《用比例解决问题》说课稿

时间:2024-10-21 05:55:45 说课稿 我要投稿

《用比例解决问题》说课稿(通用10篇)

  作为一名为他人授业解惑的教育工作者,有必要进行细致的说课稿准备工作,借助说课稿可以更好地组织教学活动。那么说课稿应该怎么写才合适呢?以下是小编帮大家整理的《用比例解决问题》说课稿,欢迎大家分享。

《用比例解决问题》说课稿(通用10篇)

  《用比例解决问题》说课稿 篇1

  一、说教材

  1、教学内容:

  这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例5教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,然后再设未知数,列出等式(方程)解答。例6教学是反比例意义的应用,反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答的。那么本节课学习内容是在原有解法的基础上,通过自主参与,发现、归纳出一种用反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。

  成正、反比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一、归总应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正、反比例的量,从而加深对正、反比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正、反比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

  2、教学目标:

  (1)、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解。

  (2)、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

  (3)、培养学生的判断分析推理能力。

  3、教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

  4、教学难点:学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。

  5、教具:小黑板、课件

  二、说学法

  1、为了实现教学目标,突出重点,解决难点,利用学生已有的解决有关基本应用题的方法和比例关系的知识,提出问题,探究解决有关基本应用题的解题思路和计算方法。

  2、采取自主探究的学习方式,让学生通过看、想、思、说、动等数学活动,自觉参与到知识形成的过程中,获得基本的数学知识和技能,激发学生的学习兴趣,增加学生学好数学的信心。

  3、从“一题多解”的探究过程中,提高学生思考问题,解决问题的能力。沟通知识间的联系。

  三、说教法

  (一)、联系生活,习旧引新:

  新课程标准中指出:“重视从学生的生活经验和已有的知识中学习数学和理解数学”,“教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值。”遵循这一理念,课始我设计了“生活用水、包装图书等信息,”让学生通过观察,并组织学生整理信息,判断题中的相关联的量成什么比例关系,为下面的解决问题打下坚实的基础。

  数学源于生活,生活中处处有数学,类似归一、归总的实际问题生活中素材很多。学生在生活中也有用水收费和包装图书的经验,用学生熟悉的事情引入新知,能很好地调动学生的学习积极性。在学生在交流中提取有用的信息,为下面的'探究呈现素材。

  (二)、合作探索,领悟内涵:

  1、感知用比例解决问题的关键。

  (1)我先组织学生用学过的方法自主解决问题,让学生对题中的数量关系有了初步的认识。

  (2)接着让学生用学过的比例知识分析解答,我出示思考题,小组交流,并试着解决,让一部分学生体会到成功的感觉,通过订正,让大家领会到解决问题的方法。

  “什么都可代替,唯有思维不可代替”。在这当中教师要逐渐打开学生独立思维的闸门,激发学生的求知欲,放手让学生独立思考,大胆实践,自己解答。在此基础上教师再给以指点和总结,这样做的目的,学生理解问题的水平不一,叙述表达方式不同,在解答问题的过程中会出现这样或那样的错误,这并不重要,重要的是让学生根据自己已有的知识和经验,参与到新知识学习的过程中,在分析问题和解决问题的能力上有所提高。体现了策略的多样化。

  2、在比较中体会知识的实质。教师引导学生对上面两道题进行比较,组织学生观察、讨论、找出思考过程和计算方法上的异同点。在学生充分小组交流的基础上,引导学生形成有价值的发现和体会。

  3、练习的设计有层次性。

  变式练习的设计,紧扣例题,让学生在熟悉的比例关系中,进一步掌握用比例解决问题的方法,紧接着完成书中的做一做,让学生在独立完成中,评价自己的学习情况,并鼓励学生发现新的问题,有价值的问题。

  《用比例解决问题》说课稿 篇2

  学习目标:

  使学生掌握运用比例解决问题的方法,能正确运用正、反比例知识解决有关问题,发展学生的应用意识和实践能力。

  学习重难点:

