小学数学《比例的应用》说课稿

时间:2024-08-30 13:31:25 雪桃 说课稿 我要投稿
  • 相关推荐

小学数学《比例的应用》说课稿(通用10篇)

  作为一名优秀的教育工作者,常常要根据教学需要编写说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。那么应当如何写说课稿呢?下面是小编为大家收集的小学数学《比例的应用》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

小学数学《比例的应用》说课稿(通用10篇)

  小学数学《比例的应用》说课稿 1

  教材分析

  小学数学十二册比例的应用,本节课是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的主要包括正、反比例的应用题,这是比和比例知识的综合运用,教材通过两个例题,讲解正、反比例应用题的解法通过讲解使学生掌握正、反比例应用题的特点以及解题的步骤。

  用正、反比例解应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数X,比例解答,判断过程也是正反比例意义实际应用的过程。

  数学目标

  一、知识目标

  1、使学生能正确判断应用题中涉及的量成什么比例关系

  2、使学生能利用正、反比例的意义正确解答应用题

  二、能力目标

  1、培养学生的判断推理能力

  2、培养学生的分析能力

  三、情感目标

  引导学生利用已有的知识,自己探索,解决实际问题,培养学生的勇于探索的精神。

  教学生点、难点

  正确判断题中数量成何比例,根据相等关系等式

  教学方法

  引导探究,合作学习

  教学手段

  多媒体辅助教学

  教学流程

  复习导入

  本节课的教学内容是正、反比例的应用,因此通过本小节的教学,使学生加深对正、反比例的意义的理解,能正确判断成正、反比的.量。

  二、探究新知

  学习例题正、反比例的应用题学生在已学过的四则应用题中,实际已经接触只是用归一,归总的方法来解答,因此有教学中先让学生用已学过的方法解:

  答:再引导运用新知做这样用移类比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣。

  首先让学生用以前方法解答,然后问:这道题里有哪两种量成什么比例关系?为什么?引导生判断两种量的比例关系,再根据比例的意义列出等式解答,这样加深对比例的理解,又揭示了与旧知识的联系。

  三、新课小结

  通过例题的讲解,学生总结用比例解答应用题关键?

  四、练习提高

  1、基础练习

  2、判断说理不解答

  由学生打手势表示,增添了教学的趣味性,又增大了学生的参与面把握学生学习的效果。

  3、变成练习

  五、全课小结

  六、布置作业

  请同学们课后讨论我们学过的归一、归总应用题分别是哪种比例的应用题。

  七、效果预测

  本节课学会找两种相关联的量,并学会判断这两种是否成正反比例关系,在解决实际问题的过程中,学生能积极主动参与,发挥了学生的主体地位。

  小学数学《比例的应用》说课稿 2

  教学内容:教科书第6~8页的例4~例6,练习二的第1题。

  教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。

  教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。

  教学难点:设未知数时长度单位的使用。

  教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。

  教学过程:

  一、复习

  1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。

  1米=( )分米=( )厘米=( )毫米

  1千米=( )米=( )厘米

  2.什么叫做比?

  3.化简下面各比。 12 :8 10厘米:100厘米

  2米:140厘米 3米:15千米 16厘米:90千米

  二、新课

  教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

  1.教学比例尺的意义。

  (1)教学例4.

  设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。

  让学生读题。指名回答:

  "这道题告诉我们什么?"(在平面图上用10厘米的距离表示地面上10米的距离。)

  "要我们做什么?"(求图上距离和实际距离的比。)板书:图上距离 :实际距离

  "图上距离知道吗?实际距离也知道吗?各是多少?"继续板书如下:

  图上距离 :实际距离

  10厘米 : 10米

  "10厘米和10米的单位相同吗?能直接化简吗?"

  教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

  "是把厘米化作米,还是把米化作厘米?为什么?"(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)

  "10米等于多少厘米?"学生回答后,教师把10米改写成1000厘米。

  "现在单位统一了,是多少比多少,怎样化简?"教师边说边擦掉10和1000后面的单位"厘米",并加上" :",板书成如下形式:

  图上距离 :实际距离

  10 : 1000

  请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的"答:…".

