八年级数学说课稿
作为一位不辞辛劳的人民教师,常常需要准备说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。那么什么样的说课稿才是好的呢?以下是小编帮大家整理的八年级数学说课稿,希望对大家有所帮助。
八年级数学说课稿 篇1
下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。
一、说教材
1、 教材内容:我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
2、 教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
3、 教学目标
知识目标:(1)、理解分式的乘除运算法则
(2)、会进行简单的分式的乘除法运算
能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。
(2)、能解决一些与分式有关的简单的实际问题。
情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。
(2)、培养学生的创新意识和应用意识。
(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
4、教学重点:分式乘除法的`法则及应用.
5、教学难点:分子、分母是多项式的分式的乘除法的运算。
二、说教法
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的方法。通过与分数的乘除法运算类比。
2、合作学习。
四、说教学程序
1、类比学习,探索法则。(约3分钟)
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)
复习:分数的乘除法法则(抽一学生口答)
猜一猜: ; (a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)
类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)
活动目的:
让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。
教学效果:
通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。
2、理解法则:(约2分钟)(1)文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
(2)符号表述
× = ;
÷ = × = .
活动目的:
两种形式巩固对法则的理解。
教学效果:
理解法则,进一步发展学生的符号感。
3、应用:(约20分钟)
(1)牛刀小试
教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。
例1 计算
(1) ;
(2)
活动目的:
抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。
教学效果:
有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。
例2.计算:
(1)3xy2÷ ;
(2) ÷
活动目的:
让学生进一步理解类比的学习方法,分式的除法先转化为乘法。
教学效果:
因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化。
(2)“西瓜问题”
活动目的:
能解决一些与分式有关的简单的实际问题。能有条理的进行表达。
教学效果:
通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)
4、随堂练习。(约5分钟)
76页第一题,共3个小题。
教学效果:
在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。 分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。
5、数学理解(约5分钟)
教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。
补充例3 计算(xy-x2)÷
教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。
6、课堂小结(约3分钟)
先学生分组小结,在全班交流,最后老师总结。
7、作业布置,凝固新知。(约2分钟)
教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)
五.说板书设计
主板书采用纲要式,一目了然。
一、 分式的基本性质
1、 文字叙述
2、 符号表述
二、应用
最后,谈谈我的体会。课堂上平等对话,让学生自主掌握数学,发现问题,及时改正。教学是让学生丰富认识。
八年级数学说课稿 篇2
一、教材分析
说课内容:
《整式的乘除与因式分解》的《完全平方公式》。
教材的地位和作用:
完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,重要的数学方法“配方法”的基础也是依据完全平方公式的。而且它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用。
本节内容共安排两个课时,这次说课是其中第一个课时。完全平方公式这一教学内容是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想。
教学目标和要求:
由课标要求以及学生的情况我将三维目标定义为以下三点:
知识与技能目标:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式进行计算。
过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。
情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。
教学的重点与难点:
根据对学生学习过程分析及课标要求我把重点定为:完全平方公式的.结构特点及公式的直接运用。而难点应为完全平方公式的应用以及对公式中字母a、b的广泛含义的理解与正确应用。在教学过程中多处留有空白点以供学生独立研究思考。
二、教法与学法
(1)多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。
(2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。
(3)由易到难安排例题、练习,符合八年级学生的认知结构特点。
(4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。
三、教学过程
教师活动学生活动设计意图
一、创设情景,推导公式
计算
1、想一想(电脑演示)
一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种,(如图所示)
⑴、分别写出每块实验田的面积;
⑵、用不同的形式表示实验田的总面积,并进行比较,你发现了什么?
2、算一算
①、=?你能用多项式乘法法则说明理由吗?(引导学生说理)
3、做一做
你能利用面积知识,仿照课本以及演示的动画,自己给出的示意图吗?
二、自主探究,合作交流
板书公式:
①②1、问题:
①这两个公式有何相同点与不同点?
②你能用自己的语言叙述这两个公式吗
八年级数学说课稿 篇3
一、创设情境,引导学生参与新课。
师:同学们,生活中到处都能碰到和数学有关的问题。今天,我们一起去书店买课外书,看看在那里会碰到什么数学问题
【利用买书这一情境导入新课,可以体现数学来源于生活实际这一原则。利用学生身边的事情或学生感兴趣的事情创设学习情境,可以激发学生的学习兴趣。】
二、学习新知。
1.出示主题图。
第一步,让学生看图并说说从图上知道了什么。
第二步,让学生根据图上的条件提数学问题。
第三步,让学生自己解决问题:《汪汪乐园》和《海底世界》共有多少本?
【这一环节体现数学知识来源于生活实际和可以运用数学知识解决实际问题的道理。】
2.探讨算法。
(1)学生独立思考算法,试算28+4=( )。
【不同的学生有不同的个性,思考同一个问题所需要的时间也不同。对同一个问题,有的学生可能已经有这方面的知识储备,很快就能得出结论,而有的学生则需要较长时间的思考。所以,教师提出问题后,一定要给学生留足独立思考的时间,保证每个学生都能得出自己的结论,这样在后来的分组交流或全班交流时,他们才会勇于表现自己,乐于表现自己,积极地参与课堂的学习活动。】
(2)分4人小组交流算法,要求组长统计算法。在全班评选想出算法最多的小组。
【进行组与组之间的竞争,可以极大地调动学生的学习积极性,提高学生的主动参与意识。】
(3)全班学生交流算法。
算法一:数小棒,先摆28根,再摆4根,然后把4根小棒一根一根地加到28根上,一边加,一边数,数出最后的结果。
算法二:先算28+2=30
再算30+2=32
算法三:先算8+4=12
算法四:列竖式:
学生已经学会了列竖式计算两位数不进位加法,有的学生已经有了列竖式计算进位加法的知识储备,所以当学生提出可以列竖式计算时,教师就先让学生试着列竖式计算,自己讲解计算方法,然后再强调满十进一的计算法则。
(4)学生选择适合自己的算法,分组进行交流,并说明自己选这种算法的原因。
【通过学生比较,选算法,分组交流,使他们明白选择算法是为了计算更快速、更准确,增强学生的优化计算方法的'意识。】
三、练习试一试。
1.你想买哪两本书,需要多少钱?
先请学生独立做题,然后全班交流计算方法和计算结果。
【让学生带着自己的主观意愿去做题,学生的兴趣会更浓,全班交流时也会很积极地参与发言。】
2.有30元钱,可以买哪些书?
学生独立思考、做题;分4人小组交流,组长统计计算方法,评选出每个小组中想出方法最多的智多星;全班交流计算方法。
四、自由练习。
师:你今年多少岁?算一算再过16年你多少岁?
你妈妈今年多少岁?再过8年多少岁?
你爸爸今年多少岁?再过7年多少岁?
(1)学生独立列式计算;
(2)分4人小组交流计算结果。
【以学生及其父母的年龄为材料进行练习,学生兴趣浓厚,积极地参与练习与讨论。】
五、小结。
师:同学们也可以在生活中找一找数学问题,试着去解决这些问题。如果解决不了,可以存入问题银行以后再解决【再次说明数学来源于实际生活,数学知识可以帮助我们解决实际问题的道理。】
六、学生自评。
要学生说一说自己这节课表现得怎么样?如果好,好在哪里?如果不好,以后打算怎么做?
【通过学生自评,增强学生的主人翁意识,鼓励学生积极动脑,踊跃发言,形成积极向上的学习氛围。】
八年级数学说课稿 篇4
一、教材分析
(一)教材的地位和作用
现实世界中,四边形装点着我们的生活。宏伟的建筑物、铺满地砖的地板、别具一格的窗棂、天空飞舞的风筝处处都有平行四边形的身影。本节课是在学生已掌握了全等三角形、四边形的有关知识和平行线的性质的基础上学习的,既是已学知识的综合运用,更是下一步研究各种特殊平行四边形的基础,具有承上启下的作用。通过本节教学,把研究平行四边形转化为全等三角形的方法向学生渗透“转化”的数学思想,探究平行四边形的性质过程提高学生分析、解决问题的能力。因此,本节课无论是在知识的学习,还是对学生能力的培养上都起着十分重要的作用。
(二)教学目标知识教学点目标:使学生理解并掌握平行四边形的概念及性质,并能运用这些知识进行有关的证明与计算。从而解决简单的实际应用问题。
能力教学点目标:在性质的探索、发现与证明的过程中,培养学生的观察能力及逻辑推理论证能力,渗透“转化”的数学思想。
情感、态度、价值观目标:通过探究学习,增强发现问题、解决问题的意识,养成合作交流的习惯。通过列举现实生活中的平行四边形形状的实例,使学生明白几何图形来源于生活,学习几何是为了解决实际问题,培养学生科学的学习态度。
(三)教学重点、难点与课时设计教学重点:平行四边形的定义及性质。教学难点:平行四边形性质的理解。
二、说教法
根据本节课的教材内容特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用观察发现法为主,多媒体演示法为辅。教学中,设计启发性思考问题,创设问题情境,引导学生思考。教学适时运用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法
1、根据自主性和差异性原则,让学生“观察→猜想→概括→验证→交流→应用”的学习过程中,自主参与知识的发生、发展和形成的过程,使学生掌握知识。
2、学生一题多解,并及时引导学生小结方法,克服思维定势。例题讲解采取分解图形的方法,使学生体验并学习“转化”的数学思想。
3、利用实际生活中的图形,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。
四、说教学过程
教学程序设计:教学流程图
展概性性课示念质质外
图的的的作片形猜巩业揭成想固自
示与与与我课讲验应检题解证用测
教学过程:
(一)、观赏生活中的图片,引入课题(电脑演示)下面的图片中,有你熟悉的哪些图形?