  重点:运用正、反比例解决实际问题。

  难点:正确判断两种量成什么比例。

  学习方法:

  尝试教学法、引导发现法等。

  学习过程:

  一、旧知铺垫

  1、下面各题两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行的路程和所用时间。

  (2)从甲地到乙地,行驶的速度和时间。

  (3)每块地砖的面积一定,所需地砖的块数和所铺面积。

  (4)书的总本数一定,每包的本数和包装的包数。

  过程要求:

  ①说一说两种量的变化情况。

  ②判断成什么比例。

  ③写出关系式。

  如:

  2、根据题意用等式表示。

  (1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

  (2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

  70×4=56×5

  二、探索新知

  1、教学例5

  (1)出示课文情境图,描述例题内容。

  板书:8吨水10吨水

  水费12.8元水费?元

  (2)你想用什么方法解决问题?

  过程要求:

  ①学生独立思考,寻找解决问题的方式。

  ②教师巡视课堂,了解学生解答情况,并引导学生运用比例解决问题。

  ①汇报解决问题的结果。

  引导提问:

  A、题中哪两种量是变化的量?说说变化情况。

  B、题中哪一种量一定?哪两种量成什么比例?

  c、用关系式表示应该怎样写?

  ②板书:解:设李奶奶家上个月的水费是X元

  8X=12.8×10

  X=

  X=16答:略

  (3)与算术解比较。

  ①检验答案是否一样。

  ②比较算理。算述解答时,关键看什么不变?

  板书:先算第吨水多少元?

  12、8÷8=1.6(元)

  每吨水价不变,再算10吨多少元。

  1、6×10=16(元)

  (4)即时练习。

  王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

  过程要求:

  ①用比例来解决。

  ②学生独立尝试列式解答。

  ③汇报思维过程与结果。

  想:因为每吨水的`价钱一定,所以水费和用水的吨数成正比例。也就是说,水费和用水吨数的比值相等。

  解:设王大爷家上个月用了X吨水。

  12.8X=19.2×8

  X=

  X=12

  或者:

  16X=19.2×10

  X=

  X=12

  1.教学例6。

  (1)出示课文情境图,了解题目条件和问题。

  (2)说一说题中哪一种量一定,哪两种量成什么比例。

  (3)用等式表示两种量的关系。

  每包本数×包数=每包本数×包数

  (4)设末知数为X,并求解。

  (5)如果要捆15包,每包多少本?

  1、完成课文“做一做”。

  2、课堂小结。

  三、巩固练习

  完成练习九第3~5题。

  《用比例解决问题》说课稿 篇3

  教学目标:

  知识与技能:

  1、使学生进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。

  2、使学生能利用正反比例的意义解答比较简单的应用题,巩固和加深对所学的简易方程的认识。

  3、培养学生的分析、判断和推理能力。

  过程与方法:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  情感态度和价值观:

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重点:用比例知识解决实际问题

  教学难点:能够正确分析题中的比例关系,列出方程

  一、复习铺垫,引入新课。

  师:同学们,我们已经学习了哪两种比例?好,下面我们就来回忆一下有关正、反比例的知识。

  师:你能准确地判断两个量之间的关系吗?下面我们来进行一个回合的抢答比拼:我会判断。(抢答要求:举手证明你有勇气,你会做,你没有抢答到但是你的手势判断正确,你仍然是最棒的。)

  出示:下面每题中的两种量成什么比例?

  (1)速度一定,路程和时间.

  (2)路程一定,速度和时间.

  (3)单价一定,总价和数量.

  (4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

  (5)全校学生做操,每行站的人数和站的行数.

  二、探究新知

  (一)用正比例的知识解决问题(探究例5)

  1、师:(对于学生回答教师给予肯定)看样子同学们掌握的很不错,那么,学习了正反比例到底有什么用呢?(学生交流)来我们一起看看这节课的'学习目标吧!

