、布置作业
习题3、1A1、3、4
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
五、板书设计
概率的基本性质
一、事件间的关系和运算
二、概率的基本性质
三、例1的板书区
例2的板书区
四、规律性质总结
《比的基本性质》说课稿9
一、说教学理念
1、以学生发展为本,着力强化主体意识。
2 、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。
3、 致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受猜想、验证、转化等数学思想方法。
4、联系生活实际、感受数学与现实世界的紧密联系,体验数学的应用价值。
二、说教材
《分数的基本性质》一课是九年义务教育六年制小学数学第九册第四单元的内容。它是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。
根据教材内容和学生的认知规律,将本课的教学目标拟定如下:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。
2、过程与方法:经历探究分数基本性质的过程,感受“变与不变”、“极限”等数学思想方法。
3、情感、态度、价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
本课的教学重点:在通过观察、比较后抽象、概括出分数的基本性质,并会简单应用。
本课的教学难点:理解和掌握分数的基本性质,沟通与商不变的规律之间的联系与区别。
教学准备有:多媒体课件、每位学生二张长方形纸、两张圆形纸。
三、说教法
本课的教学力求改变过去重知识,轻能力;重结果,轻过程;重教法、轻学法的状况。树立以“以学生发展为本”、“以学定教”、“教为学服务的思想。根据学生的学情,以自主探究为主线,以发展创新为宗旨,为学生提供学习的材料,采用引导探究、引导合作、引导发现、组织讨论、组织练习等教法。精心组织一系列有效的数学活动,让学生全面、全程、全心参与到每一个教学环节中,努力使课堂多一些自主、少一些包办;多一些民主、少一些权威,实现教学为学服务的目的。
苏霍姆林斯基说过:在人的心灵深处,总有一种根深蒂的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界里这种需要尤其强烈。因此,当学生对二分之一等于四分之二等于六分之三产生疑问并急于了解其中奥秘时,没有把现成的知识直接传授给学生,令他们得到暂时的`满足,而是充分相信学生的认知潜能。在新知教学环节中,我主要采用引导探究、引导体验、组织讨论等方法最大限度地给予学生自主探索的时间和空间,把主动权交给学生让学生以自己的方式自由、开放地去探索、发现、创造分数的基本性质,让他们在尝试中发现、讨论中明理、合作中成功、质疑中发展,体验知识的形成过程,使学生的个性得到发展,创造欲得到满足。
现代教学论认为:要让学生动手做科学,而不是用耳朵听科学。学生在写出一组大小相等的分数后我让学生用自己喜欢的方法加以验证,这一验证的过程使学生在动脑、动口、动手,多种感官配合下,把静态的知识转化为动态的求知过程。
新课程标准指出:学生的数学学习应当是一个主动和富有个性的过程。因此在例题教学环节,我采用自主探究的学法,让学生自主进行学习,从而学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。
在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。
四、说学法
新课标指出:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。基于这样的理念,本课学生的学习方法主要有:自主发现法、操作体验法、合作交流法、自学尝试法等。
1、学生在探究分数的基本性质时,学生主要采用自主发现法、操作体验法、合作交流法,学生在得出二分之一等于四分之二等于六分之三后,小组合作找出几组像这样大小相等的分数,在这一过程中学生为了能写出大小相等的分数,必然会产生对那组等式进行观察的愿望,从中有所发现。之后学生通过同伴间的交流,运用折纸、等多种方法证明自己写出的那组分数大小相等,他们在尝试中发现,在实践中体验。最后学生交流在写数过程中的发现,最后在讨论中明理,揭示出分数的基本性质。
2、在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小不同的分数,并尝试完成做一做,达到检验自学的目的。
当然,由于学生所处的文化环境、家庭背景和自身的思维方式的不同,不同的学生所采用的学习方法也不尽相同,作为教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。
五、 说教学程序
依据新的教学理念及学生的认知特点,将本课的教学设计为以下四个过程:即谈话导入、提出问题;自主探索、寻找规律;运用规律、巩固深化;反思评价,完善认知。
第一、谈话导入、提出问题:
前几节课我们学习了分数的意义以及数与除法的关系等内容,我想大家一定学的非常好对吗?先来考考大家!
