《抛物线及其标准方程》说课稿

时间:2024-09-01 06:29:33 说课稿 我要投稿
  • 相关推荐

《抛物线及其标准方程》说课稿

  作为一名老师,常常要写一份优秀的说课稿,说课稿有助于提高教师的语言表达能力。那么优秀的说课稿是什么样的呢?下面是小编为大家收集的《抛物线及其标准方程》说课稿,希望能够帮助到大家。

《抛物线及其标准方程》说课稿

《抛物线及其标准方程》说课稿1

  教学目标

  (1)知识目标:掌握抛物线的定义,掌握抛物线的四种标准方程形式,及其对应的焦点、准线。

  (2)能力目标:通过对抛物线概念和标准方程的学习,培养学生分析和概括的能力,提高建立坐标系的能力,由圆锥曲线的统一定义,形成学生对事物运动变化、对立、统一的辨证唯物主义观点。

  (3)德育目标:通过抛物线概念和标准方程的学习,培养学生勇于探索、严密细致的科学态度,通过提问、讨论、思考等教学活动,调动学生积极参与教学,培养良好的学习习惯。

  教学重点:(1)抛物线的定义及焦点、准线;

  (2)利用坐标法求出抛物线的四种标准方程;

  (3)会根据抛物线的焦点坐标,准线方程求抛物线的标准方程。

  教学难点:(1)抛物线的四种图形及标准方程的区分;

  (2)抛物线定义及焦点、准线等知识的灵活运用。

  教学方法:启发引导法(通过椭圆与双曲线第二定义引出抛物线)。

  依据建构主义教学原理,通过类比、归纳把新知识化归到原有的认知结构中去(二次函数与抛物线方程的对比,移图与建立适当建立坐标系的方法的归纳)。

  利用多媒体教学

  教学过程:

  一、课题引入

  利用学生已有知识提问学生:1、椭圆的第二种定义:到定点与到定直线的距离的比是小于1的常数的点的轨迹是椭圆。(用课件演示)

  2、双曲线的第二种定义:到定点与到定直线的距离的比是大于1的常数的点的'轨迹是双曲线。(用课件演示)

  由此引出:到定点的距离和到定直线的距离的比是等于1的常数的点的轨迹

  是什么?

  (以问题为出发点,创设情景,提高学生求知欲)

  教师用直尺、三角板和细绳演示,学生观察所得曲线。

  从而引出本节课的学习内容。

  二、讲授新课

  1.对抛物线的初步认识

  物理中抛物线的运动轨迹;数学中二次函数的图象;生活中抛物线的实例(图片显示)等。

  2.抛物线的定义

  3.抛物线标准方程的推导:①学生回顾求曲线方程的步骤(建系、设点、列方程);

  ②若焦点f和准线的距离为这样建立坐标系?由学生思考:可能出现的结果:

  四、课堂小结

  1、本节课的内容:抛物线的定义,焦点、准线的意义及四种标准方程;

  2、理解参数的几何意义(焦准距)

  3、利用坐标法求曲线方程是坐标系的适当选取。

  课后作业:119页习题8.52,4

  设计说明:学生在初中学习二次函数时知道二次函数的图象是一个抛物线,在物理的学习中也接触过抛物线(物体的运动轨迹)。因而对抛物线的认识比对前面学习的两种圆锥曲线椭圆和双曲线更多。所以学生学起来会轻松。但是要注意的是,现在所学的抛物线是方程的曲线而不是函数的图象。本节内容是在学习了椭圆和双曲线的基础上,利用圆锥曲线的第二定义统一进行展开的,因而对于抛物线的系统学习具有双重的目标性。

  抛物线作为点的轨迹,其标准方程的推导过程充满了辨证法,处处是数与形之间的对照和相互转化。而要得到抛物线的标准方程,必须建立适当的坐标系,还要依赖焦点和准线的相互位置关系,这是抛物线标准方程有四种而不象椭圆和双曲线只有两种形式。因而抛物线的标准方程的推导也是培养辨证唯物主义观点的好素材。