设计意图:从学生身边熟悉的事物中选取学习素材,易于学生接受,激发学生的学习兴趣。同时,让学生明确本节课的学习内容。
(二)、开启智慧
1、操作活动:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
将一张纸对折,剪下两张叠放的三角形纸片。将它们相等的一组边重合,可以得到一个四边形。设计意图:学生在拼图活动中可以获得丰富的感知,经历和体验图形的变化过程,引导学生感悟知识的生成、发展和变化.
2、观察、讨论:
(1)两张纸片拼成了怎样的图形?它是四边形吗?
(2)这个图形中有没有互相平行的线段?你是怎样得到的?(3)用简洁的语言刻画这个图形的.特征,并与同伴交流。
设计意图:通过拼图游戏,让学生经历了平行四边形概念的探究过程,自然而然地形成平行四边形的概念,符合学生的认知规律.避免了以往概念教学的机械记忆,同时发展了学生的探究意识,培养了学生思维的广阔性.
3、平行四边形的定义。
4、介绍平行四边形的书写方式及对角线、对边、对角、邻角的定义。
5、学生动手画一个平行四边形ABCD。
设计意图:通过动手画图操作使学生对平行四边形及其相关元素获得丰富的直观体验,为探究图形性质打下坚实基础。
(三)、知识源于悟:
1、做一做(让学生实际动手操作)(出示幻灯片)
先将复制后的四边形与原来的四边形重合,然后绕一个顶点旋转180°,再平移该四边形,它还能与原来的四边形ABCD重合吗?
(教师用展示整个旋转变化过程)
2、讨论:(小组交流)
(1)通过以上活动,你能得到哪些结论?
(2)平行四边形ABCD对边、对角分别有什么关系?能用数学知识验证你的结论吗?
3、结论:平行四边形的对边相等
平行四边形的对角相等
平行四边形的邻角互补
设计意图:以学生原有的知识为出发点,引导学生进行小组学习,通过一系列的动手、操作、观察、实践、思考、探索、交流来获取知识和学会学习,使他们更好体会合作交流、互相评价、互相尊重的学习方式。同时让学生经历数学知识的形成的过程,能很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验。从而培养学生数学学习的探究能力、分组合作能力、逻辑思维能力和推理论证能力等。
4、填表:分边、角总结平行四边形的性质,并用几何语言叙述。
设计意图:规范学生的几何语言。同时也使学生清楚,平行四边形的定义既可以作为性质运用,也能作为证明一个四边形是平行四边形的方法,在此为平行四边形的判定做了一个铺垫。
(四)、随堂练习
1、在平行四边形ABCD中,已知∠A=50°,BC=3cm,则∠B=____,∠D=____,AD=______。
2、在□ABCD中∠ADC=125,∠CAD=21°,求∠ABC,∠CAB的度数.
3、平行四边形ABCD中,若在AD上取一点E,CB上取一点F,且AE=CF,试测量比较BE,DF的大小并说明理由。
设计意图:1主要是引导学生归纳小结帮助学生熟练掌握平行四边形的性质。
2、3是应用性质解题部分,2采用学生板演,教师巡回的辅导方式,让学生巩固所学知识,检验本节课对知识的掌握情况,并对书写格式,及时的订正和指导。3采取小组合作解答,互帮互助。让学生熟练性质定理,为以后的证明和计算打好基础。
(五)、新课小结:
通过本节课的学习,你有什么收获?(同桌互讲,小组交流,师生共同小结)
设计意图:引导学生归纳小结本节课的知识要点,使学生养成学习→总结→学习的良好习惯,发挥自我评价的作用,也培养学生的语言表达能力。
(六)、作业设计:
1、必做题:P99习题4.1第
1、3题。
2、选做题:利用平行四边形设计美丽的图案,表达你美好的愿望。
五、课后反思
1.注重学生对数学学习兴趣的培养
以实际生活中的图片引入,通过动手画图和实验探索来激发学生的好奇心和求知欲。2.注重对“基础知识”、“基本技能”的理解、掌握和创新能力的培养本节课通过变式、探究及其相关应用来体现这一基本思想。3.注重师生之间的互动和交流
学生是学习活动的主人,教师是学习活动的引导者、组织者和参与者,在此过程中,教师始终关注学生学习的情绪体验,注重对学习过程的评价。通过归纳整理,培养学生善于反思的良好学习习惯,为自身的发展打下坚实基础。
八年级数学说课稿 篇5
一、教材中的地位及作用
《变化的鱼》是北师大版八年级上册第五章的第三节。主要内容是坐标变化和图形变换之间的关系。本册第三章学习了图形变换的平移和旋转,本章第一、二两节学习了平面直角坐标系和如何在坐标系内确定一个点,本节内容就是把这二者有机结合起来,为学生提供了一个探索坐标变化和图形变换之间的关系的一个平台,在经历图形的坐标变化和图形变换的探索过程中,培养形象思维能力,体会数形结合思想。该课时内容在整个中学数学学习中是一个转折点,具有承前启后的作用。通过本节课的学习,为相似、位似、函数及其图象的学习奠定基础,而且这一节内容,将向学生明确提出数形结合这一思想,要求学生逐步掌握利用平面直角坐标系建立模型解决生活中遇到的实际问题。
二、学情分析
我所任教八年级学生大部分处于城乡结合部,形象思维能力和动手能力较强,逻辑思维能力偏弱,课堂主动性不够。对于本节,在之前学生已经学习了简单的图形变换以及直角坐标系的相关知识,为本节的学习奠定了基础,但本节内容也不是两种知识的简单叠加,由于二者的综合,加大了知识的深度,给学生的理解上带来很大的难度。因此,在教学中,应遵循学生的自身特点和本节的内容实际来进行设计。
三、教学目标
知识与技能目标:在同一直角坐标系中,感受图形上点的坐标变化与图形的平移、拉伸、压缩之间的关系;进一步体会点与坐标一一对应的思想。
过程与方法目标:让学生经历图形坐标变化与图形的平移、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力,培养学生数形结合意识。
情感、态度与价值目标:通过培养学生对问题的观察、思考、交流、类比、归纳、动手操作等过程,发展学生的探索精神、合作意识、归纳能力。
四、重点难点
重点:探索并掌握图形坐标变化与图形变换之间的内在关系。
难点:坐标变化和图形拉伸、压缩间的关系。
五、教法与学法分析
1、“教”的本质在于引导,引导的艺术在于含而不露,指而不明,开而不达,引而不发、为了充分调动学生的学习积极性,变被动学习为主动愉快的学习,使数学课上得生动、有趣、高效,所以本节课采用的教法为:
(1)情景式教学法:课堂开始通过多媒体动画,激发学生的学习动机。
(2)探究式教学法:将启发、诱导贯穿教学始终,唤起学生的`求知欲望,促使他们动手、动脑、动嘴,积极参与教学全过程,在教师指导下生动活泼地、主动地、富有个性地学习,成为学习的主人。
2、教学中,学生是学习的主体,教师为学生学习的引导者、合作者、促进者,所以学法确定为:
(1)探究学习法。把问题留给学生,引导他们去解决问题。
(2)合作学习法。和小组的同学一起探讨、交流,利用集体的智慧去解决问题。
六、教学过程
教学过程是教学目标的体现过程,是教法学法的实施过程,是教学理念的展现过程,是使知识与能力在现实背景中自然呈现的过程。结合本节的教学内容及重难点教学过程如下:“情景引入——新课导入——探索新知识——举一反三——触类旁通——巩固拓展”。
教学环节师生活动过程设计意图
情景引入利用多媒体向学生展示一段动画,在动画和音乐声中,让学生进入课堂状态,同时,让学生对本堂课产生好奇和疑问。利用优美的音乐和动画,激发学生的探识欲望
新课导入课件中直接演示作图过程:在坐标系中标出以下点:(0,0)(5,4)(3,0)(5,1)(5,—1)(3,0)(4,2),(0,0),并顺次连接。
问题:所作图形象什么?
通过多媒体,在坐标系中拖动一条可以随意移动的直线鱼,让学生观察,在这条鱼移动的过程中,什么发生了变化?什么没变?
让学生讨论总结出自己的结论,教师不作任何说明。
要求学生在讨论的基础上去作图:让鱼向右移动3个单位。
作出图形,比较所作图形是否和所得结论吻合。
多媒体演示作图过程和前后两条鱼的变化过程。开门见山的直接作图,既复习了前面所学知识,又让学生对本节将要学习的内容有了初步的认识。
问题引入。
探索新知想一想议一议
一、在前面问题的基础上,由学生直接说出:当向左游动2个单位时,图形的坐标发生了什么变化?向上或向下游动2个单位时,图形的坐标又发生了什么变化?
通过课件演示其变化过程,验证学生的答案。
二、针对一般情况,当坐标发生什么样的变化时,图形横向平移或纵向平移?
由前面的作图和演示,学生已经知道:要让鱼移动,必须改变图形的坐标。再次在坐标系中拖动那条可以随意移动的鱼,让学生在已有一定认知之后再来仔细观察,思考,总结更全面的规律。
综合学生的结论,引导他们得出如下结论:
当纵坐标不变,横坐标增加时,图形向右平移;纵当坐标不变,横坐标减少时,图形向左平移。横坐标增加或减少a(a>0)时,图形向右或向左平移a个单位。
当横坐标不变,纵坐标增加时,图形向上平移;当横坐标不变,纵坐标减少时,图形向下平移。纵坐标增加或减少a(a>0)时,图形向上或向下平移a个单位。把整个探索过程交给学生去做,教师只作为一个协助者,让学生通过思考、讨论、动手操作等过程得出结论,既能加深对本节内容的印象,又培养了他们学习和解决数学的能力。
教学环节师生活动过程设计意图
举一反三想一想议一议并回答
1、对于前面的结论,反过来是否成立?