设计意图:这的样设计,直接扣入主题,体现了数学的简洁之美,迅速的点燃孩子们求知欲望的火花,从而为主动探究新知聚集动力。
第二、自主探索,寻找规律。
此过程共设计了以下三个环节:
第一个环节:建立几组相等的分数,提供探究的数据。
设计意图:这样的设计,不仅复习了已有的知识,而且调动了孩子学习的积极性,用数形结合的思想理解分数的大小,从而很直观上建立起三组分子和分母各不相同而分数的大小确相等的数学。再通过学习已有的学习经验和手中的学具,让学生接着举出几组分数大小相等的分数,这样师生共同呈现的多组分数,为下面研究问题提供了大量的数据。
第二个环节:小组合作,探究规律。
设计意图:“疑是思之始,学之端”。这些分子和分母各不相同而分数大小确相同的分数之间一定存在着一些千丝万缕的联系,我们需要进一步的研究。这样的设计,最大限度的调动了孩子的学习积极性,使学生成为课堂学习的主人,让他们在独立自主,合作交流的基础上,对自己的所疑之处,提出合理的说明和解释,通过师生共同的梳理,把静态的知识转化为动态的求知程,从而得出结论。
第三个环节:沟通联系,揭示规律。
设计意图:联系分数与除法的关系,结合商不变的性质,进一步说明分数基本性质。这样的设计,从实践的观察和发现到理论的证明,层层深入的证明了我们发现规律的合理性,从而建立起“商不变的性质”与“分数的基本性质”之间的内在联系,新的学习活动与原有的认知结构相互作用,引起了认知结构的重新构建,这是从理论上对规律的证明,在大量的实践材料和理论证明中完成了“分数的基本性质”这一数学模型的构建过程。
第三、运用规律、巩固深化、拓展思维
设计意图:这一环节是进一步理解、深化新知识的重要环节,在设计练习题时,要体现“让不同的学生在数学上有不同的发展”这一新课程的理念。主要目的是培养学生的自主解题能力,在面对全体学生的基本上有所提高,注意对知识的巩固。立足于基本练习,注意练习与学生生活实际的联系,让学生学有价值的数学。通过综合练习培养学生的思维,也渗透“极限”和“归纳”的数学思想方法。
第四、反思评价,完善认知
你有什么收获?还有什么不明白的?你认为自己在今天课堂上的表现怎样?你帮助了谁或谁帮助了你?
设计意图:这样的设计,不但让学生谈知识技能方面的收获,还着重让学生谈了学习的方法、情感态度方面的收获,再一次激起良好的情绪体验。
《比的基本性质》说课稿10
尊敬的各位评委、老师:
大家好!
很高兴能把《不等式的基本性质》一课的教学设计向大家作一展示。下面我将从教材分析、教学目标、教学方法、教学流程、教学评价和教学反思几个方面来阐述我对本节课的安排。
一、教材分析
1. 教材的地位和作用
不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。本课位于湖南教育出版社义务教育课程标准实验教科书七年级上册第五章第一节的内容,主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的“基石”。同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。
2.教学重难点
重点:不等式的概念和不等式的基本性质1。
难点:利用不等式的基本性质1进行简单的变形。
二、教学目标
知识目标:
在了解不等式的意义基础上,掌握不等式的基本性质1。
能力目标:
①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。
②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题,培养学生的数感,渗透数形结合思想。
情感目标:
①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。
②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。
通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。
三、教学方法
1、采用激趣——探究法进行教学,师生互动,共同探究不等式的性质。通过知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。
2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。
3、充分利用多媒体课件辅助教学,突出重点、突破难点,扩大学生知识面,使每个学生稳步提高。
四、教学流程
我的教学流程设计是:从创设情境、激发兴趣开始,经历探究新知、总结规律;针对练习、学习例题;巩固提高、拓展延伸;畅谈收获、分层作业等过程来完成教学。
(一)创设情境,激发兴趣:
师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。并预测比赛的结果。从而自然的引入本节课的学习。
设计意图:通过图片展示,贴近学生生活,激发学生的学习兴趣。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。
学习目标:
1、 理解不等式的基本性质1。
2、 会解简单的不等式。
此时我出示本节课的学习目标和归纳出不等式的概念:
归纳:用不等号“﹥”(或“﹤”、“≥”、“”)连接的式子叫做不等式。符号“≥”读作“大于或等于”,也可读作“不小于”;符号“”读作“小于或等于”,也可读作“不大于”读如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。
(二)探究新知、总结规律
在这个环节,我主要设计了以下二个活动来完成教学任务:
活动1:1、你能用“﹤”或“﹥”填空吗?