  然后说明:因为在绘制地图和其他平面图时,经常要用到"图上距离和实际距离的比",我们就给它起一个名字叫做"比例尺".(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或

  图上距离=比例尺

  实际距离

  图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。

  教师出示比例尺不同的`地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

  最后教师指出:

  ①比例尺与一般的尺不同,这是一个比,不应带计量单位。

  ②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。

  ③为了计算简便,通常把比例尺的前项化简成"1",如果写成分数形式,分子也应化简成"1".比如,例4中的比例尺通常写成:1:100=

  (2)巩固练习。

  让学生完成第6页的"做一做".教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是" l".

  2.教学根据比例尺求图上距离或实际距离。

  教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。

  (1)教学例5.

  在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米?

  指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)

  教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。

  "这道题的图上距离是多少?"板书:15

  "实际距离不知道,怎么办?"(用x表示。)在15的下面板书出x,并在它们中间画上分数线。

  "因为图上距离和实际距离的单位要相同,所设的x应用什么单位?"(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。

  "比例尺是多少?写成什么形式?"(写成分数形式。)最后板书成下面的形式:

  15= 1x 6000000 之后,再回忆一下解答过程。

  然后让学生求x的值,并说出求解过程,教师板书出来。

  "这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、"板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。

  三、练习

  1、比例尺=( ) 实际距离=( ) 图上距离=( )

  2.2.5米=( )厘米 0.00006千米=( )厘米 0.032米=( )厘米 350000厘米=( )千米 3.5千米=( )厘米

  1、独立完成练习二第1题,并订正。

  2、完成练习二的第2题、3题。

  第3题,让学生先想想比例尺子 表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。

  小学数学《比例的应用》说课稿 3

  今天我为大家带来的是六年级数学下册《比例尺的应用》一节课,希望各位老师多提宝贵意见,下面我将从:说教材、说目标、说重点、说方法、说教学过程等几个方面进行说课:

  一、说教材

  《比例尺的应用》第一课时。这节课是在学生学完“比例尺的意义”、后安排的内容。这部分内容是学生学习有关地图、工程图纸的计算的基础。比例尺在生活中也有广泛应用,学好它也具有很好的现实意义。

  二、说教学目标

  通过本课时的学习,是学生进一步掌握比例尺的意义,以及有关的数量关系式,掌握求实际距离的解决方法,并会解答这类应用题,培养学生解决实际问题的能力。使学生进一步体会学习数学的价值,培养学生的应用意识。结合具体情境,对学生进行爱祖国,爱家乡教育。

  三、说重、难点

  本课的重点是能根据比例尺和图上距离正确求出实际距离。在设知数时,由于图上距离和实际距离所使用的单位不同,因此教学难点是设未知数时使用哪个长度单位。

  四、说教学方法

  这节课是学生在掌握了比例尺的含义的基础上展开的,让学生根据比例尺的意义来求实际距离或者是图上距离。解决这类问题学生会有不同的方法,应该允许他们按照自己的思考方法进行解答。在引导学生进一步理解不同算法时,特别要引导学生理解和掌握用比例式求实际距离的方法,帮助学生把握不同算法之间的联系。

  根据比例尺=图上距离:实际距离以及学生的不同解法,可以归纳如下:

  图上距离=实际距离×比例尺;

  实际距离=图上距离÷比例尺。

  在计算的过程中关键还是要让学生注意单位的统一。在用解比例的方法求实际距离时,要和学生强调解设中单位还应该是厘米,因为图上距离的单位就是厘米,所以要统一。

  对比例尺意义的`理解是解答这类问题的关键,在理解比例尺时,一定要结合图形的放大与缩小,这样有助于学生对解题方法的掌握。

  教材上介绍了3种解题思路,但我觉得前两种的思考方法是一样的。且第2种思路中“比例尺1:8000,也就是图上1厘米,表示实际距离80米”,这样的理解有跳跃性,我觉得还是让学生理解为“图上1厘米,表示实际距离8000厘米”,最后让学生看问题所求的单位名称与计算结果是否一致,如果不一样,需要统一单位,这样学生比较好理解。用比例的方法来解答这类问题,可能学生对这样的解法和方程解有一样的感觉,怕麻烦!但作为一种新的解题思路,必须让学生掌握,所以今天的课堂教学中,我准备让学生这两种思路都掌握。在以后的练习中,如果题目没有要求解题方法,那么学生可以用自己喜欢的方式来解答。

