2022年关于高一数学教学计划
时间过得太快,让人猝不及防,又迎来了一个全新的起点,立即行动起来写一份计划吧。相信大家又在为写计划犯愁了吧?下面是小编精心整理的2022年关于高一数学教学计划,供大家参考借鉴,希望可以帮助到有需要的朋友。
2022年关于高一数学教学计划1
一 指导思想
为了使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:
1.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力
3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
4.提高学习的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
二 学情分析
1. 基本情况:班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约 人,后进生约人。
2.我所执教的215班均属普高班,学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
三 教材分析
我们采用的教材是人教版必修教材,本册教材共分两章:第四章《三角函数》和第五章《平面向量》。三角函数的主要内容有:任意角的三角函数概念、弧度制、同角三角函数间的关系、诱导公式、两角和与差的三角函数、二倍角的三角函数以及三角函数的图象和性质、已知三角函数值求角等。难点是弧度制的概念、综合运用本章公式进行简单三角函数式的化简及恒等式的证明周期函数的概念,函数y=Asin(x+)的图象与正弦曲线的关系。平面向量主要内容是向量及其运算和解斜三角形,向量的几何表示和坐标表示、向量的线性运算,平面向量的数量积,平面两点间的距离公式,线段的定比分点和中点坐标公式,平移公式,解斜三角形是本章的重点,而向量运算法则的理解和运用,已知两边和其中一边的对角解斜三角形等是本章的难点。
四 教法分析
在教学过程中尽量做到以下几个方面:
1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
五 教学及辅导措施
1. 激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2. 注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3. 加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4. 抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5. 自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6. 重视数学应用意识及应用能力的培养。
六 优、差生名单及辅导措施
1. 对于优生:学生自愿成立兴趣小组,兴趣小组可以在老师的指导下由学生自己不定期的开展活动,围绕数学竞赛拓展他们的知识面,加深对所学知识的理解和应用,在原有基础上,稳定班级在数学学习钟的尖子学生,进一步培养他们自主学习的意识。
2. 对于待发展生:对于成绩较差的学生,针对他们的基础差异和个性差异,耐心细致的进行个别辅导,有问题随时解决,并多予以鼓励。在作业中体现分层。尽量做到因材施教。
七 教学进度安排
周 次 | 课时 | 内 容 | 重 点、难 点 |
第1周 | 5 | 任意角和弧度制(2) 任意角的三角函数(3) | 了解任意角的'概念和弧度制,能进行弧度与角度的互化。任意角三角函数的定义。 |
第2周 | 5 | 同角三角函数的基本关系式(3) 三角函数的诱导公式(2) | 诱导公式的探究。运用诱导公式。 |
第3周 | 5 | 两角和与差的正弦、余弦、正切 (5) | 两角和与差的公式及其应用与求值、化简 |
第4周 | 5 | 二倍角的正弦、余弦、正切 (3) 正、余弦函数的图象(2) | 三角函数的倍角公式、和差化积公式 正、余弦函数图象的画法 |
第5周 | 5 | 三角函数图象与性质(4) | 三角函数的图象及其性质。函数思想。 |
第6周 | 5 | 函数y=sin(+)的图象(2)、三角函数模型的简单应用(2) | 用参数思想讨论图象的变换过程。用三角模型解决一些具有周期变化规律的实际问题。难点:实际问题抽象为三角函数模型 |
第7周 | 5 | 正切函数的图象和性质(3) 已知三角函数值求角(2) | 正切函数的图象和性质 反三角函数的表示 |
第8周 | 5 | 三角函数单元复习 | 知识点的复习+练习卷 |
第9周 | 5 | 平面向量的实际背景及基本概念(2)、平面向量的线性运算(2) | 向量的概念。相等向量的概念。向量的几何表示。向量加、减法的运算及几何意义。向量数乘运算及几何意义。 |
第10周 | 5 | 平面向量的基本定理及坐标表示(2) 平面向量的数量积(2) | 平面向量基本定理。会用平面向量数量积的表示向量的模与夹角。 |
第11周 | 5 | 平面向量的应用举例(2) | 用向量方法解决实际问题的方法。向量方法解决几何问题的三步曲。 |
第12周 | 5 | 向量平移、正弦定理、余弦定理 | 向量平移的公式 |
第13周 | 5 | 简单的三角恒等变换(3) 第三章小结(1) | 以11个公式为依据,推导和差化积、积化和差等公式,会进行三角变换。 |
第14周 | 5 | 期末复习 | |
第15周 | 5 | 期末复习 | 分章归纳复习+3套模拟测试 |
2022年关于高一数学教学计划2
目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
重点:
集合的基本概念
教学过程:
1、引入
(1)章头导言
(2)集合论与集合论的——康托尔(有关介绍可引用附录中的内容)
2、讲授新课
阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)有关概念:
1、集合的概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象、
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合、
(3)元素:集合中每个对象叫做这个集合的元素、
集合通常用大写的'拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
要注意“∈”的方向,不能把a∈A颠倒过来写、
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了、
(2)互异性:集合中的元素一定是不同的
(3)无序性:集合中的元素没有固定的顺序、
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分,0等符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合、记作N
(2)正整数集:非负整数集内排除0的集、记作N_或N+
(3)整数集:全体整数的集合、记作Z
(4)有理数集:全体有理数的集合、记作Q
(5)实数集:全体实数的集合、记作R
注:(1)自然数集包括数0、
(2)非负整数集内排除0的集、记作N_或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z_
课堂练习:教材第5页练习A、B
小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质
课后作业:第十页习题1-1B第3题
【高一数学教学计划】相关文章:
高一数学的教学计划04-04
高一数学教学计划08-27
【推荐】高一数学教学计划12-24
【热门】高一数学教学计划12-24
高一数学教学计划【精】12-24
【荐】高一数学教学计划12-24
关于高一数学教学计划01-29
高一数学教学计划[优秀]10-09
高一数学教学计划【热】12-24
高一数学教学计划【荐】12-24