(1)5﹥3 (2)6﹥4
5+2﹥3+2 6+a﹥4+a
5-2﹥3-2 6-a﹥4-a
2、(1)自己写一个不等式,在它的两边同时加上、减去同一个数或代数式,看看有什么结果?
(2)小组合作讨论交流,大胆说出自己的“发现”。
本次活动以2组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。
活动2:你能用自己的语言概括不等式的性质吗?
本活动中,我出示直观深刻的天平图片,组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力,然后归纳指出不等式的基本性质1:
不等式的两边同时都加上(或都减去)同一个数或同一个代数式,不等式的方向不变。
当学生概括出结论后,为了使学生对不等式的`基本性质1有更全面深入的了解,我还可以提出以下问题,让学生思考:
性质中的“不等号方向不变”的含义是什么?
使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”。
在活动中,我深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。
通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。
设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。
(三)针对练习、学习例题
1、在这个环节我先是设计了一个练习题,通过练习,进一步巩固了学生的新知,又加深了他们的理解,为学习例题奠定了基础。
如果x-5>4,那么两边都 ,可得到x>9
2、学习例题环节我采用了学生单独完成的方法来进行,因为有了前面的基础,学生很容易的就可以完成例题的解题过程,教师只需强调注意的事项即可。
例1.用“>”或“<”填空
(1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。
解:
【小结】解此题的理论依据就是根据不等式的基本性质1进行变形。
例2.把下列不等式化为x>a或x (1)x+6>5 (2)3x>2x+2 解: 【归纳】把不等式的某一项变号后移到另一边,称为移项,这与解一元一次方程中的移项相类似。例题完成后,要求学生讲解解题思路,以进一步加深理解。 (四)巩固提高、拓展延伸 在这个环节我呈梯度形式设计了不同层次的练习题,针对不同层次阶段的学生,都要求他们完成符合自身实际的题目,以便获得成功的体验,进一步提高学习兴趣。 1、课本P133练习第1、2题; 2、判断是非: ①若a>b,则a-3>b-3 ( ) ②若m ③若a-8 ④若x>7,则x-4<3 ( ) (五)畅谈收获、分层作业 回顾本节课不等式性质的探索过程和解不等式的方法,谈谈你的心得体会。 1.不等式的概念和基本性质1. 2.简单不等式的变形. 通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了数学的思想方法。 最后是作业设计: 1、看书P132—P133(补全书上留白,划出重点内容,完成读书笔记); 2、习题5.1A组第1题(1)(2),第3题(1)(2); 3、选作:习题5.1B组第1题。 五、教学评价 本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从不等式的意义到不等式的性质的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。在教学设计时,利用多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。 六、教学反思 1.本节课通过学生自主探讨、小组合作得出不等式的概念和性质1. 2.本课设计以问题为载体,探究为主线,培养学生的自主、动手、合作交流能力。 谢谢大家! 尊敬的各位领导,老师们: 大家好!今天,我很高兴能站在这里,向大家展示我的说课。我的说课内容是《分数的基本性质》。我将从以下这些方面来进行说明。 一、教材分析(课件) 《分数的基本性质》是人教版九年义务教育小学数学第十册中的内容。本节课内容是在分数的意义,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节内容将起着举足轻重的作用。 二、教学目标(课件) 根据教材内容及学生的认知水平,我制定了以下教学目标: 1..使学生理解与掌握分数的基本性质。 2.培养学生观察、比较、分析、概括等方面的能力。 三、教法和学法(课件) 为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的角色。