有理数的加法说课稿

时间:2022-03-03 17:44:20 说课稿 我要投稿

有理数的加法说课稿(精选5篇)

  作为一名教师,常常要根据教学需要编写说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。优秀的说课稿都具备一些什么特点呢?下面是小编为大家收集的有理数的加法说课稿(精选5篇),欢迎阅读与收藏!

有理数的加法说课稿(精选5篇)

  有理数的加法说课稿 篇1

  教学目的

  1、使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算、

  2、通过有理数的加法运算,培养学生的运算能力、

  教学重点与难点

  重点:熟练应用有理数的加法法则进行加法运算、

  难点:有理数的加法法则的理解、

  教学过程

  (一)复习提问

  1、有理数是怎么分类的?

  2、有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

  3、有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

  —3与—2;3与—3;—3与0;

  —2与+1;—+4与—3、

  (二)引入新课

  在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算、引入负数之后,这些运算法则将是怎样的'呢?我们先来学有理数的加法运算、

  (三)进行新课有理数的加法(板书课题)

  例1如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

  两次行走后距原点0为8米,应该用加法、

  为区别向东还是向西走,这里规定向东走为正,向西走为负、这两数相加有以下三种情况:

  1、同号两数相加

  (1)某人向东走5米,再向东走3米,两次一共走了多少米?

  这是求两次行走的路程的和、

  5+3=8

  用数轴表示如图:略

  从数轴上表明,两次行走后在原点0的东边、离开原点的距离是8米、因此两次一共向东走了8米、

  可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和、

  (2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

  显然,两次一共向西走了8米

  (—5)+(—3)=—8

  用数轴表示如图:略

  从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米、因此两次一共向东走了—8米、

  可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和、

  总之,同号两数相加,取相同的符号,并把绝对值相加、

  例如,(—4)+(—5),同号两数相加

  (—4)+(—5)=—(),取相同的符号

  4+5=9把绝对值相加

  (—4)+(—5)=—9、

  口答练习:

  (1)举例说明算式7+9的实际意义?

  (2)(—20)+(—13)=?

  2、异号两数相加

  (1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米、

  5+(—5)=0

  可知,互为相反数的两个数相加,和为零、

  (2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米、因此,两次一共向东走了2米、

  就是5+(—3)=2、

  (3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米、因此,两次一共向东走了—2米、

  就是3+(—5)=—2、

  请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

  最后归纳

  绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0

  例如(—8)+5绝对值不相等的异号两数相加

  85

  (—8)+5=—()取绝对值较大的加数符号

  8—5=3用较大的绝对值减去较小的绝对值

  (—8)+5=—3、

  口答练习

  用算式表示:温度由—4℃上升7℃,达到什么温度、

  (—4)+7=3(℃)

  3、一个数和零相加

  (1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

  显然,5+0=5、结果向东走了5米、

  (2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

  容易得出:(—5)+0=—5、结果向东走了—5米,即向西走了5米、

  请同学们把(1)、(2)画出图来

  由(1),(2)得出:一个数同0相加,仍得这个数、

  总结有理数加法的三个法则、学生看书,引导他们看有理数加法运算的三种情况、

  有理数加法运算的三种情况:

  特例:两个互为相反数相加;

  (3)一个数和零相加、

  每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法、

  (四)例题分析

  例1计算(—3)+(—9)、

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征)、

  解:(—3)+(—9)=—12、

  例2

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值、、(强调两个较大一个较小)

  解:解题时,先确定和的符号,后计算和的绝对值、

  (五)巩固练习

  1、计算(口答)

  (1)4+9;(2)4+(—9);(3)—4+9;(4)(—4)+(—9);

  (5)4+(—4);(6)9+(—2);(7)(—9)+2;(8)—9+0;

  2、计算

  (1)5+(—22);(2)(—1、3)+(—8)

  (3)(—0、9)+1、5;(4)2、7+(—3、5)

  有理数的加法说课稿 篇2

  一、教学目标

  (一)知识与技能

  1、使学生掌握有理数加法法则,并能运用法则进行计算;

  2、在有理数加法法则的教学过程中,注意培养学生的运算能力。

  (二)过程与方法

  1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

  2、在探索过程中感受数形结合和分类讨论的数学思想。

  (三)情感、态度与价值观

  1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。

  2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。

  二、教学重点

  会用有理数加法法则进行运算。

  三、教学难点

  异号两数相加的法则。

  四、教学方法

  探究法、引导发现法

  五、教具准备

  多媒体课件、导学案

  六、教学过程

  (一)创设情景,引入新课。

  小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把你们认为可能的'所有答案说出来。

  (二)探究新知

  1、大家开始画数轴,以原点为起点,规定向右的方向为正方向,向左的方向为负方向。

  (1)若两次都是向右走,很明显,一共向右走了5米。

  记作:(+2)+(+3)=+5

  (2)若两次都是向左走,很明显,一共向左走了5米。

  记作:(—2)+(—3)=—5

  (3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。

  记作:(+2)+(—3)=—1

  (4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。

  记作:(—2)+(+3)=+1

  2、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。我们可以借助数轴来得知两个有理数相加的结果。请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。

  1、(—4)+(—1)2、(+5)+(—3)3、(—4)+(+7)4、(—6)+3

  3、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。但对于如1700+(—1800),1、2+(—5、34)这样的数字在数轴上就不容易表示出来了,怎样才能迅速准确地计算出来呢?