  五、说教学程序

  1、复习准备

  本节课是紧接着前一节课的学习内容展开的进一步研究,所以,在学习新知道之前,对前一节课所学知识进行积极的回忆,有利于学生主动应用已有知识学习新知识,也有利于学生获得整体的,系统的知识。因此,我一开始按摆了复习。

  2、联系生活学新知

  参与是发展的前提,兴趣是参与的内驱力。让学生主动参与数学学习活动是促进学生发展的前提,学生只有在参与中才能得到发展。要让学生主动参与数学学习活动,必须激发起学生的学习动机。而学习兴趣是学习动机中最现实、最活跃的成分,是学习活动的强化剂,它在学生的学习活动中,起着巨大的推动和内驱作用。趣味性是使学生产生学习兴趣的重要途径。能使学生兴趣盎然地投入到学习活动中去。这里我没用课本中的例题,而是根据实际改编的。我们知道,数学源于生活,因此数学教学要紧密联系学生的生活实际,捕捉贴近学生的生活的素材,这样会使冰冷的数学产生亲和力,使学生感到亲切,也是“人人学有价值的数学”的生动体现。接下来分析条件和问题。在设知数时,使用哪个长度单位,是本节课的教学难点,板书中,我故意空出来。提问:你觉得这里设什么单位更便于计算?然后用红笔加以强调。再写出关系式,接下来让学生自己对照列方程解答。

  设未知数列出方程,再由学生自主选择自己喜欢的方法解答。体现教师的主导与学生的主体作用。

  接着结合岚皋地图,设计了课中小练习,让学生从生活中寻找数学的素材,感受生活中处处有数学,学习数学如身临其境,这样就会产生亲切感,有利于形成似曾相识的接纳心理。

  之后进行了课中小结:怎样求实际距离?要哪些条件?

  3、巩固练习

  数学的练习是使学生掌握系统的数学基础知识,训练技能、技巧的重要手段,也是培养学生能力、发展学生智力的重要途径。

  4、课堂小结,让学生对本节课的知识进行回顾整理。形成完整的知识体系。

  小学数学《比例的应用》说课稿 4

  今天我说课的课题是《正反比例的应用》,下面我将从教材分析、学情分析、教法与学法、教学过程、板书设计几个方面进行我今天的说课。

  一、 教材分析

  《正反比例的应用》本课选自青岛版数学六年级下册第三单元第四信息窗,本节课是在学生学习了比以及正反比例的意义的基础上进行教学的,也是今后学习数学和其他学科知识的重要基础。通过对教材的分析和学生的研究我确定了本节课的教学目标及教学重难点。

  教学目标:

  1. 能正确判断问题中数量之间的比例关系。

  2. 会用比例知识解决简单的实际问题。

  3. 培养分析、判断和推理能力,感受数学的价值。

  重点:会用比例知识解决问题。

  难点:正确判断数量间的比例关系并列出比例式。

  二、 学情分析

  学生在以前的学习中,已经接触过很多数量关系和比的知识,基础掌握还可以,而且具备一定的自主探索能力,但是语言表达不够规范。

  三、 教法

  采取"引导-合作-自主—探究"的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。

  激励评价法:"评价的目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。"我在学生提问题和解决问题中发现有独特见解的,都给予激励的评价,增强学生学习数学的自信心。

  四、 学法

  新课程不但倡导教师教学方式的转变,而且着力于学生学习方式的转变。培养学生的学习能力首先要让学生掌握学习数学的方法。在这节课中,学生的学习方法主要有:

  合作交流法:在获得新知的过程中,学生充分利用各自的资源,开展小组合作,在小组中分工明确,提高了学习效率,使学生的智力得到最佳的开发,树立的主人翁的意识。

  反思法:方法注重反思,学生才能学得牢。在课将结束,学生对自己的获得的知识和学习方法进行反思,总结经验,取长补短。

  五、 教学过程

  1.复习导入

  下面每题中的两种量成什么比例关系?

  (1)速度一定,路程和时间。

  (2)总价一定,每件物品的价格和所买的数量。

  (3)小朋友的年龄与身高。

  (4)正方体每一个面的面积和正方体的表面积。

  (5)被减数一定,减数和差。

  谈话引入:我们今天运用正反比例的知识来解决实际问题。

  意图:简单的`复习为本节课学习做了铺垫,提高了教学效率。

  2.出示学习目标,能用解比例的方法正确解答比较简单的应用题。

  意图:带着目标去学习,让学生把握学习方向,而且可以让学生做好自我检测,课后有目的的复习巩固。

  3.出示信息窗的情景,你能提出什么问题?