设计了情景设疑、观察发现、小组合作的教学方法。 新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。 四、教学过程(课件) 结合五年级学生的理解能力和年龄特征,我将本课的教学,设计了四个环节。 (一)、创设情境、引发猜想(课件) 首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。 “同学们,你们听完故事后,觉得哪知猴子分得饼最多?” 一上课,先听一段故事,学生们自然非常乐意,并会立即被吸引,积极的思考故事中的问题。通过这样的故事设疑,马上激起了学生探求新知的欲望。 (二)、动手操作、初步感知(课件) 我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)通过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观对比,学生不难理解,三个分数大小相等。可是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。接着,我因势利导,安排下一环节: (三)比较归纳、揭示规律(课件) (1)我板书这组分数后,请学生观察:从左往右看,分子是怎么变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,可以很好的引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括能力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的.经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。 (2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。 (3)最后,我建议学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学内容。 (4)现在,学生明白了聪明的猴王原来是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎么办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的能力。 课堂的高潮之后,我启发学生还可以用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。 (四)多层联系、巩固深化 练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。接着,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。 五、板书设计 说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮助学生把整堂课的学习内容融入大脑。 总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。 我的说课到此结束,谢谢大家。 尊敬的各位考官: 大家好,我是x号考生,今天我说课的题目是《分数的基本性质》。 新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。 一、说教材 本节课选自人教版小学数学五年级下册第四单元第三节《分数的基本性质》,是在学生初步认识了分数的意义、分数与除法的关系、以及整数除法中商不变的规律的基础上进行学习的,而本节课也是后续学习约分和通分的基础,因此理解并掌握该性质尤为重要。 二、说学情 接下来谈谈学生的实际情况。五年级的学生学习态度端正,有着良好的学习习惯,而且各个方面都已经发展的比较完善,具备一定的分析能力和解决问题的经验。但是还具有活泼好动的特点,所以我会采用多种教学方法。 三、说教学目标 根据以上对教材和学情的分析,我制定了如下三维教学目标: (一)知识与技能 结合具体情境,理解分数的基本性质,会应用分数的基本性质进行分数的改写。 (二)过程与方法 经历自主思考、小组讨论的过程,提高观察、分析、推理、总结的能力。 (三)情感、态度与价值观 体验数学与生活的联系,提高对数学的学习兴趣。 四、说教学重难点 在教学目标的实现过程中,教学重点是分数的基本性质,教学难点是分数的基本性质的`探究过程。 五、说教法和学法 在教学中我始终以学生为本,以学生为立足点,借助多媒体教学,引导学生动手操作、观察、探究,充分调动学生学习的积极性。