让学生仔细对照所作图形,充分思考,鼓励他们去讨论。
2、观察以下图形,蓝、黑鱼是在红鱼的基础上怎样变化而来的,坐标发生怎样的变化?(1红,2蓝,3黑)
(1)第二条是第一条向左平移4单位得到,横坐标减少4;第三条是第一条向右平移6单位得到,横坐标增加6。
(2)第二条是第一条向上平移4单位得到,纵坐标增加4;第三条是第一条向下平移5个单位得到,纵坐标减少5。
(3)第二条是第一条向左平移5个单位向上平移3个单位得到,横坐标减少5纵坐标增加3;第三条是第一条向右平移3个单位向下平移4个单位得到,横坐标增加3纵坐标减少4。通过上面的学习,学生已经学到了当纵坐标或横坐标改变时,图形将纵向或横向平移,在此基础上来让学生自己得出当图形改变时点的坐标改变的规律,以达到培养学生利用扩散思维进行自我学习的能力。
培养学生利用所学知识解决问题的能力
教学环节师生活动过程设计意图
触类旁通大胆猜测:通过前面的学习,我们知道当鱼的横、纵坐标增加或减少时,鱼就能左右游动或是上下游动。现在,请同学们思考一个问题:当坐标扩大或缩小一定的倍数关系时,鱼会发生怎样的变化呢?
由学生猜测讨论,并和其他组的同学分享本组的结论。
在学生都有自己结论的基础上,要求学生完成以下作图:
作图验证按以下要求作图:在第一条鱼的基础上横坐标扩大为原来的2倍;
作完图形和周围同学比较是否一样;所得图形和猜测所得结论是否吻合。
在这个结论的基础上依次说出以下几种情况的结论:
当(1)横坐标缩小为原来的
(2)纵坐标扩大为原来的2倍
(3)纵坐标缩小为原来的
讨论活动:由学生分组讨论图形平移和坐标变化之间的关系,然后组织学生进行阐述,最后集合学生结论总结规律:
规律:当横坐标扩大为原来的n倍(n>1)(或缩小为原来的)时,图形被横向拉伸为原来的n倍(或被压缩为原来的);
当纵坐标扩大为原来的n倍(或缩小为原来的)时,图形被纵向拉伸为原来的n倍(或被压缩为原来的)
拓展思考:当(1)横、纵坐标扩大为原来的2倍;
(2)横、纵坐标缩小为原来的。
图形又会发生什么样的变化?这一部分的设计,还希望通过这样的方式,让学生体会解决数学问题的一般方法“大胆猜测——小心验证——合理求证”,进一步培养学生的猜想探索能力
教学环节师生活动过程设计意图
巩固拓展归纳巩固:
引领学生学生复习图形平移,图形拉伸、压缩和坐标变化之间的关系巩固本节所学知识点
课外思考
图中红、蓝色的鱼与黑色的鱼对应顶点的坐标之间有什么关系,这些鱼可以看作黑色的鱼如何变化而来的?图中红色的鱼与蓝色的鱼对应顶点的坐标之间有什么关系,你能将红色的鱼通过适当的变化得到蓝色的鱼吗?请写出具体变化过程。
课堂内外的延伸
课外拓展:
课本P165第3题
七、评价与反思
1、这一节课的设计是建立在学生已有的知识经验基础之上,利用多媒体演示,通过猜测、分组讨论、动手作图等方式帮助学生在探索图形变换和坐标变化之间关系的过程中,获得数学知识。
2、教学过程中注重激励学生的学习热情,注重过程评价,注重发现问题与解决问题评价。鼓励学生动脑、动手、动口,积极交流讨论。
3、通过这节课的学习,学生初步掌握了探究数学问题的基本方法,了解怎样建立数学模型解决实际问题,学会从生活中去发现数学,去找到数学的美,把数学和生活紧紧联系在一起,让学生体会到数学形象生动的一面。
4、存在问题:由于学生还没有经历过图形相似的学习,对于图形的拉伸和压缩可能有一定的难度。解决办法:让学生充分交流讨论,积极动手去验证,自己得出结论,加深他们对这一知识的理解。
八年级数学说课稿 篇6
一、说教材
本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。
二、说教学目标
知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。理解等腰三角形和等边三角形性质定理之间的联系。过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。加强学生数学应用意识。
三、教学重点与难点
重点:等腰三角形的性质定理。难点:等腰三角形三线合一性质的运用四、说教法与学法课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。五、说教学过程:学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节:
一、回顾与思考电脑展示人字型屋顶的图像,提问:
1、屋顶设计成了何种几何图形?
2、我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形)
3、它的对称轴是哪一条呢?由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。
二、观察与表达
1、观察猜想请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起,观察一下你有什么发现。教师用多媒体课件演示等腰三角形ABC叠合情况,请学生思考你能得出哪些结论。
2、得出定理学生回答发现后,教师给予指导,用规范的数学语言进行逐条归纳,得出两个性质定理:
定理1:等腰三角形两底角相等。
定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合。
通过让学生动手操作,观察、猜想,体验知识的发生、发现过程,变灌注知识为学生主动获取知识。
学习内容不再以定论的形式呈现,而是以问题形式间接呈现;学习的心理机制不再是仅仅是同化,而是顺应。
三、了解与探究
3、探索定理
一、(A组口答,B组独立解答)
A组:
1、等腰直角三角形的两个锐角各等于几度?
2、若等腰三角形顶角为40度,则它的顶角为几度?
3、若等腰三角形底角为40度,则它的底角为几度?
B组:
1、若等腰三角形一个内角为40度,则它的其余各角为几度?
2、若等腰三角形一个内角为120度,则它的其余各角为几度?
3、一个内角为60度,则它的其余各角为几度?(A组口答,B组独立解答)由此引出推论:等边三角形各个角都相等,且各个角都等于60°。
二、根据性质2填空:
(1)∵AB=AC,AD⊥BC,
∴
(2)∵AB=AC,BD=CD,
∴
(3)∵AB=AC,∠1=∠2,
∴
为了对定理进行进一步探索,设计了以下练习:练习一的整体设计遵循低起点、小分阶、大容量、高密度的原则,其目的是要学生掌握应用等腰三角形性质定理1与三角形内角和定理求角的度数的规律,但教师不是直接将规律灌输给学生,而是让学生在练习过程中自己发现规律,使学生获得从问题中探索共同属性的思维能力。从认知结构看,利用三线合一性质来证明角相等、线段相等或垂直与学生原有认知结构联系较少,需要建构新的认知结构,是一种“顺应”过程,对学生来说有一定困难,因此设计了下面一组填空题,帮助学生进行建构活动。同时,提醒学生注意性质应用应以等腰三角形为前提,为例2的教学作了辅垫,起到分散难点的作用。
四、应用与提高应用举例:
如图,某房屋的顶角∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B,∠C,∠CAD的度数。
例1:求证等腰三角形两底角平分线相等AEDBC由于这是个用文字语言叙述的的几何命题,师生共同商讨,将解题过程分为以下几个步骤:
①根据命题画出相应的图形,并标出字母
②通过分析题设结论,将命题翻译为几何符号语言,写出已知与求证。
③探索证法在寻求证法时启发学生从“已知”、“求证”两方面出发进行思考。
从已知出发:
a:由AB=AC联想到什么
b:BD、CE是△ABC的角平分线联想到什么
c:由a、b联想到什么
d:由a、b、c联想到什么
e:由d联想到什么
从求证出发:证明两条线段相等通常用什么方法?(全等三角形)。这两条线段分别在哪两个三角形中?这两个三角形全等吗?如何证明?本课从居民建筑人字梁结构中抽象出几何问题,通过探索实践活动得出结论,在这里,再将得到的结论应用到实践中,从而解决了人字梁结构中的实际问题。这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于加强学生的数学应用意识。
“证明”的教学所关注的是,对证明基本方法和证明过程的体验,而不是追求所证命题的数量、证明的技巧。因此在例1教学中,有意让学生来确定学习任务与步骤,充分调动其学习积极性。
分析法和综合法是基本的数学思想方法,因此在这里要求学生从两方面都能够思考问题。但这对于刚接触论证几何不久的学生来说,有一定的'难度。所以,由教师提出一系列问题,引导学生进行联想。
本题是通过三角形全等来证明两条角平分线相等,而这对全等三角形可是△ABD和△ACE也可是△BCE和△CBD分别用到了公共边和公共角这两对元素,因此在教学过程中将充分利用这一点,组织学生探索证明的不同思路,并进行适当的比较和讨论,有利于开阔学生的视野。四、应用与提高例2:已知:如图,△AOBDCO’ABC中,AB=AC,O是△ABC内一点,且OB=OC,AO的延长线交BC与D.
求证:BD=CD,AD⊥BC
思考:(1)本题的结论有何特
殊之处?——证明两个结论
(2)你准备如何得出这两个结论?——分别认证或同时证明
(3)哪一种简捷?利用什么性质?
在此基础上请学生按照例1的思考方法自己寻找解题思路,可以在小组间进行讨论。
变式拓展:
(1)如图,在例2中若点O是△ABC外一点,AO连线交BC于D,如何求证?
(2)若点O在BC上呢?