  师生讨论、归纳出有理数的加法法则:

  ①同号两数相加,取相同的符号,并把绝对值相加;

  ②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;

  除此之外,有理数相加,还有其他情况

  (1)第一次向左走3米,第二次向右走3米,则小明仍位于出发点。

  记作:(—3)+(+3)=0

  (2)第一次向右走3米,第二次向左走3米,则小明仍位于出发点。

  记作:(+3)+(—3)=0

  (3)第一次向左(向右)走了3米,第二次在原地不动,则小明位于原来位置的左方(或右方)3米。

  记作:(—3)+0=+3或(+3)+0=0

  归纳为:

  ③互为相反数的两个数相加得0;

  ④一个数同0相加,仍得这个数。

  (三)运用新知

  1、例题讲解:(利用多媒体展示)

  例1:计算下列各题:

  (1)180+(—10);(2)(—10)+(—1);

  (3)5+(—5);(4)0+(—2)。

  教师引导学生先观察符号特征,再教师示范写出过程,并强调题的类型每一步的理由。

  解:(1)180+(—10)(异号型)

  =+(180—10)(取绝对值较大的数的符号,

  =170并用较大的绝对值减去较小的绝对值)

  (2)(—10)+(—1)(同号型)

  =—(10+1)(取相同的符号,并把绝对值相加)

  =—1

  对于(3)、(4)小题,让学生解答。

  在讲完例题后,教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话:①确定类型、②确定符号、③确定绝对值。

  2、练习

  (1)(口答)确定下列各题中的符号,并说明理由:

  ①(+3)+(+6);②(—6)+(—7)

  ③(+12)+(—7)④(+5)+(—10)

  (2)计算下列各式:

  ①(—25)+(—7);②(—13)+5;

  ③(—23)+0;④45+(—45)。

  (3)土星表面的夜间平均温度为—150度,白天比夜间高27度,那么白天的平均温度是多少?

  (4)某升降机第一次上升6米,第二次下降7米,第三次又上升5米,此时升降机在初始位置的_____方(填"上"或"下")相距____米。

  (四)课时小结:

  1、这节课你学到了什么?

  2、对于这节课你有什么困惑?

  (五)布置作业

  课本练习1题、2题。

  有理数的加法说课稿 篇3

  各位领导、老师,大家好!

  今天我将要为大家讲的课题是有理数的加法,首先,我对本节教材进行一些分析。

  本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节第一课时的内容。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本节课的理解与设计。

  一、教材结构与内容简析

  在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。

  2、就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分——有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

  3、数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:

  (1)渗透由特殊到一般的辩证唯物主义思想

  (2)培养学生严谨的思维品质。

  二、教学目标

  根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的.认知结构及心理特征,制定如下教学目标:

  1、基础知识目标:

  (1)理解有理数加法的意义;

  (2)理解并掌握有理数加法的法则;

  (3)应用有理数加法法则进行准确运算;

  (4)渗透数形结合的思想。

  2、能力目标是:

  (1)培养学生准确运算的能力;

  (2)培养学生归纳总结知识的能力;

  3、德育目标是:渗透由特殊到一般的辩证唯物主义思想

  4、个性品质目标:培养学生严谨的思维品质。

  三、教学重点、难点、关键

  有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难点是:有理数加法法则的理解。

  四、教法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习,不断克服学生学习中的被动情况,使其在教学过程中在掌握知识的同时发展智力、受到教育。

  五、学法

  本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力,而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我都在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  六、教学过程的设计

  1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。

  2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全身心的投入到思考问题中去,让学生亲身参加了探索发现及获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。

  3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。同时针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

  4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

  以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。说课对我仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。

  有理数的加法说课稿 篇4

  各位考官上午好,我是参加初中数学科目考试的七号考生。我今天说课的题目是《有理数加法》,下面我将从说教材、说学情、说教法、说学法、说教学课程、说板书设计六个方面来进行阐述。

  《有理数加法》是人教版七年级上册第一章第三节的内容。本节课主要介绍了有理数加法的基本运算法则。这节知识是在有理数、数轴、相反数及绝对值等概念学习的基础上进行的,并且是之后学习有理数混合运算、科学记数法及开方的基础。因此,本节课起到承上启下,铺路建桥的作用,意义重大。

  教学三维目标中知识与技能目标:学会应用有理数的加法运算法则进行计算。过程与方法目标:巧设具体问题的情境,并结合数轴,学生通过思考、分析、联想的过程,加深对有理数加法的理解,并将所学知识运用于生活中。情感态度与价值观目标:学生养成主动参与的意识,培养对数学的兴趣。