  意图:培养学生提取信息能力以及提出问题能力。

  4.让学生先独立解答,然后小组交流解题方法,找同学到前面板演解题过程。在这个过程中,教师做好引导,问题中出现的数量存在什么样的关系,指导用解比例的方法解决这个问题。

  意图:通过这个过程可以强化学生对正比例意义的理解,培养学生分析解决问题的能力。

  5.在经过思考掌握方法之后,直接引导学生用解比例的方法解决第二个红点问题,找代表汇报解题方法与过程。

  意图:培养分析、判断能力、解决问题能力以及语言表达能力。

  6.总结方法。让学生自己总结用比例相关知识解决应用题的方法。

  意图:培养学生分析概括能力。

  7.达标检测。

  意图:学生从课堂中所学的知识,如果不及时巩固、复习,与实践没有结合起来,就会稍纵即逝,因此设计合理的有效地练习是必须的。

  8.课堂小结。

  通过这堂课的学习,你有什么收获?你有什么易错点?

  意图:这个环节给了学生充分参与课堂的机会,可以培养学习总结概括能力,也会让学生自我评价学习效果。也利于学生掌握学生学习情况。

  六、 板书设计

  小学数学《比例的应用》说课稿 5

  我今天说课的内容是《比例尺的应用》。我的说课将从说教材、说学情、说教学流程三个方面展开。

  一、说教材

  1、教学内容

  《比例尺的应用》是人教版数学六年级下册第三单元的内容。第一课时。

  2、教材地位和作用

  这节课是在学生学完“比例尺的意义”后安排的内容。这部分内容是学生学习有关地图、工程图纸的计算的基础。比例尺在生活中也有广泛应用,学好它也具有很好的现实意义。

  3、教材编写思路、结构特点

  教材安排了两个例题,例2出示了北京地铁的线路图,让求实际距离。教材中只呈现了列方程式的一种方法,教学时应放手让学生自主选择合适解法。例3是综合运用比例尺知识解决实际问题的内容。主要是让学生采取小组合作的方式,自己制定合适的比例尺求出图上距离。由于这部分内容在上学期已经学过,所以教学时没有按照教材中的结构进行,而是做了适当调整。

  4、教学目标

  知识技能:根据给定的比例尺,灵活运用知识解决求实际距离的简单问题

  数学思考:根据比例尺的知识,在解决求实际距离的问题时有自己的见解和方法

  问题解决:结合具体情境,能按给定的比例尺解决简单实际问题

  情感态度:感受比例尺在日常生活中的应用,获得自主解决问题的积极体验

  5、教学重难点

  教学重点:应用比例尺的知识,培养学生解决生活中实际问题的能力。

  教学难点:求实际距离

  二、说学情

  学生对于这部分知识并不陌生,但由于隔的.时间较长,大部分学生已经对这部分知识淡忘了,因此本课主要是让学生在对原有知识进行回顾梳理的基础上并综合运用比例尺知识解决实际问题。学生的知识困难在于能从多角度思考问题,解决问题,提高综合运用所学知识的能力。

  三、说教学流程

  课程标准中指出,数学来源于生活,学生活中的数学,因此我对教材进行了重新编排,紧紧围绕学生的生活展开。为此我安排了如下环节“

  1、复习准备

  出示中国地图,让学生观察图中的比例尺。并通过三个问题“什么是比例尺?怎样求比例尺?求比例尺时需要注意哪些问题?”唤醒学生的记忆,再通过问“生活中哪些地方会用到比例尺?”让学生明白比例尺的应用价值,从而引出本节课要学习的内容。

  [设计意图:通过回顾单元知识,师生一起梳理建构单元知识树,对此部分的知识点有个系统的理解]

  2、联系生活学新知

  此环节安排了两个活动,一个是求图上距离,另一个是求实际距离的问题。

  (1)求图上距离的问题,以画学校操场平面图的情况为背景。让学生自主制定比例尺后先独立完成,然后组内交流,最后分组进行展示

  学具的准备:大小不同的纸张

  [设计意图:设计此题的目的有两个,一个是使学生明确要求图上距离,就必须知道比例尺和实际距离,掌握求图上距离的方法。第二个是要让学生明白要根据纸张的大小,确定合适的比例尺。同时也可渗透数值比例尺和线段比例尺的转化方法]