经过例1的学习,学生已有一定推理基础,因此应放手让学生自己去发现证题思路,从而学到新的研究数学学习的方法,并逐渐内化为自己的经验。同时也体现了自主探索、合作交流的学习方式。
在这里有意通过变式让学生经历图形变换过程,并使他们感受到在一定条件下,图形变换不会改变图形的实质,最后将点O移到BC上,使学生体验了从一般到特殊的过程。想一想:记一块等腰直角三角尺的底边中点为,再从顶点悬挂一个铅锤,把这块三角尺放在房梁上,如果悬线通过点M就能确定房梁是水平的,为什么?通过想一想进一步突出重点与难点,也有利于引导学生运用数学的思维方式去观察、分析现实生活,增强应用数学的意识。五、心得与体会
通过今天这堂课的研究,我明确了,我的收获与感受有,我还有疑惑之处是。请学生按这一模式进行小结,培养学生学习-总结-学习-反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。六、作业(1)作业本上相应的作业。(2)已知:D、E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE(1)进一步巩固和提高所学知识(2)及时反馈、查漏补缺(3)体现层次性与开放性六、说评价
八年级数学说课稿 篇7
一、从引入到研究。
从学生的认知的平行四边形的特点平滑过渡到矩形新知识上来,过渡自然,知识衔接很紧密,而且从中体现了矩形就是平行四边形的知识联系和关系。展现给学生清晰的知识系统和结构。然后紧扣矩形是平行四边形的特例,用研究平行四边形的方法来研究矩形的性质,引人入胜,提高了学生跃跃欲试的强烈愿望,达到了激趣导学的目的。此时秦老师抓住了学生的心理进一步深入,顺便提出学习目标,给学生指明了研究的方向和任务,从而引导学生正确地探究。不足的是引入和矩形定义的给定这两个过程学生没有充分的体验。引入时应该给每个学生一个与老师展示的模型一样的模型,让学生直观地去探求平行四边形在各种情况下的情形,这正好给学生开放思维的机会,其实学生根据已有的小学的经验完全能知道某一特殊位置的矩形。这样就进一步激发学生探求知识的热情和兴趣。同时培养学生探索科学的至学精神,体验到了生活中有无穷的科学奥妙。情感意识和价值观也得到了培养。
二、 学生思维、操作与老师的引导容为一体 。
秦老师设计了让学生先画一个矩形,然后让学生由自己的感知来认识矩形的特点。这一点设计巧妙。学生前面有探究的欲望,有了探究的方向,而现在又有了研究的方法了,并且还指导小组合作,分工明确,所以学生从此就切入到探究的活动之中。这整个过程一环扣一环,环环相连,层层深入,步步为营。学生有热情、有兴趣、有目标、有方向、有方法,所有的.同学都参与其中了。
三、小组的评价,激励性很强。
小组的探研,组内的合作和组间的交流开展得有色有声,形式多样,内容丰富因陋就简 就地取材,例如给小组打分,把小组的共同的结果贴在黑板上等等。学生激情高涨,探索劲头十足,培养了学生不畏困难的毅力和勇气,提高了学生的交际交流能力和自我展示能力。而老师也没有闲着,一直参与其中,并指导和引导他们,及时地评价学生。秦老师的导演者、引导者、合作者的角色把握很准,完全没有主观的垄断和主导学生。而是时刻把学生放在主体的位置,让他们充分地表演和展示。
总之,秦老师设计此课 下了功夫。引导到位,组织严密,激情导趣,游刃有余,如鱼得水。教学方法先进灵活,语言干练,姿态亲和。注重了学生各种能力的培养,提高了学生不畏困难的毅力和信心。课堂线条明朗,首尾呼应, 效果 明显,是一堂成功的好课,值得我们学习和推广。
八年级数学说课稿 篇8
一说教材
《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。
二说教学目标
根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:
1掌握等腰三角形的性质
2知道等腰三角形的性质的推理过程
3会灵活运用等腰三角形的性质解决相关的数学问题
三 说教学重、难点
结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。
由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。
四 说教法和学法
本节课我采用的教法是启发式教学法、动手操作法。
学生的学法是:自主探究法、合作讨论法。
五说教学过程
本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。
1 复习导入
通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧上任意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。
2探究新知
在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的`动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.
3理解与运用
为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。
4强化巩固
在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。
5小结
设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。
本节课我采用观察法和动手操作法导入新课充分的调动了学生学习的主动性和积极性顺利完成的预定的教学任务,取得了良好的教学效果。
八年级数学说课稿 篇9
一、教材分析
直角三角形的性质是初二年级上半学期第19章第8节的内容,共分为3个课时,一为直角三角形两个锐角互余和斜边上的中线等于斜边的一半两个性质定理;二为直角三角形30度所对的边等于斜边的一半及其逆定理,三为综合训练。本堂课为第一课时的内容。在此之前学生已经学习过一般三角形的相关性质如内角和性质、外角性质、三边关系以及特殊三角形如等腰三角形和等边三角形的性质和判定,以及三角形全等等足够的知识基础。本课为研究特殊三角形——直角三角形的入门,是以后综合图形证明的一个基础。
二、学生分析
总体来说,绝大多数学生处于中等偏下水平,对几何证明的学习或多或少有些心里障碍,尤其是证题思路的形成,但是仍处于对于新事物好奇的阶段,所以可以通过老师课堂上得有效引导和阶梯是铺垫提示让学生学有所成。
三、教学目标
1、掌握直角三角形两个锐角互余和斜边上的中线等于斜边的一半这两个性质定理,并能初步运用其解决简单的几何问题;
2、经历定理推导过程,体会实验—猜想—论证的完整过程。
3、通过探究直角三角形的性质,培养学生的学习兴趣和严谨的学习态度。
四、教学难点、重点
1、经历“直角三角形斜边上的中线等于斜边的一半”这一性质定理的推导过程
2、直角三角形两个性质定理的简单运用
五、教学设计过程
(一)性质1的引入和训练
1、利用2分钟预备铃学生朗读自己整理的已经学过的有关三角形的知识点;
2、开门见山,提问直角三角形两个锐角的关系,得出性质1:直角三角形两个锐角互余;重点强调几何书写,让学生了解在证明书写时如何规范应用这个性质
3、性质1的'应用,由易入难进行训练,准备习题如下:
1、在直角三角形中,有一个锐角为480,那么另一个锐角度数为
2、等腰直角三角形的一个锐角等于__________
3、如图,在Rt△ABC中,∠ACB=900,CD是斜边AB上的高,
那么图中有几个直角三角形?有几组角互余?有哪些角相等?
第1小题是最简单的应用;
第2小题为后面性质2的推导过程中特殊的直角三角形——等腰直角三角形中斜边上得中线等于斜边的一半打个小基础,而且这也是一个常识知识。在两题的训练中,帮助学生熟悉性质1;
第3小题是课本上得例题,通过他训练学生的思维和规范书写,同时对这个常规的母子三角形进一步加深印象。
(二)性质2的探索和简单应用
首先从等腰直角三角形这一特殊的直角三角形入手,学生容易获得斜边上的中线等于斜边的一半的结论,考虑到班级的部分学生基础并不是很好,所以这里设计了个问题——图中有几个等腰三角形?启发学生得出结论。然后通过提问是否在一半直角三角形中也能获得这个结论,引发学生的思考。然后鼓励学生动手测量实验获得猜想在组织学生讨论引导他们用演绎证明的方法严谨的推导出直角三角形的性质2。这部分的证明是整堂课的难点,需要老师的有效引导和启发,最后性质的得出也让学生感受到从特殊到一般思想方法和实验—猜想—论证的完整定理推导过程。同时通过证明的过程进一步学习添加辅助线的技巧,学会用运动的眼光来看待几何证明问题,如果时间来得及想介绍下同一法的证明方法,为一部分好的学生开阔一下思路。
归纳出定理2后同样给出几何规范书写,强调使用条件有2个,一是直角三角形二是斜边的中线。
然后准备由易到难的习题练习如下:
(1)在直角三角形中,斜边长6,那么该三角形的斜边上的中线长为________.
在直角三角形中,斜边上的中线为6,那么该三角形的斜边长为_________
(2)直角三角形斜边上得中线和高分别是8和5,则这个三角形的面积是_______
(3)在△ABC中,∠ACB=90°,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB=_________.