  出示学习目标:

  1、进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。

  2、能利用正反比例的意义解答比较简单的应用题,掌握用比例知识解答问题的步骤和方法。

  2、过渡语:学习知识就是为了解决问题,你能运用学过的知识去解决生活中的问题吗?看,李大妈和张奶奶在讨论什么问题,想不想去看看!(出示情境图)

  (让学生读李大妈的话进行体会,主要让学生体会到通过李大妈叙述的两个条件挖出隐含条件每吨水的价格以及水费和用水吨数之间的联系,感受水的单价一定)

  师:这幅图中你能知道哪些信息?你能不能运用学过的方法来帮李奶奶解决这个问题?看谁最先帮李奶奶解决这个问题!

  学生自己解答,然后交流解答方法。

  师:除了这种方法我们还可以用什么方法来解决了?

  生:比例

  3、引入新课:对,像这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题

  4、师:通过大家的表情,好像老师不用教,大家都敢尝试。大家敢不敢自己试试?(相信学生,鼓励他们运用已有的知识去获取新的知识,培养他们主动学习的意识,培养学生的自学能力体现教是为了不教。)

  呈现自学提示:

  (1)题中有哪两种相关联的量?

  (2)这两种相关联的量成什么比例关系?你是怎么判断的?

  (3)你能根据这样的比例关系列出一个含有未知数的比例式吗?

  5、学生交流自学结果,相互补充,呈现一个完整的解答过程。、

  师:谁来说说你是怎样用比例知识来解决问题的?

  根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。

  6、师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)

  7、师:比较这两种解法,你们觉得哪种方法更好理解?看来,我们在解决问题时,不光可以从不同角度思考,找到不同的解决方法,而且还要善于选择最优化的方法。当然,没有要求时,用什么方法都可以,但要求用比例解时必须用比例。

  8即时练习

  过渡语:同学们帮助李奶奶解决问题,李奶奶把大家认真学习,帮助她解决问题的事情告诉了邻居王大爷,李大爷正为上个月交了19.2元的水费但算不出用水都少吨而犯愁,就急匆匆地赶过来向大家请教,大家愿意帮帮他吗?

  出示对话情景。

  师:观察帮助要王大爷的问题和帮助李奶奶的事对比,你有什么发现?

  在学生的交流中逐步认识到这道题与例5相比,条件和问题改变了,但题目中水费和用水的吨数的正比例关系没变。

  师:这次还需不需要老师给你一个解决问题的提示?

  一名同学在黑板上做,其余在下面做,形成一个竞赛的形式。演板的同学和大家交流自己的做题过程,教师进行鼓励和评价。

  9、师:上面两道题就是用正比例解决问题,通过大家亲身实践,你感受到用正比例解决问题需要几个步骤吗?

  (出示:表达是我的强项,让学生从学习提示、独立解决问题中逐步提炼归纳出自己做法,交流中逐步培养他们的表达能力。)

  师:同学们真是很棒!通过自学能够感受到用比例解决问题的步骤,这次老师想考考你们是不是真正的掌握了?你们敢应战吗?

  那么我们进行下一个环节:对比发现超越自我。

  (二)用反比例的知识解决问题(学习P60例6)

  师:解决了李奶奶、王大爷家的问题,下面的几个工人也遇到了问题,我们一起看一下吧。

  1课件出示情境图,了解题目条件与问题

  师:关于这个问题,同学们可以参考例5的学习经验来解决,看谁能用不同的方法来解决这个问题?

  生:独立解决,并在小组交流解题思路和计算方法

  师:谁来说说做这道题的解题思路(指名回答)

  学情预设:一般的方法是:有的同学用算术方法,有的同学能用反比例的方法解决这个问题,如30x=20×18,x=12。

  师:(教师手指30x=20×18,x=12。)为什么这样列式?根据是什么?