  通过以上对教材及教学目标的分析,本节课的教学重点是掌握有理数加法的运算法则,并能够灵活运用。难点是培养在实际生活中运用有理数加法解决问题的能力。

  掌握学生的基本情况,对于把握和处理教材有重要的作用。七年级的学生可以解决日常生活中常见的正数的简单计算问题,也对有理数概念有了基本的了解,但运算因其本身有些抽象,学生计算起来还是有些困难。同时这一阶段的学生思维活跃,抽象思维从经验型逐步向理论型成长,但仍需要感性经验的辅助。所以本节课程可以通过设计具体的实际情境来引导学生理解有理数的加法运算,在这个过程中,学生主动参与的意识能够得到充分发挥,并且可以提高他们对于较抽象问题的解决能力。

  基于以上分析,以及遵循新课改的精神:要注重学生的主体性和主动性,我将在本节课的教学中采用以归纳总结法为主,以启发式教学法、讲练结合法、情境教学法为辅,充分调动学生的学习积极性。

  教师是学生学习的引导者和促进者,为了帮助学生更好地学,结合本课内容,我将学法确定为:学生以自主、探究、合作、交流的学习方法为主,这有利于学生自主意识的成长。

  教学过程可以分为五个环节,首先是创设情境,导入新课。一个良好精彩的导入,能够激发学生的学习兴趣和欲望,是一节课成功的开始。根据《有理数加法》这节课的特点,我将采用图片方式进行导入。播放几组足球比赛的图片,规定进球数为正数,失球数为负数,它们的和为净胜球数,有一支球队现在的比赛情况是进球4个失球1个。提问同学,该队净胜球数的表达式是什么呢?设置这一环节激发了学生的好奇心,让他们兴味盎然地投入到之后的学习中去。

  接着进入课文新授,深入感知环节。

  第一步,在学生讨论导入提出的问题后我提问学生回答之前的问题,得到4+(—1)的答案,这就引出了有理数加法的表达式,学生出于对这个表达式答案的好奇,能更(专注地)进入到下面的学习(依据)。

  第二步,因上面的式子中出现了负数,我会提问学生(方法),负数让他们联想到了之前的什么知识,引导学生们说出数轴,此时规定在数轴上向右运动记为正,向左运动记为负。随后假设左右运动的六种情况。问同学,这六种运动过程在数轴上怎么表示?用之前有理数的加法式子怎么表示?每种情况下最后的结束点分别离原点多远?让同学们分组讨论,随后来回答。这步可以引出有理数的.相同符号的加法,不同符号的加法,两个相反数的加法以及有理数与0的加法。这为后面学生理解加法法则奠定了基础。

  第三步,根据同学的回答将前面五个式子以及答案完整的写在黑板上,让同学们继续讨论从中根据数字前面的正负符号能发现什么规律。同学谈论交流,我进行引导和总结归纳得出有理数加法的运算法则即:

  1、同号两数相加,取相同的符号,并把绝对值相加;

  2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3、一个数同0相加,仍得这个数。这一步通过例子有利于学生深入得理解有理数加法法则,加深印象。

  为了让学生巩固新知,我会在新授结束后,根据教材分梯度选取习题,给学生进行课堂练习,在练习后我会进行及时讲解。有利于学生加深对新知识的印象,更好的完成本节课的重点。

  同学们掌握本节课的知识后,我将提问他们收获了什么,由同学自主总结本节课所学习的的内容,我给予补充评价。同时让同学自己谈谈所遇到的问题,进行同桌之间的讨论。有利于学生的自主思考,以及合作交流,并能通过反思来更好的巩固本节的知识。

  本节课的课后作业是学生回家思考现实生活中可以用有理数加法来解决的问题,编写成题目并解答。这样有利于解决这节课的难点。

  我的板书设计采用的方法是线索式(方法),遵循简洁、明了、大方的原则,能很好的为突出教学重点服务。

  以上就是我的说课内容,谢谢各位评委老师。

  有理数的加法说课稿 篇5

  一、说教材:

  (一)地位和作用

  有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

  (二)课程目标:

  1、知识与技能目标:

  (1)了解有理数加法的`意义。

  (2)经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。

  (3)运用有理数加法法则正确进行运算(主要是整数的运算)。

  2、过程与方法目标:

  (1)在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

  (2)在探索过程中感受数形结合和分类讨论的数学思想。

  (3)渗透由特殊到一般的唯物辩证法思想

  3、情感态度与价值观目标:

  1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

  (2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

  (3)培养学生合作意识,体验成功,树立学习自信心。

  (三)教学重点、难点:

  重点:理解和运用有理数的加法法则

  难点:理解有理数加法法则,尤其是理解异号两数相加的法则

  二、说教法:

  在教学过程中一如既往的开展新、行、省、信四字教育模式的教学。

  新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);

  行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括)。

【有理数的加法说课稿】相关文章:

有理数的加法说课稿11-20

《有理数的加法》说课稿11-20

有理数的加法说课稿14篇11-21

关于人教版《有理数的加法》说课稿07-29

有理数的加法教案11-26

《有理数的加法》教案09-19

七年级数学有理数加法说课稿08-23

《有理数》说课稿11-29

向量的加法说课稿11-04