(变式:在△ABC中,∠ACB=9
0°,CE是AB边上的中线,若∠A=30°,那么与CE相等的线段有_______________)
第1题是基础训练;
第2题进一步提高思维,知道三角形面积需要知道一边和这边上得高,高已知就需要确定这一边的长,再通过直角三角形斜边上的中线这个条件获得这一边的长从而解决问题,培养学生从题目中分析出有用的信息;
第3题不难,但是没有图形,需要学生自己根据题意画出草图,在几何学习过程中图是最重要的环节之一,而我们的学生对于没有图的题需要自己画图的题存在不小的问题,所以利用这个题训练他们的正确画图能力。
变式把一个锐角改成30度,也是为了下一节中直角三角形中30°的角所对的边和斜边之间数量关系讨论做一个铺垫,起到承上启下的作用。
(三)巩固提高训练
这里通过2个习题进行对于定理2的应用训练,同时关注书写的规范
1、【例2】如图,在△ABC中,AD⊥BC,E、F分别是AB、AC上的中点,
且DE=DF.求证:AB=AC
2、已知:如图,BF、CE分别是△ABC的高,N、D分别是EF、BC的中点,分别联接ED、FD。求证(1)ED=FD(2)DNEF
第二题的原题中没有2个小问题,而是直接提问DNEF,这里可根据学生实际的情况考虑是否给出第一小问题作为铺垫。在引导学生进行证明的过程中帮助学生去找题中得已知条件,看有没有直角或垂直的条件,有没有中点的条件,再结合看是不是存在直角三角形斜边上得中线情况。尤其是当图形复杂时要耐得下心来寻找关键的条件。
(四)课堂小结
让学生说说自己这堂课的收获,学生可能对2个定理影响深刻,老师要从分析方法上提点学生注意辅助线的添加方法和图形中找有用的条件的方法
(五)作业布置
不把练习册直接拿来用,而是根据学生的情况进行增减的作业布置,让一般的学生牢牢掌握基础,让好的学生思维获得进一步提高,分层作业的设置尽量考虑所有学生。
(六)作业指导
对于回家作业进行有针对性的简要分析、训练思维,帮助学生加强分析题得能力,同时帮助部分基础比较弱得同学理清思路
附:
19.8(1)作业单
一、任务单上未完成的作业完成
二、练习册上部分习题
1、在直角三角形中,有一个锐角为380,那么另一个锐角度数为
2、在Rt△ABC中,∠C=900,∠A-∠B=300,那么∠A=,∠B=
3、如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,点E是边AC的中点,DE=2cm,∠BCD=20°,那么AC=_______cm,∠A=_______°
4、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________
5、已知:如图,在△ABC中,∠B=∠A,CD⊥BC,CE是边BD上的中线
求证:AC=BD
6、已知:如图,AD、BE相交于点C,AB=AC,EC=ED,M、F、G分别是AE、BC、CD的中点。
求证:(1)AE=2MF
(2)MF=MG
7、已知Rt△ABC和Rt△ADC有公共的斜边AC,点M是AC的中点,点N是BD的中点,求证直线MN垂直平分线段BD
【说明】1、2、4题是两个性质定理的基础训练,第3题结合图形,考察学生对于图形的简单分析能力,利用已知条件和掌握的知识技巧解题。
第5题通过证明线段的倍分问题,培养学生“倒推”的分析能力,通过角的转化,等角对等边等知识的综合运用,同时考察学生对上课复习的如何证明线段倍分关系的方法进行考察。
第6题乍一看图形比较复杂,其实只需要需找到图形中得2个直角三角形即可解决问题,这里需要运用到等腰三角形的三线合一性质的运用,难点在于克服图形复杂造成的无力感,这是很多学生的一个通病,看到图形复杂就先一步在心里上给自己设置障碍,通过此题鼓励学生细心的分析题,用已知条件创造中间结论并结合图形解决问题。
第7题其实是课堂上巩固提高训练部分中第2题的变式,只需要添加2条辅助线就和那一题一样了,考察学生是不是能看透图形的本质已经相关问题的迁移以及辅助线的添加技巧。
三、选作作业:书上课后第4题、练习册最后一题
这是需要添加辅助线,构造出直角三角形斜边上得中线从而利用新学的知识解决的问题,作为选做题一是之前的作业量对大部分同学而言足够了,但是对个别好的学生还是学有余的,无论是时间上还是在思维训
练上,这两道题讲会的后面的课堂上老师做引导再作为全班的作业,这里可以让一些学生先自行完成,最好在后面的课堂上由此部分学生来点播其他的同学。
八年级数学说课稿 篇10
各位老师:
大家好!
今天我说课的内容是华师大版八年级上册的《两数和的平方公式》,下面我从教材分析、学法指导、教法分析、教学程序设计和评价分析五个方面来讲解。
第一方面、教材分析
1、教材所处的地位及作用
本课时是第13章“整式的乘除”这一章中重要的内容之一,它在简化多项式乘法运算、因式分解等数学学习中有着广泛的应用,也为今后数学知识的学习打下扎实的基础。
2、课程资源的开发及有机整合
本节课,教材从学生文化知识的认知水平出发,直接让学生运用多项式乘法法则推导出两数和的平方公式,然后通过几何背景图来帮助学生加深对本公式的理解,接着通过例与练进行巩固。这样的安排紧凑,重点突出,学习目标明确。
为了更好地完成教学任务,课前我让每位同学准备了这样的厚纸片(两种不同规格的正方形、长方形厚纸片各两张),教师则准备若干块小黑板。在教学中,又让学生充分通过学习协作小组进行学习。
3、根据新课程标准的要求、对教材的上述分析及农村初中校学生数学学习的实际情况,本节课的教学重点与难点,我安排如下:
重点:掌握两数和平方公式的结构特点,并能熟练运用公式进行整式乘法运算。难点:对公式中字母a、b含义的理解,并能正确运用公式。
4、关于课程目标,我制定了知识、能力、数学思想和情感价值观这四维目标。我将在第四方面教学程序设计中体现,这里不再展开。
第二方面、学法指导
本节课小组协作学习将成为主要的学习方式。这是因为我校是农村初中校,学生数学水平薄弱且参差不齐。我认为,教给学生良好的学习方法比直接教给学生知识更重要,因此在教学中要不断指导学生学会学习,又要给学生自主探索和合作交流的时间。本节课,我安排学生进行随堂小测、组长批改和课堂练习等教学环节,目的就是使传授知识和培养能力融为一体,使学生真正成为学习的主体。
第三方面、教法分析
针对本节课的特点,我把本大节乘法公式分为四课时,本课时是第2课时。本课时,我准备以“自主探究—小组合作—总结归纳—知识运用”为主线,采用启发式问题教学方法。把教学过程设计成学生再发现、再创造的过程,而教师在其中当好课堂教学的组织者、决策者和参与者,以充分体现“学为主,教为辅”的教学思想。
由于时间关系,对上述三个方面,我不再展开。现在我重点说明
第四方面、教学程序设计
1、回顾、导入和展示成就环节
首先,我设置了4道题让学生进行随堂小测,要求学生利用多项式相乘法法则计算。其中,第1题为典型的多项式相乘,2~4小题则导入到两数和相乘问题。
(略)⑴、(2x+1)(3x—4);⑵、(x+2y)(x+2y);⑶、(5a+3)(5a+3);⑷、(a + b)2。
这样的设计,目的是利用随堂小测,创设学生自主探究情境,同时检查学生运用旧知的能力,并让学生明确“两数和的平方公式”实际上是多项式相乘的特例。
各小组长收卷后,教师让四位学生代表上台板演小测题,教师点评,同时给出评分标准。小组长给本组组员批改并评分,组员观看组长批改。各小组长改完后,教师引导班上学生给小测最优秀的小组以鼓掌肯定、表扬。此环节,目的是通过教师的点评和小组的批改、评分,让组员在师生、生生互动交流中发现问题、巩固旧知,并体会学习数学的成就感。
2、探索新知,归纳公式环节
在点评各小组后,教师引导全班学生观察台上板演的小测题解答,尤其是第(4)小题。
教师并提问:上述各题的结构有何特点?他们的解答结果又有何相似之处?
在学生充分观察、讨论后,教师提问小组代表。之后,教师总结两数和的平方公式,并分析和给出公式特点。接着,教师让学生用文字说明小测题(2)、(3)的意义。
这一环节,教师以同类型的问题,指导、促进学生进行发散性思维。通过让学生充分观察、交流、口答,进一步提高学生的自主探究、合作交流和数学表达能力,而教师对公式特点的分析,可以帮助学生更好地、更完整地理解公式和正确运用公式。
3、公式理解和运用环节
我引导学生用课前准备的纸张,通过拼图和分解图形的方法,用不同的形式表示公式推导的各步骤。引导学生发现:代数演算过程与拼图的.一致性。
我认为,通过学生的动手操作,不仅可以提高学生的观察力、想象力和动手实践能力,让学生学会合作探究,体会数形结合的思想。而且,即使学生将来运用公式发生错误,也易于纠正。
在学生动手操作后,教师安排两位学习组组长上台板演课本P27~28例4计算,让学生学会运用公式解题。教师在两位学生完成后,让他们分别回答:公式中的字母a 、b在这两题中分别表示哪个数(或式)?教师同时用双箭头作出标记,并提示学生反思解题过程。
这一环节,通过让学生独立完成例题,让学生在解题过程中进一步理解公式中字母a、b的一般含义,让学生经历从一般到特殊的理解过程,体会转化的数学思想。接着,教师再通过形象、生动的标记、点评,帮助学生更加深刻理解公式和正确运用公式。
4、练习反馈、拓展思维环节
教师用小黑板体现课堂练习题,让学生先自主完成练习,然后由各组长组织组员进行组内交流。接着教师让六位学生上台板演,并根据学生板演情况,指出运用公式的要点。
我认为,乘法公式的教学,应讲究“公式结构特征”的介绍,为了说明特征,多角度地阐述同一事物,对初学者总是有益的。
有鉴于此,在课堂练习题的设置上,我分别设置了判断、填空和计算三大题。前两大题的设置,让学生更深刻地理解公式;而计算题的设置,则有利于提高学生运用公式进行整式乘法的运算能力。通过课堂练习,教师还能及时检查学生学习“公式”的情况,又有利于师生及时发现问题、解决问题。
5、课堂小结环节
我首先让让学生根据教师的提问进行小结,如让学生谈谈本节课的学习内容?在学习过程中,感受到哪些成功或困惑?等等。学生的回答只要有理,教师都给予表扬。在学生回答后,教师适时进行补充。
通过这样,进一步培养了学生的归纳总结能力,提高了学生的口头表达能力。而教师的适时补充,可以使学生对公式的理解更加完整、更加深刻,使学生对公式的运用更加正确。
关于作业布置
我布置了书写和自学两种作业,其中书写作业分为全班级和组长级两个级别。
通过分层布置作业,一方面让全体同学巩固了新知,另一方面也提高了学生运用公式的技能和技巧;而通过自学问题的布置,又培养了学生自主学习的能力。
第五方面、评价分析
两数和的平方公式是最基本、应用最广泛的两个乘法公式之一,它在今后的数学学习中有着广泛的应用。
多年的教学经验告诉我,学生在初学本公式时,要通过一节课就熟练掌握完全平方公式及其应用,是有一定困难的,因此我把本知识点分为两课时上。在本课时教学过程中,我通过各种教学方法和手段,提供学生自主探究和小组合作学习的时间、平台,使学生自始至终处于一种积极思维、主动探究的学习状态,让学生学习了新知,也培养了能力。
八年级数学说课稿 篇11
各位专家评委,您们好!