  学情预设:估计学生能说出列式根据,因为书的总数一定,所以包数和每包的本数成反比例.也就是说,每包的本数和包数的乘积相等。

  2.即时练习

  (课件出示:)如果要捆15包,每包多少本?

  师:会解决吗?

  生:独立解决,交流订正。

  3.对比正比例、反比例解决问题的相同和不同

  师:通过这2个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。现在请同学们观察例5和例6,说一说他们有什么相同和不同?

  生:以合作的方式探讨,然后派代表汇报探讨结果。

  比较以上两题的异同点,使学生明确都是用比例的知识解决问题,不同点在于题中两种量的关系不同,计算方法也就不相同。

  三、目标检测

  师:课本第60做一做,是生活中的另外的问题,同学们能不能帮助解决?(要求用比例知识解)

  学生自己独立解决做—做中的问题。

  师:请说一说题中的数量关系,再说一说解决问题的思路。

  学情预设:第1题,小明买的是同一种圆珠笔,所以圆珠笔的单价不变。那么买的支数和所用的钱数成正比例关系,所以用正比例关系能解决这个问题。第2题,用反比例关系可以解决这个问题。

  设计意图:再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。

  四、课堂小结

  1、根据这节课的学习,你认为用比例解决问题的过程应该怎样想,怎样解答,可以归纳为哪几个步骤?(组内交流)

  讨论、汇报、师小结:

  (1)、分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例

  (2)、依据正比例或反比例意义列出方程

  (3)、解方程(求解后检验),写答

  设计意图:学生通过自学掌握了运用正比例解决问题,在这组题目中是用反比例解决问题,学生在对比中初步感受到怎样运用反比例解决问题的过程。

  2、师:这节课你有什么收获?有什么要提醒大家要特别注意的?

  《用比例解决问题》说课稿 篇4

  【教材分析】

  本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的。本节课是让学生画线段图来分析题意,这部分内容是让学生用不同的方法,也就是不同的解题思路来分析。从而让学生理解和掌握这种稍复杂的分数乘法应用题的数量关系,为下一步学习稍复杂的已知一个数的几分之几是多少求这个数的应用题打好基础。

  【学情分析】

  本节课是在学生熟练掌握简单的.求一个数的几分之几是多少的应用题的基础上进行教学的,例2分析一个数量的两个部分与整体的关系,确定把什么看作单位1学生不难理解,教学时,要画线段图帮助学生理解题意,学生就不会感到有太大的困难了。例3分析的是两个量之间的关系,教学方法与例1相同。

  【教学目标】

  1、使学生掌握解答稍复杂的求一个数几分之几是多少的应用题的思路,并能正确解答。

  2、提高学生分析解答应用题的能力,培养探索精神。

  【教学重点】分析和掌握把什么量看作单位1及谁是谁的几分之几。

  【教学难点】分析和理解两个数量的比校对于学生来说比较难些。

  【教学过程】备注

  活动一:创设情境,初步感知题意。

  1、教师出示例2的情境图。

  2、让学生结合图叙述题意。

  活动二:动手画图,分析题意。

  1、你能不能用上节课我们讲过的学习方法,借助于其它的方法来分析一下这道的意思呢?

  学生动手画线段图,分析。小组交流。

  与教师共同再一次感受如何画线段图。(教师板书)

  重点让学生明确谁是单位1。

  2、让学生说一说是怎样想的?确定解题的思路。

  3、可能会有两种不同的思路。教师让学生用自己喜欢的方法解答。

  4、全班交流,订正。

  5、问:这两种解法有什么区别?有什么联系?

  活动三:教学例3.

  教师出示例3。

  1、引导学生读题,理解题意。

  2、根据这句话应当把什么看单位1?

  3、学生试画出线段图,分析数量关系。

  4、学生自己解答。

  订正时,让学生说说是怎样分析的?与全班交流。

  活动四:巩固练习。

  1、完成21页中的做一做。

  教师要求学生画线段图。

  2、完成练习五中部分练习题。

  订正时,让学生说说分析的思路。

  活动五:课堂小结。

  通过本节课的学习你都有哪些收获?