  (2)求实际距离

  大屏幕出示:陡子峪到六道河镇的线路图。要求出此路段的实际距离,需要知道什么?然后依次出示图上距离和比例尺,然后让学生动手计算。师巡视让有不同做法的学生到黑板上展示。

  [设计意图:让学生用学到的知识去解决实际问题,也让学生明确数学与生活的联系.同时鼓励算法的多样化]

  3、达标测评

  主要有判断和课后的“做一做”

  【设计意图:通过这些题巩固学生对比例尺的应用知识加深,提高学生解决实际问题的能力,从而对知识得到了升华。]

  4、课堂小结

  让学生谈谈收获和感想。然后教师总结,结束此课。

  [设计意图:师生谈话式总结本节课,真实的反馈了学生掌握比例尺这部分知识的情况,懂得了学习比例尺的重大作用,达到了学习的境界;同时学生如果有想问的问题,这时候也可以提出来,体现了一种平等、和谐、融洽的师生关系。]

  小学数学《比例的应用》说课稿 6

  教学目标:

  1.使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

  2.使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

  3.培养学生的判断分析推理能力。

  教学重点:

  使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

  教学难点:

  学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。

  教学过程:

  一、旧知铺垫

  1.下面各题两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行的路程和所用时间。

  (2)从甲地到乙地,行驶的速度和时间。

  (3)每块地砖的面积一定,所需地砖的块数和所铺面积。

  (4)书的总本数一定,每包的本数和包装的包数。

  过程要求

  ①说一说两种量的变化情况。

  ②判断成什么比例。

  ③写出关系式。

  2.根据题意用等式表示。

  (1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

  (2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

  二、创设情境引入内容

  1.出示例5

  画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?

  学生回答后引出求水费的`实际问题。

  你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。

  引入:这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。

  出示以下问题让学生思考和讨论

  ①问题中有哪两种量?

  ②它们成什么比例关系?你是根据什么判断的?

  ③根据这样的比例关系,你能列出等式吗?

  明确

  因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  学生讨论交流

  演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。让学生检验所求的未知数x是否合乎题意。检验的方法是把求出的数代入原等式(即方程),看等式是否成立。把求出的16代入等式,左式==1.6,右式==1.6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

  问题:王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?

  要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。

  2.出示例题6的场景。

  同样先让学生用已学过的方法解答,然后学习用比例的知识解答。

  师:想一想,如果改变题目的条件和问题该怎样解答?

  出示以下问题让学生思考和讨论

  ①问题中有哪两种量?

  ②它们成什么比例关系?你是根据什么判断的?

  ③根据这样的比例关系,你能列出等式吗?

  注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。

  让学生演示解题过程,集体修正。

  3.完成做一做,

  直接让学生用比例的知识解答

  问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。

  总结应用比例知识解答问题的步骤

  (1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。

  (2)依据正比例或反比例意义列出方程。

  (3)解方程(求解后检验),写答。

  小学数学《比例的应用》说课稿 7

  教学目标:

  1、 结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

  2、 培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

  3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

  教学重点:

  进一步掌握按比例分配应用题的结构特点和解题思路。

  教学难点:

  正确分析解答比例分配应用题。

  教学过程:

  一、复习。

  1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。

  2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)

  二、新授。

  1、教学例2。

  (1)出示例2:

  (2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)

  (3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)

  (4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)

  ① 稀释液平均分成的份数:1+4=5

  浓缩液的体积:500× =100(ml)

  水的体积:500× =400(ml)

  答:稀释液100ml,水400ml。

  (5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的.体积写成比的形式,看化简后是不是等于1:4

  (6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)

  2、补充练习

  (1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

  (2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)

  (3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)

  (4)怎样分别算出各班应种的棵数?引导学生解答:

  ① 三个班的总人数:47+45+48=140(人)

  ② 一班应栽的棵数: 280× = 94(人)

  ③ 二班应栽的棵数: 280× = 90(人)

  ④ 三班应栽的棵数: 280× = 96(人)