今天我说课的内容是人教版义务教育课程标准实验教科书《数学》八年级下册第十九章《四边形》第三节的第一课时《梯形(一)》.下面我就从教学背景分析、教学目标设计、教学手段及方法、教学程序设计、教学评价设计这五个方面把我的理解和认识作一个说明.
一、教学背景分析:
(一)关于教学内容和要求的分析:我们所使用的教材是新课程标准指导下的新版人教教材,本章的内容分为四节:平行四边形;特殊的平行四边形;梯形;课题学习:重心.梯形这一节分为两课时,第一课时介绍的主要内容是梯形的相关概念、等腰梯形的性质及应用;第二课时介绍的主要内容是等腰梯形的判定方法及其应用.在本节学习过程中渗透了数学转化思想和数学建模思想.本节课通过对梯形相关概念及性质的学习,尤其重点研究了等腰梯形的性质和应用,不仅使学生掌握了新知,还帮助学生加深对平行四边形及特殊的平行四边形相关知识的理解,从而使四边形知识点及研究方法系统化,还为继续学习等腰梯形的判定等知识打下基础,因此本节课的学习具有承上启下的作用.
(二)学生情况分析:日坛中学是一所市级示范校,学生的基础较好,求知欲强,思维活跃,有较好的动手操作能力,八年级的学生能够较为有条理的思考.学生在小学时初步学习了梯形的定义,认识了等腰梯形、直角梯形,会求梯形面积.通过本章前面两节的学习,学生对于研究四边形的基本思路已有一定程度的认识.但对梯形与平行四边形、三角形间的内在联系认识还需提高,因此这也成为这节课的难点.
二、教学目标设计:
(一)教学目标的制定:根据数学课程标准(实验)的要求和教学内容的特点,以及学生的认知水平,确定本节课三维教学目标如下:
1.知识与能力:⑴探索并掌握梯形的相关概念⑵了解等腰梯形的性质⑶能够运用梯形有关概念和性质进行证明和计算
⑷探索解决梯形问题的基本方法:如何正确添加辅助线
2.思维与方法:⑴在探索相关概念、性质的过程中,经历观察、实验、归纳、类比等获得猜想,并进一步寻求证据、给出证明,发展学生逻辑思维能力和几何直觉⑵通过梯形与平行四边形和三角形之间的动态转化,使学生认识知识间的内在联系.⑶在教学过程中培养学生分析问题、解决问题的能力.
3.情感与价值观:⑴在探索、应用过程中感受数学美⑵在证明过程中培养学生良好的学习、思维习惯,以及不畏困难的钻研精神⑶使学生形成初步的辩证唯物主义的世界观
(二)教学重点、难点的确定: 重点:等腰梯形的性质及其应用.难点:是解决梯形问题的基本方法——通过添加适当的辅助线,将梯形问题转化为平行四边形和三角形问题来解决富有趣味的符合学生认知规律的教学环节设置、现代化教学手段的使用、在课堂上师生双主体作用的充分发挥、多角度的教学评价设计,都将为明确体现本节课重点、突破难点服务.
三、教学手段及方法:
(一)教学媒体设计:本节课注重运用计算机辅助教学,特别是几何画板的运用,更加直观的展示图形的运动变化过程,向学生提供了一个数学实验的平台,使学生清晰的感受数学之美,几何之妙.把现代信息技术作为学生学习数学和解决问题的强有力的工具,有利于改变学生的学习方式,使学生愿意投入到探索性的数学活动中去.
(二)教学方法的选择:兴趣是最好的老师,为了激发学生学习兴趣,使其发自内心的愿意和老师一起探究本节课的数学知识、方法,我采用了启发探究式的教学方法.在整个教学过程中,在老师的引领关注下,学生能够适时适量的进行自主探究,从而充分发挥教师的主导作用和学生的主体地位.在整体结构上力求突出观察、实验、归纳、类比、猜想、论证、小结等环节,这也正是数学发现的过程,并且把形象思维、直觉思维、逻辑思维的训练与培养结合起来.
四、教学程序设计:
(一)课堂结构设计
下面我给大家一个三角形,你能将三角形变成一个梯形吗?学生可能会说切掉一个角,这时教师用几何画板进行演示(如图),并询问“这样切行不行?”,学生会说不行,“那应该怎样切?”必须使上下底平行.还有没有其他方法?下面我们一起看屏幕,(用几何画板演示)平移一般三角形一边得到的是一个梯形;如果给一个等腰三角形,用同样方法平移一腰得到什么图形?等腰梯形.它的特点是什么,两腰相等,从而得到等腰梯形定义;如果给的是一个直角三角形又会得到什么图形呢?直角梯形,它的特点是有一个角是直角,从而得到直角梯形定义.上述探究过程,即动态演示了梯形的形成过程,还使学生明确梯形可由平行四边形和三角形构成,从而为后面学习添加辅助线解决相关问题埋下伏笔.
第二阶段:探究新知阶段
1.观察与实验:在掌握上述概念的基础上,下面我们主要研究等腰梯形的性质.让学生拿出一张事先准备好的矩形纸片,提出问题:你能用一剪刀剪出一个等腰梯形吗?通过探究学生将这样折叠,剪裁.学生在剪裁的过程中会发现:等腰梯形是轴对称图形;对称轴是等腰梯形上下底中点的连线;同时还会发现等腰梯形边、角之间的一些数量关系.将猜想结论用文字语言表述,即得到命题1:等腰梯形同一底边上的两个角相等.通过对本章前两节的学习,学生对研究四边形性质的程序较为熟悉,知道从四边形的边、角、对角线、对称性这几方面入手.通过观察等腰梯形,猜想其对角线间的数量关系,学生会说相等,教师用几何画板进行验证,发现刚刚的猜想是正确的.将猜想结论用文字语言表述,即得到命题2:等腰梯形的两条对角线相等.在掌握等腰梯形的性质时,学生容易遗漏其对称性,在这里要着重强调以加深学生的印象.
2.探索与证明:命题1、2是我们经过实验归纳的猜想结果,为了使学生认识知识之间的联系以及培养学生的推理和逻辑思维能力,要对两个性质进行论证.虽然学生不是第一次接触命题证明,但掌握得并不熟练,因此首先教师引导学生将文字语言转化为符号语言.
等腰梯形同一底边上的两个角相等
已知:如图,在梯形ABCD中,AD∥BC,AB=CD.求证:∠B=∠C;∠A=∠D.
下面是学生活动,刚才经过三角形边的平移生成了梯形,那么反过来也可以将梯形转化为三角形和平行四边形的问题解决.由学生总结出证明等腰梯形的命题1的添加辅助线的2种方法:平移腰、作高.之后教师带领学生完成这个命题的证明过程,从而得到等腰梯形性质1.
证:方法一(平移腰)过点D作DE∥AB交BC于E,
∵AD∥BC,∴四边形ABED是平行四边形.∴DE=AB,∠B=∠DEC.
∵AB=DC,∴DE=DC.∴∠C=∠DEC.∴∠B=∠C.∴∠A=∠D.
等腰梯形的`两条对角线相等
已知:如图,在梯形ABCD中,AD∥BC,AB=CD,连接AC、BD.求证:AC=BD.
在证明了性质1后,可以直接将其作为结论应用于命题2的证明,只需证明两个三角形全等即可.证明过程由学生独立完成.从而得到等腰梯形性质2.
证:∵AD∥BC,AB=CD,∴∠ABC=∠DCB.在△ABC和△DBC中
AB=CD,
∠ABC=∠DCB,
BC=BC, ∴△ABC≌△DBC(SAS).∴AC=BD.
等腰梯形性质2:等腰梯形同一底边上的两个角相等.
其应用格式为:∵AD∥BC,AB=CD,∴AC=BD.
等腰梯形的性质,为我们提供了一种新的证明线段相等、角相等的方法.
第三阶段:例题与练习
(一)例题
例1、已知:在梯形ABCD中,AD∥BC,AB=CD,AD=4,BC=12,∠C=60°,求AB的长.
本道例题的设计目的是为了让学生进一步探究解决梯形问题的方法,并练习应用等腰梯形的性质解题,从而进一步掌握本节课新知,体会其简洁性.
首先让学生仔细审题,接着引导学生分析:求AB的长要把它放在三角形或平行四边形中解决,再结合已知中∠C=60°的条件,可以利用等边三角形、或有一个角是60°的直角三角形的相关结论解题.下面是学生活动,由学生自行写出解题过程,再请学生代表进行展示,教师规范格式.
解:方法一(平移腰)过点D作DE∥AB交BC于E,∵AD∥BC,∴四边形ABED是平行四边形.
∴AD=BE=4.∴EC=BC-BE=8.∵AB=CD,∴DE=DC.∴∠C=60°.∴EC=DE=DE=8.∴AB=8.
方法二(延腰)延长BA、CD交于点E,∵AD∥BC,AB=CD,∠C=60°,∴∠B=∠C=60°
∴Rt△ABE≌Rt△DFC(HL).∴BE=FC.∴2CF=BC-EF=12-4=8.
∴CF=4.∵∠C=60°,∴∠CDF=30°.在Rt△DFC中,DC=2CF=8.∴AB=8.
(二)练习
1.在梯形ABCD中,已知AD∥BC,∠B=50o,∠C=80o,AD=5cm,BC=8cm,则DC=.
2.直角梯形的高是6cm,有一个角是30o,则这个梯形的两腰分别是和.
在例题之后我配备了两道填空题作为课堂练习,由学生独立完成,在学生解题过程中教师要关注其将数学语言转化为图形语言的能力.通过这两道题目的练习,使学生体会梯形辅助线的添加不仅局限于等腰梯形,还适用于任意梯形,进一步熟练梯形性质在解题过程中的应用.