本节课我将主要采用创设情境、动手操作、自主探究的教学方法,把课堂还给学生,充分调动学生的眼、手、脑等感官参与认识活动,享受学习的乐趣。 六、说教学过程 下面重点谈谈我对教学过程的设计。 (一)导入新课 首先是导入环节,我将采用创设情境的导入方法。 熊妈妈按不同分法给三个孩子分三块巧克力,第一块平均分成两份,给老大一份;第二块平均分成四份,给老二两份;第三块平均分成八份,给老幺四份。提问:哪个孩子分的巧克力更多?然后说明通过这个故事学习一个新知识,进而引出课题。 通过创设情境,利用一个小故事,将比较抽象、枯燥的数学知识以生动有趣的形式展示出来,一方面可以吸引学生的兴趣,有利于更好的展开课堂教学;另一方面可以淡化学生对数学知识的陌生感,更好的体会数学来源于生活,应用于生活。 (四)小结作业 在课程接近尾声时,我会找学生总结今天的学习内容。这样的设置可以让学生再次回忆本节课的知识,并且提升学生的归纳总结能力。 课后作业设置为小游戏,同桌之间分别写几个不同的分数,让对方写出与其分母不同但大小相同的分数。这样的设置不仅能进一步巩固本节课的学习,还可以活跃学生的思维。 七、说板书设计 我的板书设计遵循简洁明了、突出重点的原则,以下是我的板书设计: 一、说学生 学生在学习本课内容之前,已经掌握了分数的基本概念,理解了分数与除法的关系,以及商不变的性质等知识。这些知识为学生学习本课内容奠定了基础。同时,五年级的学生具有一定的分析和解决问题的能力,能够在老师的指导下完成“提出问题—探索解决方案—澄清疑惑—应用知识”的学习过程。 二、说教材 1、教材分析: 《分数的基本性质》是小学数学五年级下册第四单元的重要内容,它承前启后,与整数除法商不变的性质有着密切联系。掌握分数的基本性质不仅有助于理解整数运算规律,还是后续学习约分、通分、分数计算的基础。在整个分数教学中,这一部分内容具有非常重要的意义。 2、教学目标: 结合对教材的分析,我确定了以下教学目标: 知识与技能目标: 分数是数学中常见的一种数,由分子和分母组成。分数的大小取决于分子与分母的比例关系。我们可以通过改变分数的分母和分子,而保持分数的大小不变。这样可以帮助我们更灵活地运用分数,解决各种实际问题。 过程与方法目标: 让学生通过探索和实践,发现分数的基本性质,培养他们的合作意识和团队合作能力。通过小组合作的方式,让学生共同思考、讨论,逐步总结和归纳分数的规律和特点。这样的教学方法可以培养学生的逻辑思维能力和问题解决能力,同时促进他们将所学知识灵活运用到实际生活中的能力。 情感态度与价值观目标: 让学生在主动探索新知识的过程中获得成功的体验,体会分数的基本性质在生活中的应用。 3、教学重点和难点: 重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。 难点:学生通过猜想和动手验证,抽象概括出分数的基本性质。 4、教学准备: 学生准备三张形状大小一样的`纸片、彩笔,老师准备课件、分数卡片。 三、说教法学法 教法: 本着 “以学定教”的思想,我以自主探究为主线,以发展创新为宗旨,主要采用创设情境、引导探究、引导发现、组织讨论、组织练习等教法,让学生全程、全面、全心地参与到每一个教学环节中。 学法: 新课标指出:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。基于这样的理念,本课学生的学法主要有:自主发现法、操作体验法、合作交流法、自学尝试法等。当然,由于学生思维方式的不同,教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。 四、说教学过程 为实现教学目标,我将本课的教学程序设计了以下四个环节: (一)创设情境,引发猜想 首先我为学生带来一个《猴王分饼》的故事:猴王做了三个大小一样的饼,它先把第一个饼平均切成两块,分给猴1一块;又把第二个饼平均切成四块,分给猴2两块;接着又把第三个饼平均切成八块,分给猴3四块。听完故事,我问道:“同学们,哪只小猴分的饼最多?”来引发学生的猜想。 设计意图:“疑是思之始,学之端”。这样设计,旨在把枯燥的数学知识贯穿于学生喜爱的故事情境中。引发学生的学习兴趣,激发他们学习的欲望。 (二)自主探究,寻找规律 活动一:动手实践,验证猜想 让学生动手折一折(将每张纸分别平均折成两份四份和八份)、涂一涂(用笔将其中的一份两份和四份涂上色)、比一比(比较涂色部分的大小),发现三只小猴分的饼是一样多的。同时得到三个相等的分数: = = 活动二:观察比较,发现规律 请观察以下三个分数:$frac{2}{3}$,$frac{4}{6}$,$frac{6}{9}$。它们的分子和分母都不相同,但它们的值相等。请思考这三个分数之间的变化规律,并与小组成员讨论。 活动三:对比归纳,提示规律 1、运用课件引导学生分别从左往右看,从右往左看:分数的分子和分母是怎样变化的? 