  答:一班栽树94棵,二班栽树90棵,三班栽树96棵。

  (5)学生进行检验。

  (6)学生试做“做一做”中的第2题。

  三、巩固练习。

  练习十二的第1、3题。

  四、布置作业。

  练习十二第2、4、5、6、7题。

  教学反思:

  本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。

  小学数学《比例的应用》说课稿 8

  教学目标:

  1、能正确的判断应用题中涉及到的量成什么比例关系。

  2、能正确的用比例的知识解答比较简单的应用题。

  3、培养学生的分析、判断和推理能力。

  教学重点:正确的判断应用题中的.数量关系之间存在着什么样的比例关系。

  教训难点:能根据正比例、反比例的意义列出含有未知数的等式。

  教学过程

  一、实际操作,引入新知识。

  (1)、让12个学生上讲台,站成相同的几组,可以怎样站?全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (2)、让学生说说“每组人数、组数和总人数”这三个量的关系,每组人数、组数成什么比例关系。

  (3)、全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (4)你是怎样算的,可以列出式子吗?

  二、教学例1

  一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶了5小时,甲、乙两地之间的公路长多少千米?

  1、指导分析,理解题意。

  2、学生自己想办法解答。

  3、师生探究用比例的知识解答。

  A、这道题中涉及到的量有哪些?

  B、哪种量一定(不变)?从哪里知道的?

  C、路程和时间成什么比例关系?判断的依据是什么?

  D、如果我们把甲乙两地之间的公路长看着X千米,那么我们根据正比例的意义可以列出一个怎样的方程?

  2小时和140千米相对应,5小时和X千米相对应,即可以列出比例:

  140:2=X :5

  E、学生列式并解答。

  F、说说怎样检验我们的计算结果呢?

  4、如果把例1中的第三个条件和问题交换,又该怎样来解答呢?

  一辆汽车2小时行驶140千米,照这样的速度,甲、乙两地之间的公路长350千米,从甲地到乙地需要几小时?

  学生自己解答,老师及时收集和处理反馈信息。

  三、教学例2

  一辆汽车从甲地开往乙地,每小时行驶70千米, 5小时到达,如果需要4小时到达,平均每小时需行驶多少千米?

  1、引导分析,理解题意,找到相关的量。

  2、准确判断它们成什么比例关系。

  3、学生解答,及时收集和处理反馈信息。

  比较例1、例2的异同。

  四、小结

  用比例解答应用题的关键是要正确找出两种相关联的量,准确的判断它们成什么比例关系,然后根据正反比例的意义列出方程解答。

  小学数学《比例的应用》说课稿 9

  教学目标:

  1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题

  2、能根据实际问题中的条件确定反比例函数的解析式。

  3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

  教学重点、难点:

  重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题

  难点:根据实际问题中的条件确定反比例函数的`解析式

  教学过程:

  一、情景创设:

  为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:

  (1)药物燃烧时,y关于x 的函数关系式为: ________,自变量x 的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.

  (2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;

  (3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

  二、新授:

  例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。

  (1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

  (2)录入文字的速度v(字/min)与完成录入的时间t(min)有怎样的函数关系?

  (3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

  例2某自来水公司计划新建一个容积为 的长方形蓄水池。

  (1)蓄水池的底部S 与其深度 有怎样的函数关系?

  (2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?

  (3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)

  三、课堂练习

  1、一定质量的氧气,它的密度 (kg/m3)是它的体积V( m3) 的反比例函数,当V=10m3时,=1.43kg/m3. (1)求与V的函数关系式;(2)求当V=2m3时求氧气的密度.

  2、某地上年度电价为0.8元度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.

  (1)求y与x之间的函数关系式;

  (2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)(用电量)]

  3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=y.求y与x之间的函数关系式及自变量x的取值范围.

  四、小结

  五、作业

  30.31、2、3

  小学数学《比例的应用》说课稿 10

  教学内容:教材23页-24页例1、例2,24页做一做,练习五1、2、

  素质教育目标

  (一)知识教学点

  1.使学生能正确判断应用题中涉及到的量成什么比例关系。

  2.使学生能利用正、反比例的意义正确解答应用题。

  (二)能力训练点

  1.培养学生的判断推理能力。

  2.培养学生的分析能力。

  (三)德育渗透点

  1.引导学生利用已有的知识,自己探索,解决实际问题,培养学生的勇于探索的精神。

  2.对学生继续进行辩证唯物主义观点的启蒙教育。

  教具学具准备:投影仪、投影片。

  教学重点:是使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题。

  教学难点:是帮助学生通过分析应用题的已知条件和所求问题,确定题中哪些量成什么比例关系,并利用正反比例的意义列出等式。

  教学步骤

  一、铺垫孕伏

  判断下面每题中的两种量成什么比例关系?