第四阶段:归纳小结、回顾反思例题和练习之后,师生共同对本节课进行教学总结.
知识与能力:1.梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形.
2.等腰梯形的性质:⑴边:一组对边平行,另一组对边不平行;两腰相等⑵角:等腰梯形同一底上的两个角相等⑶对角线:等腰梯形对角线相等⑷对称性:是轴对称图形,对称轴是等腰梯形上下底中点的连线
3.解决梯形问题中添加辅助线的方法(教师用几何画板演示,使学生更加直观生动地认识辅助线添加的作用):
⑴平移腰:作梯形一腰的平行线,可以把梯形分为一个平行四边形和一个三角形
⑵延长两腰交于一点:延长两腰可将梯形问题转化为三角形问题
⑶作高:作底边的两条高可以构造直角三角形
这几种辅助线只是解决梯形问题方法中的一部分,在接下来的学习中我们将陆续介绍其他的添加方法.
思维与方法:通过本节课的学习,学生进一步认识体验数学建模思想、转化思想等数学思想方法,并在解题过程中提高了计算能力、逻辑思维能力,增强了几何直觉.通过对本节课学习的回顾小结,可以使学生的知识体系系统化,有助于学生数学学习方法和习惯的养成,有利于日后学习.
第五阶段:课后巩固练习最后从不同层次布置了3项作业:1.看书:P117——118.(目的:让学生养成复习的好习惯).
五、教学评价设计:
本节课对学生的评价是多角度的,在教学过程中,从学生学习积极性、动手操作能力、语言表达能力、数学素养、克服困难的钻研精神等多方面对其学习过程和学习效果进行评价;课后通过作业练习将这种评价延续.教师要根据不同学生的不同程度发现闪光点,及时予以肯定,同时及时发现学生在学习探究过程中遇到的问题,给与指导和帮助,从而为保护学生的学习积极性.学生之间的互相评价也是激发学生学习潜能的有效手段.同伴间的互动可以使学生虚心求学、互相促进.以上是我对《梯形(一)》这节课的一些设想,还有很多不足之处,恳请各位专家多多批评指正,谢谢!
八年级数学说课稿 篇12
一、教材分析
1、教材的地位和作用
本课位于苏科版义务教育课程标准实验教科书八年级下册第十章第四节第一课时。主要内容是探索三角形相似的条件,并利用两个角对应相等来判断两个三角形相似,它是三角形的重要基础知识,学习本节内容,既巩固了前面学习的三角形全等和相似三角形的性质,又为后面学习三角形相似的其他方法打下了坚实的“基石”,起到了承上启下的作用。
2、教学目标
(1)知识目标:探索探索三角形相似的条件,并利用两个角对应相等来判断两个三角形相似。
(2)能力目标:通过通过观察、思考探索,小组合作等活动归纳出有两个角对应相等的两个三角形相似,培养宪政“转化”的数学思想方法,提高学生动手和解决实际问题的能力。
(3)情感目标:让学生感受数学与生活的紧密联系,体会数学的价值,培养学生敢想、敢说、敢做的学习习惯和团队协作,勇于创新的精神。
3、教学重、难点
重点:通过探索活动归纳出三角形相似的条件,并运用条件解决实际问题。
难点:三角形相似的探索,特别“对应”的.理解。
二、教学方法
根据新课标的要求以及八年级学生的认知水平,贯穿于本节课教学环节的主线是:观察---探究-----讨论----归纳-----巩固展示,采用启发式和师生互动式教学方式,同时利用课件辅助教学来突破重难点。
三、学法指导
(1)八年级学生已经学习了三角形全等和多边形相似,在学习本节内容时,对“相似”和“全等”易混淆,在教学过程中要简单明白、深入浅出的分析。
(2)八年级学生总体较好动,且喜欢表达自己的观点,所以在教学过程中要想方设法将学生的注意力集中到课堂中来,更多地创造条件和机会让学生发表自己的见解,充分发挥学生的主体作用。
四、教学流程
1、创设问题,引入新课 (5分钟)
问题:课本第94页,思考……………….
在这一环节中老师应注重:(1)复习:三角形全等的条件 (2)多边形相似的条件,强调边对应,角对应。
(3)相似三角形的性质;对应角相等,对应边成比例。
2、学生活动,探究新知 (10分钟)
学生活动1:课本第94页,思考:(1)如何画出三个三角形(2)三角形(1)与三角形(2)全等吗?由学生表述并书写。
学生活动2:(1)师提问:根据多边形相似的条件,你能判断三角形(1)与三角形(3)相似吗?引导学生从对应角相等、对应边成比例这两方面思考
(2)学生测量、计算、思考、探究……………………
(3)学生回答…………………
师生共同归纳本节课知识点1:
如果说一个三角形与另一个三角形有两个角对应相等,那么这两个三角形相似
数学语言:在△A“B”C“与△ABC中,若∠A“=∠A,∠B”=∠B,
则△A“B”C“∽△ABC
在这一环节中教师应注重:(1)学生对“对应”的把握 (2)不断激发学生思考和回答问题的积极性,并适当运用“不错”“很好”等话语来激励学生。 (3)学生的合作交流、讨论的能力和质量如何。
3、例题分析、讲解 (10分钟)
例1:课本第94页:例1 例2:课本第95页:例2
在这一环节中教师应注重:(1)在已知题知中如何寻找两个对应角相等 (2)进行规范的板书
学生活动3:课本第95页:思考:……………..
此环节由学生分析并书写出规范的推理过程
师生共同归纳本节课知识点2:平行于三角形一边的直线和其他两边的延长线相交,所构成的三角形与原三角形相似
4、趁热打铁,巩固新知 (10分钟)
本环节设计4小题,为课本第95页到96页练习1—4题,由学生单独思考并书写推理过程
在这一环节中,教师应注重:
(1)深入学生中,观察学生的分析过程是否合理,书写是否规范
(2)帮助学习能力较差的学生,并适时表扬书写规范,说理清楚的学生,通过肯定学生让学生感受到成功的喜悦。
5、学生成果展示 (6分钟)
展示内容与方法:巩固练习的4小题,在展台上进行分析过程并强调如何规范书写,教师和其他学生进行适当补充和肯定。
6、总结新知,强调数学思想方法 (3分钟)
设问法,学习了本节课你有什么收获?
在这一环节中,教师应注重:(1)学习小结的知识内容 (2)在能力和情感方面有什么提高和体会,这与“三维目标”相呼应。(3)教师强调数学思想方法:转化,将陌生的知识转化为熟悉的,将未知的转化为已知的。
7、布置作业(1分钟)
作业在讲学稿上,分为必做题和选做题,体现分层教学和分层作业的理念。
8、板书设计
(1)两个三角形相似的条件:文字语言和数学语言
(2)例题讲解 例1: 例2:
(3)平行于三角形一边的直线和其他两边的延长线相交,所构成的三角形与原三角形相似
八年级数学说课稿 篇13
高尔基说:“好奇是了解的开端和引向认识的途径。”为此,我设计了两个小实验引入新课,让学生从身边的实例入手可以感受到科学就在身边。
1、要让静止的书(文具盒)运动,该怎么办?
2、停止用力,又会如何呢?(学生实验后上台演示)
误导学生:物理受力就会运动,不受力就停止。
得出谬论:物体运动要靠力维持。
教师实验演示:推一辆小车,撤去推力,小车没有立即停下。
得出结论:物体运动不需要力维持。
观察学生表情,出示亚里士多德和伽利略的两种截然不同的观点,激发
学生探究的兴趣,活跃课堂气氛。这样的实验学生既熟悉又好奇,带着想知道这是为什么的悬念进入新课,可以调动学生的探索兴趣。
第二环节:感受活动,总结观点(约3分钟)
让学生用力推书,圆珠笔,铅笔盒,小车,书包等,然后撤去推力,物体会慢慢停下来。让学生体会物体运动不需要力维持,运动的物体停下来是由于受到阻力的缘故。本环节的设计意图是让学生通过自身感受体验,观察现象,并提出自己的论点,培养分析问题的能力和表达能力。
第三环节:合作交流,实验探究(约20分钟)
本环节设计三个步骤:
第一步:用Flash展示实验,用严格的推理方法让学生感受伽利略观点是正确的。通过回顾历史培养学生严谨的科学态度,通过形象的Flash演示,使学生对伽利略理想实验有一个初步的了解,为接下去的分组实验探究做一个铺垫。
第二步:学生分组探究阻力对物体运动的影响。
教师出示以下问题,让学生结合问题学习教材,小组自选器材完成实验。
1、我们实验目的是什么?实验中观察什么?
2、几种不同的物体铺在木板上,作用是什么?
3、实验中怎样保证小车开始时的速度相同?
4、实验中,如果我们把表面换成更光滑的玻璃,小车的运动情况会有什么变化吗?
5、如果表面比玻璃更光滑呢?
6、如果表面绝对光滑,小车会怎样运动?
7、如果静止的物体不受力,会怎样?