  《用比例解决问题》说课稿 篇5

  一、教学目标:

  1、加深对反比例概念的理解,掌握运用比例知识解决实际问题的方法和思路,能用反比例知识解决有关问题。

  2、提高学生对应用问题数量关系的分析能力和对正、反比例的判断能力。

  二、 教学重点:用比例知识解决实际问题。

  三、 教学难点:正确分析题中的数量关系,列出方程。

  四、教学过程:

  (一)、复习

  1、成正比例和成反比例的'量的判断。

  2、用正比例解决问题的步骤。

  一:找到题中不变的量;

  二:根据不变的量写出关系式;

  三:判断成什么比例;

  四:列出比例式;

  五:解比例。

  (二)、探究新知

  教学例5:一批书如果每包20本,要捆20包,如果每包30本,要捆多少包?

  A.提出问题组织学生讨论:

  ① 问题中有哪两种量?

  ② 它们成什么比例关系?你是根据什么判断的?

  ③ 根据这样的比例关系,你能列出等式吗?

  B. 根据反比例的意义列出方程并解方程。

  根据比例的意义,学生独立完成,并在小组中交流。

  学生汇报:

  解:设要捆元。

  30=2018

  = 36030

  =12

  答:要捆12包。

  五.应用反馈 课件出示:

  1. 教材60页做一做第2题。(单价乘数量等于总价,总价一定)

  2. 课件上的练习题。

  指名扮演,独立练习,集体订正。 巩固新知,训练解题能力。

  六.课堂小结通过这节课的学习,你有哪些收获?

  《用比例解决问题》说课稿 篇6

  教学目标

  1、知识与技能目标:

  (1)学生能正确判断应用题中涉及的量成什么比例关系,能正确利用正反比例的意义正确解答实际问题。

  (2)让学生掌握用比例知识解决问题的解题步骤和方法。

  (3)进一步提高学生运用已学知识进行分析、判断和推理的能力。

  2、过程与方法目标:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  3、情感态度和价值观目标:

  感受数学知识与实际生活的密切联系,发展学生探究解决问题策略的能力,体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重难点

  教学重点:用比例知识解决实际问题

  教学难点:能够正确分析题中的比例关系,列出方程

  教学工具

  ppt课件

  教学过程

  一、复习旧知,导入新课。

  1、师:同学们,前几节课我们刚刚学习了正反比例的意义,首先我们通过一组练习来复习一下。

  2、课件出示习题。

  指名学生回答,并说明理由。

  3、揭题。

  师:这节课,我们就来学习用正反比例的知识解决问题。

  二、探究体验,获取新知。

  (一)、教学例5.

  师:我们先看看李奶奶遇到了什么问题?(课件出示例5)

  1、收集信息,理解题意。

  师:从图中你获得了哪些数学信息?

  (指名学生汇报)

  2、组织学生用学过的方法自主解决问题。

  师:你能用以前学过的方法解答吗?试一试。

  ①学生尝试用自己喜欢的方法解答,教师巡视了解情况。

  ②指名学生汇报解题方法,并让学生说一说是怎样想的。

  生可能的答案有:28÷8×10=35(元) 10÷8×28=35(元)

  ③教师指出也可用比例的知识解答。

  3、用比例知识解决问题。

  (1)学生独立思考和讨论问题。

  师:这道题还可以用比例的知识来解答,怎样用比例的.知识解答呢?请同学们先思考和讨论以下问题。(课件出示)

  要求:先独立思考后,再小组内交流讨论。

  ①题中有哪两种相关联的量?

  ②哪个量是一定的?

  ③它们成什么比例关系?你是依据什么判断的?

  ④根据这个比例关系,你能列出等式吗?