2、小组合作,归纳出分数的基本性质。 3、自学教材,对比分析,并举例说明,着重理解为什么要“0除外”? 活动四:应用巩固,体会规律 我以学生为主角,把全班学生平均分成了两大组,请其中一组起立。站起来的学生人数占全班人数的几分之几?引导学生用不同的分数来表示。 设计意图:通过组织四个不同形式的活动,帮助学生培养自主学习的习惯和分析问题的能力。在活动中,采用多种评价方式,及时肯定学生的努力并激励他们继续学习。 (三)多层练习,巩固深化 1、例2:让学生运用分数的基本性质把 和 化成分母是12而大小不变的分数。 2、明确《猴王分饼》的道理,并拓展延伸:如果小猴子要五块、六块、十块……又该怎么分呢? 3、考虑到学生素质的差异,我设计了四组分层闯关训练。 我设计这个任务的初衷是希望学生能够运用他们所学的知识解决现实问题,实现既定的目标。通过这样的任务,不仅能够激发学生的学习兴趣,还能够让他们有机会提升自己,实现优秀学生的突出表现,同时也有助于减轻学生的学习负担。 (四)课堂小结,加深理解 让学生畅谈收获,并用分数来表示本节课所体验到的收获与快乐。这样设计,不仅是对自己在课堂上知识获取的一个回顾,同时也评价了自己在课堂上的表现,对教师的教学行为与课堂的教学效果也给出了评价。 五、说板书设计: 板书设计突出了重点,有助于学生归纳、整理知识,形成知识网络。 六、说反思 反思本节课的教学,我认为教学设计体现了“趣”、“实”、“活”三个特点。故事引入,激发了学生的学习兴趣;通过折、涂、比等多种活动,为学生搭建了一个自主探究的活动平台;课上得富有实效,学生体验到了成功的乐趣。 一、说教学理念 1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。 2、从学生已有的认知发展水平和知识经验出发,为学生带给充分从事数学活动的机会和充分的练习空间。 3、致力于改变学生的学习方式,关注过程,让学生经历知识的构成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。 二、说教材 1、教学资料 《分数的基本性质》一课是五年级下册第四单元的一个资料。这部分资料是在学生学习了分数的好处、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮忙学生理解了分数的基本性质,又沟通了新旧知识的内在联系。 2、学情分析 学生在三年级上学期已经初步认识了分数,明白分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识资料概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。 3、教学目标: (1)透过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的`分数,再应用这一规律解决简单的实际问题。 (2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括潜力。 (3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。 教学重点: 理解和掌握分数的基本性质 教学难点: 学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。 教具学具: 课件,三张同样大小的长方形纸条、彩笔。 三、说教法 “将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有: 1、实际操作法 指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。 2、直观演示法 先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。 3、启发式教学法 运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在用心的思维中获取新知。 四、说学法 1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师透过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。 2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,到达检验自学的目的。 五、说教学过程 (一)、创设情境激趣引新 (二)、新知探索 动手操作、形象感知 观察比较、探究规律 首尾照应、释疑解惑 (三)、巩固新知 判一判填一填找一找 (四)、扩展延伸 1、创设情境,激发兴趣,揭示课题。 