通过这些难度不同的问题引导,让学生相互讨论,交流,自主制定方案,完成实验,不仅使他们印象深刻,还培养他们的实验探究能力。同时让学生知道观察和实验是学习物理的.基础,对于不确定的观点应该通过实验来验证。
第三步:用Flash再次展示伽利略的理想实验,对学生的实验过程进行肯定和总结。
教师强调以下几点:
1、亚里士多德的观点“运动要靠力来维持”是错误的,伽利略的观点“运动不需要力来维持”是正确的。运动的物体之所以会渐渐停下来是受到了阻力的作用,所以说,力改变了物体运动状态,而不是维持物体的运动状态。
2、理想实验是建立在实验的基础上的合力推理,不是凭空想象。伽利略正是有敢于坚持真理,不迷信权威和对科学的执着精神,才完成了自己的理想实验,推翻了亚里士多德的长达2000年的错误理论,为后来笛卡尔等科学家的研究奠定了基础。
通过演示和总结,对前面提出的观点进行判断,为学生确立正确的观点。结合伽利略的实验进行思想教育,培养学生坚持真理、勇于探究的科学精神。
第四环节:科学推理,得出新知(约5分钟)
学生通过实验和观察动画能够得出:如果表面绝对光滑,运动物体受到的阻力为零,物体将以恒定不变的速度运动下去。
提问:运动的物体不受阻力时将永远运动下去,那静止的物体不受阻力时会怎样呢?
学生通过讨论能够得出:静止物体在不受力时,将保持静止状态。
教师讲解:为解决力与运动的关系,牛顿在伽利略、笛卡尔等前辈的研究基础上,提出牛顿第一定律:
引导学生得出:我们在科学正确的实验基础上,进行合理的推理,最终得出可信的结论,即一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态,这就是牛顿第一定律。同时教给学生一种实验+推理的研究方法。教师再通过展示图片使学生了解任何科学的发展都需要一个漫长的过程,而学生通过实验得出的观点和探究过程与伟大科学家是一致的,从而获得了成就感,增强了探究的自信心,为终身学习打下基础。
第五环节:剖析定律,强化理解(3分钟)
如何把牛顿第一定律理解透彻,一直是很多学生学习的大难题,通过对这以下三个问题的思考,可以很好的突破本节难点。
1、牛顿第一定律的适用范围是什么?
2、牛顿第一定律的适用条件有哪些?
3、力和运动是什么关系?
解释牛顿第一定律时主要强调“一切”、“不受外力”、“总保持”的含义,并强调牛顿第一定律的理想性。这样,使学生加深了对牛顿第一定律的理解,并能准确的表述出牛顿第一定律。
用视频冰球比赛展示牛顿第一定律的理想性,强调现实生活中不存在。并阐述实验推理法的应用。
第六环节:应用迁移,巩固提高(5分钟)
1、回归课本
分析课本开头三幅图片,分析运动的物体为什么会停下来?
2、情景讨论
在体育上,我班同学都参加了哪些项目?现在请大家思考,假如你正在和同学赛跑时,突然,所有的力都消失了,会出现什么情形呢?
3、牛顿第一定律告诉我们,物体不受力时都有保持静止或匀速运动不变的性质。我们周围的物体都受到力的作用,是否也有这种性质呢?你能举个例子说明吗?
本环节通过理论联系实际使知识得到升华,通过练习,可以让学生更深刻地理解和掌握牛顿第一定律,第3题为下一节的惯性学习做好铺垫。
第七环节:课堂总结,布置作业(约4分钟)
让学生谈谈本节课的收获和困惑。用5分钟的时间对本节课的知识点进行回顾、梳理,这样既可以加深学生对所学知识的理解又可以在学生的头脑中建立一个知识点的整体印象。
布置作业:
1、书面作业::
(1)2008年奥运会即将在北京开幕,我国运动员将奋力拼搏,为国争光在下列比赛项目中,有关运动和力的说法中不正确的是( )
A 头球攻门,说明力可以改变物体的运动状态;
B用力拉弓,说明力可以改变物体的形状;
C用力向后划水,皮艇才能前进,说明物体间力的作用是相互的;
D百米赛跑时,很难停下,是因为运动员的惯性消失了。
(2)用下图所示的实验装置研究运动和力的关系。
(1)每次都让小车从同一个斜面的( )位
置由静止开始滑下 ,是为了使小车在滑到斜面底 端时具有相同的速度。
(2)比较图中小车在不同表面滑行的最大距离,可以得出:在初速度相同的条件下,水平面越光滑,小车受到的摩擦力越( ),小车运动的越( )。
(3)在此实验的基础上进行合理的推理,可以得到:运动物体不受外力时,它将( )。
(4)由此,我们可以得出,力的作用不是维持物体运动状状态,而是( )
物体的运动状态。
2、实践作业:
(1)上网查寻亚里士多德、伽利略、牛顿的相关资料,了解他们在物理学方面作出的贡献。
(2)以“假如力消失了,我们的生活会怎样?”为题,写一篇小论文。
本环节的设计意图有两个:通过书面作业,加深对所学内容的巩固。学生通过上网查资料进一步理解牛顿第一定律的含义;小论文的写作,需要学生深入生活,体验生活,同时通过实践作业的完成可以形成对知识的复习回顾。
四、板书设计
为了突出重点,形成完整的知识体系,我设计的板书如下:
第五节 牛顿第一定律
五、课堂反思
本节课的设计从学生的认知规律出发,力求教给学生探求知识的方法,教会学生获取知识的本领,通过“牛顿第一定律”的学习让学生经历主动参与,积极探求,创造性的发现物理知识的过程,力求让学生全身心的投入学习活动之中。
六、结束语
以上是我对“牛顿第一定律”第一课时教材的认识和理解,由于本人水平有限,上面过程肯定有许多缺点和漏洞,希望各位评委和老师们多多批评指正,谢谢!
八年级数学说课稿 篇14
各位领导、老师们:
大家好!
今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。
一、教材分析
1、教材的地位与作用:
本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
2、教学目标:
知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。
过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)
3、教学重点与难点:
重点:等腰三角形的性质的探索和应用。
难点:等腰三角形性质的推理证明。
二、教法设计:
教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。
三、学法设计:
在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。
四、教学过程:
根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:
1、创设情景:
首先向同学们出示精美的建筑物图片,并提出问题串:(1)什么是轴对称图形?这些图片中有轴对称图形吗? (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。--板书课题。
2、动手操作,大胆猜想:
①拿出课下制作的等腰三角形的`纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)
③分组讨论。(看哪一组气氛最活跃,结论又对又多.)
然后小组代表发言,交流讨论结果。
④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?
(教师引导学生进行总结归纳得出性质1,2)
性质1:等腰三角形的两底角相等。(简写成“等边对等角”)
性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)
(设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)
3、证明猜想,形成定理:
你能证明等腰三角形的性质吗?
对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。这对于八年级学段的学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:
(1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。
(2)证明角和角相等有哪些方法?(学生可能会想到平行线的性质,全等三角形的性质)
(3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。
问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;
问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。找到新知识的生长点,就是三角形的全等。
问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:
(1)作顶角∠BAC的平分线,
(2)作底边BC的中线,
(3)作底边BC的高。以作顶角平分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。以达到规范学生的解题步骤的目的。其他两种证法,让学生课下证明。这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角平分线平分底边,并垂直于底边。用类似的方法还可以证明等腰三角形底边的中线平分顶角且垂直于底边,等腰三角形底边上的高平分顶角且平分底边,这也就证明了性质2。
(设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生的合情推理能力,同时也让学生明确,结论的正确性需要通过演绎推理加以证明。这样把对性质的证明作为探索活动的自然延续和必要发展,使学生感受到合情推理与演绎推理是相辅相成的两种形式,同时感受到探索证明同一个问题的不同思路和方法,发展了学生思维的广阔性和灵活性。)
(4)你能用符号语言表示性质1和性质2吗?
(设计意图:把文字语言转换为符号语言,让学生建立符号意识,这有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。——
4、性质的应用:
例一:在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______
变式练习:
1、在等腰中,∠A=50°,则 ∠B=___,∠C=___
2、在等腰中,∠A=100°,则∠B=___,∠C=___
设计意图:此例题的重点是运用等腰三角形“等边对等角”这一性质和三角形的内角和,突出顶角和底角的关系,如
例一,学生就比较容易得出正确结果,对变式练习(1)、(2)学生得出正确的结果就有困难,容易漏解,让学生把变式题与例一进行比较两题的条件,让学生认识等腰三角形在没有明确顶角和底角时,应分类讨论:变式1(如图)①当∠A=50°为顶角时,则∠B=65°,∠C=65°。②当∠A=50°为底角时,则∠B=50°,∠C=80°;或∠B=80°,∠C=50°。变式2①当∠A=100°为顶角时,则∠B=40°,∠C=40°。②当∠A=100°为底角时,则△ABC不存在。由此得出,等腰三角形中已知一个角可以求出另两个角(顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°)。
例二:在等腰△ABC中,AB=5,AC=6,则△ABC的周长=_______
变式练习:在等腰△ABC中,AB=5,AC=12,则 △ABC的周长=______
(设计意图:此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,并强调在没有明确腰和底边时,应该分两种情况讨论。如例二,①当AB=5为腰时,则三边为5,5,6;②当AB=5为底时,则三边为6,6,5。变式练习①:当AB=5为腰时,三边为5,5,12;②当AB=5为底时,三边为12,12,5。此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。
例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。
(例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。)
例四:
在△ABC中,点D在BC上,给出4个条件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。(分组讨论抢答)
5、巩固提高
(1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。
(2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。求∠1和∠ADC的度数。
(3)课本本章数学活动三“等腰三角形中相等的线段”
设计意图:
(1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。
(2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。更加说明了合情推理和演绎推理是相辅相成的。
6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。然后教师结合学生的回答完善本节知识结构。学生对于自己的疑惑提出小组内交流,还没解决则全班交流。
7、布置作业:
P55练习1、2、3题
P56习题1、4、6,(选做7,8题)
【八年级数学说课稿】相关文章:
数学的说课稿03-14
八年级数学说课稿15篇03-09
数学说课稿09-08
《数学乐园》说课稿09-09
小学数学的说课稿01-09
数学说课稿11-05
实用的八年级数学说课稿3篇09-17
小学数学优质说课稿02-28
初中数学说课稿12-12