  利用圆锥曲线第二定义通过类比方法,引导学生观察和对比,启发学生猜想与概括,利用建立坐标系求出抛物线的四种标准方程,让每一个学生都能动手,动口,动脑参与教学过程,真正贯彻“教师为主导,学生为主体”的教学思想。对于标准方程中的参数及其几何意义,焦点坐标和准线方程与的关系是本节课的重点内容,必须让学生掌握如何根据标准方程求、焦点坐标、准线方程或根据后三者求抛物线的标准方程。特别对于一些有关距离的问题,要能灵活运用抛物线的定义给予解决。

  当前素质教育的主流是培养学生的能力,让学生学会学习。本节课采用学生通过探索、观察、对比分析,自己发现结论的学习方法,培养了学生逻辑思维能力,动手实践能力以及探索的精神。

《抛物线及其标准方程》说课稿2

各位评委,各位老师:

  大家好。我是来自xx省xx市xx中学的xx。xx市别名卧牛城,是著名天文学家郭守敬的故乡。我的家乡还有一个特点是特色小吃品种繁多,大家看看我的体型就知道了。欢迎各位老师到xxxx作客。

  今天我说课的内容是《抛物线及其标准方程》,这是北师大版版数学选修2-1第三章第二节第一课时的知识内容。

  我的教学过程分为四个阶段,其中第一阶段是引导探究,获得新知;

  下面,请大家观看我这节课第一阶段的视频剪辑。

  在第一阶段,我与学生共同探究了本节课第一部分的内容——抛物线的定义。根据学生已有的认知基础,我选择用二次函数的图象是抛物线,以及生活中的实际事例来引入新课,通过让学生感受抛物线在实际生活中的广泛应用,以此来激发学生的学习热情。在探索抛物线定义的教学中,我的`设计是通过几何画板来展现抛物线的形成过程,让学生从动态的展示中,通过观察,发现和认识抛物线。这样做的设计意图是让学生直观感受抛物线,抓住轨迹问题的本质——变化过程中的不变量,这样就能非常容易的探索出抛物线的定义。

  学生在第一阶段的学习中,学习过程是从看到画的一个过程。

  在给出定义之后,我引导学生进入了第二阶段——深入探索,完善体系。请大家继续观看。

  抛物线的标准方程是这节课的又一重点内容,而抛物线标准方程的推导是这节课的难点。在这部分的教学中,我的设计是

  第一步,回顾求曲线的一般步骤。由于“曲线与方程”“方程与曲线”的这种关系贯穿解析几何的始终,学生对它的体会,是一个长期反复的过程。我的设计意图是通过回顾知识,加深学生对解析几何的基本思想方法—解析法的理解。

  第二步,推导抛物线的标准方程。我的设计意图是:让学生通过独立思考、合作交流、小组展示等手段了解知识的来龙去脉,通过严谨细致的分析,展现知识的发生、发展形成的过程,进一步加强过程性教学。

  第三步,利用表格由学生总结出其他几种形式的抛物线标准方程,以及相应的焦点坐标与准线方程。这部分内容由学生独立完成。

  学生在第二阶段的学习中,学习过程是一个从想到研的一个过程。

  第三和第四阶段分别是指导应用,鼓励创新以及小结概括,深化认识。请大家继续观看。

  在这两个阶段中,我引导学生总结出方程特点后,给出例题和当堂检测来加深学生对本节课知识的理解,并通过当堂检测检验本节课的学习效果,达到了堂堂清的目的。最后,由师生共同总结本节课的收获,深化学生对本节课的认识。在这两个阶段中,体现了学生运用知识解决问题的学习过程。

【《抛物线及其标准方程》说课稿】相关文章:

《椭圆及其标准方程》说课稿07-19

高中数学《椭圆及其标准方程》说课稿范文07-03

圆的标准方程说课稿10-13

《圆的标准方程》说课稿09-21

圆标准方程说课稿02-26

椭圆及其标准方程第一课时说课稿10-01

抛物线说课稿12.1402-14

高中数学《椭圆标准方程》说课稿01-06

《方程》说课稿10-29

方程的意义说课稿06-11