  (2)学生交流讨论后,指名学生汇报,并引导学生概括出等量关系式。

  (3)学生尝试用正比例知识解决问题。

  师:你能完整的把这道题用比例知识解答吗?

  学生尝试用比例知识解答,教师巡视了解情况,知道个别有困难的学生。

  (4)指名学生板演过程,集体交流订正。教师提醒学生要检验。

  (5)师:你认为在解题过程中有什么需要注意的地方要提醒给大家呢?(指名学生回答)

  4.小结。

  思考以下问题:

  用比例知识解决这个问题的关键是什么?

  找到不变的量,只要两个量的比值一定,就可以用正比例关系解答。

  5.习题巩固

  我会分析:(课件出示)

  学生独立审题并解答。集体订正。

  (二)教学例6.

  1.课件出示例6.

  师:你能根据刚才总结的经验试着解决下面的问题吗?

  2.课件出示自学提示:

  (1)题中有哪两种相关联的量?

  (2)哪个量是一定的?

  (3)它们成什么比例关系?

  (4)根据比例关系列出方程并解答。

  学生思考后独立解答,教师巡视了解情况,并指名板演。

  3.集体评讲。

  4小结。

  思考:

  1.你认为用比例解决问题的关键是什么?

  指名学生回答他生补充,课件出示总结。

  2.用正反比例解决问题的步骤有哪些?

  (1)学生先独立思考后,小组交流,指名汇报。

  (2)师生总结。(课件展示)

  ①找(找相关联的量)

  ②判(相关联的量成什么比例)

  ③列(列出方程)

  ④解(解方程)

  ⑤验(检验计算结果)

  三、习题巩固。

  基础练习:只列式不计算。

  1.运动会上,六年级同学进行大型体操表演,每行站20人,可以站18行;若每行站40人,可以站χ行?

  2.小兰身高1.5米,她的影长是2.4米,如果同一时间、同一地点测得一棵树的影长为4米,这棵树高χ米。

  3.小华读一本书,每天读10页,30天可以读完;如果每天多读5页,χ天可以读完。

  (学生先独立解答后,指名回答,并讲解列式的依据。)

  拓展练习:

  修一条路,计划每天修90米,40天完成,实际5天修了300米,照这样计算,多少天可以完成任务?

  (学生先独立解答,师巡视指导,找不同做法的同学回答,他生订正)

  四、作业

  教材63页练习十一4、5、7、8题。

  五、课堂小结。

  通过本节课的学习,你有哪些收获?

  指名学生说一说本节课的收获,他生补充。

  板书

  用比例解决问题

  例5 解:设李奶奶家上个月的水 例6 解:设原来5天的用电量

  费是x元。 现在可以用x天。

  28:8=x:10 25x=100×5

  8x=28×10 x=100×5÷25

  X=35 x=20

  答:李奶奶家上个月水费 答:原来5天的用电量现在

  是35元。 可以用20天。

  《用比例解决问题》说课稿 篇7

  设计说明

  本节课主要学习用比例知识解决实际问题。遵循“学会应用才能真正实现数学的价值”的理念,为学生创设轻松的学习氛围,让学生亲身去体会、观察、发现、探索。因此,本节课在教学设计上关注以下两个方面:

  1.合理复习,有效铺垫。

  温故而知新,用比例知识解决正、反比例问题的关键是先让学生能够正确找出两种相关联的量,然后判断它们成什么比例,最后利用正、反比例的意义列出方程。所以利用比例知识解决相关问题之前,先给出一些数量关系,让学生判断成什么比例,不但很好地复习了旧知,也用正、反比例知识解决了教学难点,为学生探究用比例知识解决问题提供了有力的保障。

  2.巧妙引导,拓展思维。

  《数学课程标准》指出:教师是学生学习的引导者。因为在学习这部分知识之前学生已经会解决生活中的有关归一、归总的实际问题,所以教学教材例题时,先引导学生用学过的方法解决问题,再引导学生用比例知识解决问题,这样既有利于学生理解、掌握用比例知识解决问题的方法,又有利于学生创新思维能力的培养,确保数学活动的有效性。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙复习铺垫,引入新课