  1.速度一定,路程和时间。

  2.路程一定,速度和时间。

  3.单价一定,总价和数量。

  4.每小时耕地的公顷数一定,耕地的总公顷数和时间。

  5.全校学生做操,每行站的人数和站的行数。

  二、探究新知

  1.引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题。这节课我们就来学习比例的应用。(板书:比例的应用)

  2.教学例1

  (1)出示例1,学生读题。

  例1一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

  (2)请同学们先用以前学过的方法解答。

  学生在课本上完成,订正时板书:140÷2×5

  =70×5

  =350(千米)

  (3)下面我们研究用比例的知识解答。

  ①教师说明:用比例的知识解答,首先要确定题中有哪几种量,哪种量是固定不变的,哪两种量是变化中的,变化着的两种量成什么比例关系。

  ②想:这道题中涉及到了哪三种量?

  哪种量是一定的?你是怎样知道的?

  行驶的路程和时间成什么比例关系?

  ③学生回答:题中有路程、时间和速度三种量。

  “照这样的速度”就是说速度一定。

  行驶的路程和时间成正比例关系。

  (随学生回答,板书:速度一定,路程和时间成正比例)

  ④因为速度一定,路程和时间成正比例,那么根据正比例的.意义,两次行驶的路程和时间的什么相等?

  ⑤如果我们设甲乙两地间的公路长X千米。(板书:解:设甲乙两地间的公路长x千米)

  这两个比之间存在着什么关系?(板书:=)

  ⑥解出这个比例,就可以得到这道题的答案,请同学们自己完成。订正时板书:20X=140×5

  X=350

  答:两地之间的公路长350千米。

  ⑦怎样检验这道题做得是否正确?(学生说说)

  (4)如果把例1中第三个已知条件和问题换一下,(投影出示题目)

  一辆汽车2小时行驶140千米,照这样的速度,甲乙两地之间的公路长350千米,从甲地到乙地需要行驶多少小时?

  学生自己解答后订正。

  3.教学例2

  (1)出示例2,学生读题。

  一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时要行多少千米?

  (2)请同学们先用以前学过的方法解答。(做完后订正并板书)

  70×5÷4

  =350÷4

  =87.5(千米)

  (3)那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

  这道题里的路程是一定的,______和______成______比例。

  所以两次行驶的______和______的______是相等的。

  (4)学生把讨论结果填在课本上。

  订正时板书:路程一定,速度和时间成反比例。

  (5)如果设每小时需要行驶X千米(并板书),根据反比例的意义,谁能列出方程?(板书:4X=70×5)

  (6)接下来请同学们自己完成,订正时板书:

  X=87.5

  答:每小时需要行驶87.5千米。

  (7)如果把例2中的第三个已知条件和问题互换一下:(投影出示)

  一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行87.5千米,需要几小时到达?

  学生自己解答后订正。

  4.小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

  三、巩固发展

  1.下面两题先说说题中的哪两种量有什么比例关系,再用比例知识解答。(投影出示)

  (1)32页做一做

  (2)练习八第2题

  找学生把两题的比例关系说完后,自己完成,完成后订正。

  2.先想一想:下面各题中存在着什么比例关系?再填上条件和问题,并用比例知识解答。(口答)

  (1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,______,______?

  (2)王师傅4小时生产了200个零件,照这样计算,______?

  四、全课小结

  用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

  五、布置作业练习五1、3、4题。

【小学数学《比例的应用》说课稿】相关文章:

《比例的应用》说课稿11-08

《比例的应用》数学课教学反思06-21

比例的应用教案04-25

《比例尺的应用》六年级数学说课稿12-10

比例的意义说课稿06-22

比例的意义说课稿01-23

比例的实际应用教案04-23

《美术中的比例》说课稿02-19

比的应用说课稿12-06

《比的应用》说课稿06-10