上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。 (设计意图)好奇是学生的天性,透过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。 2、探索新知 (1)、动手操作、形象感知 首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/3,2/6,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后透过电脑再进一步证实学生的发现:透过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。 (设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅仅复习了分数的好处,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。 (2)、观察比较,探究规律 首先,在学生折纸的基础上,透过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的好处,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行比较,找出二者间的联系,使学生更好的理解、运用性质。 (设计意图)这一环节重在培养了学生大胆交流、语言表达的潜力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。 3、巩固新知 在巩固阶段,我安排了三个不同层次的习题。其中“填一填”是基础练习,但也包内含6/12=()/()的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只但是说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的潜力。 4、拓展延伸 透过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善。此时学生的视野已不尽限于分数的基本性质,而是扩展到研究分数大小变化的规律;最后的拓展性提问,使学生思维发散,联系实际,运用规律,并自然引出以后的学习资料,激发学生不断探索新知的欲望。 六、板书设计 分数的基本性质 分数的分子、分母同时乘以或除以相同的数, 分数的大小不变。 一、教材分析 1、本节的地位和作用。 函数的基本性质包括函数的单调性与最大(小)值,奇偶性,在函数的学习中起着承上启下的作用,是函数概念的延续和拓展,又是后续研究指数函数,对数函数,三角函数的性质的基础;在研究各种具体函数的性质和应用,解决各种问题中都有广泛的应用。函数的基本性质的概念建立过程中蕴含着数形结合,从特殊到一般等数学思想方法,对研究具体函数的性质有很强的启发和示范作用,为后续具体函数的学习奠定了重要的基础。 2、教学目标定位。 (1)知识与技能 理解函数单调性及最值的概念,函数的单调性是函数的局部性质,最值是在整个定义域上来研究的;让学生能判断一些简单函数在给定区间上的单调性,函数的最值是函数单调性的应用。理解函数的奇偶性及其几何意义,掌握判断函数奇偶性的方法。启发学生发现问题、提出问题、培养学生分析问题、解决问题的能力;培养学生观察、抽象的能力,从特殊到一般的概括、归纳问题的能力。 (2)过程与方法。 通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。学会应用函数的图像理解和研究函数的性质。利用函数图象会找出函数的单调区间,求函数的最大(小)值或者无最值。利用图像是否关于Y轴和原点对称,判断函数的奇偶性。会用单调性求最值。 (3)情感态度与价值观。 理解描述生活中的增长、递减现象和对称性图像。使学生感受到学习本节知识的必要性和重要性,激发学生学习的积极性,并渗透数形结合、观察、抽象概括的思想方法。 3、重点难点的确定。 重点:函数的单调性、最值、奇偶性概念的理解。 难点:函数单调性的概念及其应用定义判断或证明函数在某一区间上单调,求函数的最值,函数奇偶性的概念及其应用定义判断或证明。 重、难点确立的依据:函数的单调性、最值、奇偶性是函数的最基本的性质,在后面学习指数函数、对数函数、三角函数时,仍然要研究它们的这些性质。这些性质概念抽象性比较强,是在前面学习函数的定义及其表示以后,直接学习函数的性质,对学生来说,比较困难,它要求学生有较强的抽象能力,这对刚升入高一的学生来说不容易理解。这些性质的应用也比较广泛,函数在高考中是一块重点,经常以低、中、高档题出现,考察函数的性质。