  1.复习铺垫。

  课件出示:(1)一辆汽车行驶的速度不变,行驶的时间和路程。

  (2)一辆汽车从甲地开往乙地,行驶的速度和时间。

  提出问题:①每道题中各有哪三种量?②其中哪种量是不变的?③哪两种量是相关联的?相关联的量成什么比例?(生讨论后解答)

  2.引入新课。

  生产、生活中的`一些实际问题也可以应用比例知识来解决。今天,我们就来学习用正、反比例知识解决问题。(板书:用比例解决问题)

  ⊙合作交流,探究新知

  1.学习例5,用正比例知识解决问题。

  (1)课件出示教材61页例5主题图。

  (2)学生读题思考,并汇报题中的已知条件和所求问题。

  预设

  生1:已知条件是张大妈家上个月用了8 t水,水费是28元。李奶奶家用了10 t水。

  生2:所求问题是李奶奶家上个月的水费是多少钱。

  (3)指名完整叙述题意。

  根据学生的回答,课件出示例5:张大妈家上个月用了8 t水,水费是28元,李奶奶家用了10 t水。李奶奶家上个月的水费是多少钱?

  (4)讨论、交流。

  师:例5的问题可以用什么方法解决?

  预设

  生1:可以用算术方法解决。先用28÷8求出每吨水的价钱,再求出10 t水的价钱,列式为28÷8×10。

  生2:可以用比例方法解决。设李奶奶家上个月的水费是x元,用正比例知识解答。

  师:为什么可以用正比例知识解答?

  预设

  生:因为用水的吨数和水费是两种相关联的量,且水费和用水的吨数的比值(也就是每吨水的价钱)是一定的,所以可以用正比例知识解答。

  师:如何运用正比例关系列方程解答?

  预设

  生:解:设李奶奶家上个月的水费是x元。

  =

  8x=28×10

  x=

  x=35

  答:李奶奶家上个月的水费是35元。

  (5)拓展练习。

  王大爷家上个月的水费是42元,上个月用了多少吨水?

  (学生独立完成后汇报交流)

  《用比例解决问题》说课稿 篇8

  教学内容:

  人教版课标教材六年级下册第59—60页 例5、例6。

  教学目的:

  1、让学生掌握用正、反比例的方法解决问题。

  2、使学生体验由算术解法向比例解法的思维转化过程。

  3、形成解题多样化技能。

  教学重难点: 重点:学会用正反比例方法解决问题。

  难点:在具体情境中区别用何种比例解决问题。

  教学过程:

  一、 复习

  师:同学们,这段时间我们一直在学习有关正、反比例的知识。下面,请看复习题。

  (出示题目)

  1、a×b=c(a、b、c均不等于0)

  当a一定时,b和c成什么比例?

  当b一定时,a和c成什么比例?

  当c一定时,a和b成什么比例?

  2、速度×()=路程

  工作总量÷( )=工作时间

  ( )×数量=总价

  总本数÷( )=每包本数

  每袋重量×( )=总重量

  师:这节课,我们一起来学习用解决问题。

  二、 新授

  1、出示例5

  ① 学生第一反映怎么解。小结,这是用的我们以前学的.归一的办法。

  ② 教师引导由加油站汽车加油付款比较,找出单价不变,建立关系式。

  水费:吨数=单价

  ③ 学生述说,教师板演用正比例解法的书写过程。

  ④ 出示书上第二问,学生回答列式。

  巩固练习:

  (1)、小明买了4枝圆珠笔用6元。小刚想买3枝同样的圆珠笔,要用多少钱?

  (2)、我国发射的科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周需要用多少小时?

  (3)、师徒合作加工600个零件,8天加工了100个零件,照这样计算,剩下的零件还需要多少天才能加工完?

  小结:首先找相关联的量,判断成什么比例;接着列方程;最后解方程并检验。

  2、出示例6(学生自己解答)

  ① 抓住不变的东西----总的本数判断成反比例关系

  ② 建立关系式:每包本数×包数=总数

  ③ 学生述说,教师板演用反比例解法的书写过程。

  ④ 出示书上第二问,学生回答列式。

  巩固练习:

  (1)学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的。如果他想都买单价是2元的,可以买多少枝?

  (2)车队向灾区运送一批救灾物资,去时每小时行60km,6.5小时到达灾区。回来时每小时行78km,多长时间能够返回出发地点?

  (3)生产一批水泥,原计划每天生产150吨,可按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?

  3、深化练习:

  一辆汽车从甲地开往乙地,计划每小时行60km,9小时到达。但实际上2.5小时只行了125km,照这样的速度,汽车要几小时才能到达乙地?

  三、全课小结

  《用比例解决问题》说课稿 篇9

  教学目标:

  1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

  2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

  3、培养学生良好的解答应用题的习惯。

  教学重点:

  用比例知识解答比较容易的归一、归总应用题。

  教学难点:

  正确分析题中的比例关系,列出方程。

  教学过程:

  一、复习铺垫,引入新课。(课件出示)

  1、判断下面每题中的两种量成什么比例?

  (1)速度一定,路程和时间.

  (2)路程一定,速度和时间.

  (3)单价一定,总价和数量.

  (4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

  (5)全校学生做操,每行站的人数和站的行数.

  2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

  (2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

  (3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

  3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?

  (1)学生自己解答,然后交流解答方法。

  (2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题

  二、探究新知。

  1、教学例5

  (1)学生再次读题,理解题意。思考和讨论下面的问题:

  ①问题中有哪三种量?哪一种量一定?哪两种量是变化的?

  ②它们成什么比例关系?你是根据什么判断的?

  ③根据这样的比例关系,你能列出等式吗?

  (2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (3)根据正比例的意义列出方程:

  12.88=χ10

  解:设李奶奶家上个月的水费是χ元。

  8χ=12.8×10

  χ=128÷8

  χ=16

  答:李奶奶家上个月的水费是16元。

  (4)将答案代入到比例式中进行检验。

  2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的.知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

  3、教学例6

  (1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)

  (2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?

  (3)学生独立解答。

  (4)指名板演,全班交流。

  三、巩固提高。

  做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

  四、课堂小结。

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

  五、课堂作业。

  教科书P62练习九第3、7题。

  《用比例解决问题》说课稿 篇10

  教学目标:

  使学生进一步理解和掌握用比例知识解答应用题的方法。

  抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。

  通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。

  教学过程:

  师:谁能够说说用比例知识解应用题的关键是什么?

  判断下题中各量成什么比例?并说明理由?

  指导学习题例。

  让学生独立解答例7。

  在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。

  相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。

  不同点:第一种解法是直接设所求问题为X。

  第二种解法是间接设,即解出X后,还要用X减3才是所求问题。

  师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。

  学习例6

  师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的'关键。

  对比小结

  比较例5例6有什么不同?分别是根据什么关系来解答的?

  (强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用X代替,列出方程解答)

  算术解法和比例解法的比较和联系。

  观察算式(例5)

  练习巩固

  笔答题:教材117页1~3题。

  全课总结(略)

【《用比例解决问题》说课稿】相关文章:

《用比例解决问题》说课稿06-05

《用正比例解决问题》说课稿(通用12篇)10-19

《用比例解决问题》优秀说课稿范文(通用3篇)06-26

用比例解决问题教学反思06-20

《用比例解决问题》教学反思06-08

用比例解决问题教学反思07-28

六年级数学用比例解决问题说课稿03-03

用“转化”的策略解决问题说课稿01-16

《用比例解决问题》教学反思(通用11篇)06-23

比例的意义说课稿06-26