函数性质的学习为以后研究各种具体函数打下坚实的基础。 4、课时安排。本节内容教材安排3个课时,在实际教学中安排6个课时,具体处理如下:教材内容授课3课时,练习、提升作业3课时。 二、教法分析 1、函数的单调性。这节课的教学以函数的单调性的概念为主线,注重函数单调性的概念的生成,对函数单调性概念的深入而正确理解是学生认知过程的难点。 在课堂上,突出概念的形成过程,让学生学会如何提出问题、分析问题、解决问题,培养自己的能力。利用函数单调性的定义判断或证明函数单调性又是y一个难点,使用函数单调性的定义证明函数单调性是对函数概念的深层理解,学生总结出证明函数单调性的步骤,这也是以后不等式中比较法的基本思路。函数的单调性是函数的局部性质,在整个定义域上不一定具有,这与函数的奇偶性、函数的最值不同,它们是函数在整个定义域上的性质。函数的单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强数与形的结合,由直观到抽象,由特殊到一般。首先借助对函数图像的观察、分析、归纳、发现函数的增、减变化的直观特征,其次,利用函数解析式进行量化,发现增、减变化的特征,最后用数学符号刻画。这实际上就是研究函数的“三步曲”:第一步,观察图像、描述函数特征;第二步,结合函数图、表,用自然语言描述函数图像特征;第三步,用数学符号的语言定义函数性质。 由于函数图像发现函数性质的直观载体,因此,在教学中,也可以充分使用信息技术创设教学情景,以利于学生作函数的图像,有更多的时间用于思考、探索函数的性质。对于课本例1的教学,要向学生说明,函数的单调性是对定义域内某个区间而言的。对于单独的一点,不存在单调性问题,单调区间不能写成并集的形式,有些函数在整个定义域内具有单调性,如一次函数,有些函数没有单调区间,或者它的定义域根本就不是区间,如1.2.2节例3中的函数Y=5X,X??1,2,3,4,5?。对于例2,它有两个目的,一是利用单调性证明物理学中的波尔定律,让学生感受到函数单调性的初步应用,二是表明利用单调性定义证明函数在某一区间上的单调性的步骤。 2、函数的最大值、最小值。函数的最值是函数的一个整体性质。学生在初中学习二次函数时已初步了解最大值、最小值。在高中给出最大值、最小值的定义。其概念的.形成仍然是由图像直观,用自然语言描述,数学符号语言定义这样一个过程。在学习过程中,引导学生通过类比,弄清最大值的含义、最小值的定义。课本例3是一个实际应用问题,教学时,可以用信息技术作出函数图像,然后通过追踪点坐标的变化,观察并体会问题的实际意义。这是一个二次函数模型求最值的问题。例4表明,利用函数的单调性求函数最值的方法。同时,又一次让学生体会证明函数单调性方法。 3、函数的奇偶性。在教学这部分内容时,沿用处理函数单调性的方法。奇偶性的应用主要体现在:一是利用函数图像或定义判断函数的奇偶性,如例5;二是利用图像的对称性来作函数的图像,如课本上的思考题及其练习部分的第2题;三是利用定义证明函数的奇偶性,四是奇偶性与单调性、求解析式等的综合应用。在教学时,通过具体例子引导学生认识,并不是所有函数都具有奇偶性,如函数Y=x,既不是奇函数也不是偶函数,者可以从图像上看出,也可以由定义去说明。 4、注意的问题。 (1)在中学阶段介绍的是定义域中某区间上的单调函数,大学里的单调函数通常定义在一般的数集上。设函数F(X)定义在数集D上,如果对于D中任意的X1。对于函数的基本性质:(1)研究函数的基本性质应局限于具体的简单函数,不要求讨论有关“抽象函数”的奇偶性;(2)对偶函数、奇函数图像的“对称性”不要求作严格的证明。 把握好函数应用的“度”。首先,模块1中的函数应用是简单初级的,其目的在于通过应用让学生加深对函数的理解,初步感受函数思想的使用。所以在教学中,应特别注意不要一步到位,综合应用,而是针对本模块的函数模型特点、知识学习要求和目的精选问题,逐渐习惯教科书“随学随用”的设计理念。 三、学情分析 学生通过图形直观启迪思维,分析、抽象、概括,完成从感性认识到理性思维的飞跃,学生从问题中质疑、尝试、归纳、总结、运用,培养发现问题、研究问题、分析问题的能力。 【《比的基本性质》说课稿】相关文章: 比的基本性质说课稿11-05 《比的基本性质》说课稿11-11 《比的基本性质》说课稿12-21 《分数的基本性质》说课稿11-20 《比例的基本性质》说课稿12-09 分数的基本性质说课稿07-11 等式的基本性质说课稿09-22 《分式的基本性质》说课稿12-25 分数的基本性质说课稿07-20 分数基本性质说课稿05-16《比的基本性质》说课稿11
《比的基本性质》说课稿12
《比的基本性质》说课稿13
《比的基本性质》说课稿14
《比的基本性质》说课稿15