高二数学教学计划

时间:2024-08-21 13:22:31 教学计划 我要投稿

高二数学教学计划(汇编15篇)

  人生天地之间,若白驹过隙,忽然而已,我们又将接触新的知识,学习新的技能,积累新的经验,此时此刻需要制定一个详细的计划了。那么我们该怎么去写计划呢?下面是小编帮大家整理的高二数学教学计划,供大家参考借鉴,希望可以帮助到有需要的朋友。

高二数学教学计划(汇编15篇)

高二数学教学计划1

  一、教材分析

  1、教材地位、作用

  本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3。2。1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、学情分析

  学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

  二、教学目标

  1、知识与技能目标

  ⑴、理解等可能事件的概念及概率计算公式;⑵、能够准确计算等可能事件的概率。

  2、过程与方法

  根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

  3、情感态度与价值观

  概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

  三、重点、难点

  重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

  难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  四、教学过程

  1、创设情境提出问题

  师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

  【设计意图】通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

  2、抽象思维形成概念

  师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

  生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

  师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

  生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

  师:那基本事件有什么特点呢?

  问题:(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

  (2)事件“出现偶数点”包含了哪几个基本事件?

  由如上问题,分别得到基本事件如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。(让学生交流讨论,教师再加以总结、概括)

  【设计意图】让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

  例1从字母中任意取出两个不同字母的试验中,有哪些基本事件?

  师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

  解:所求的基本事件共有6个:

  【设计意图】由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

  师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

  试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

  试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

  例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

  经概括总结后得到:

  ①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。

  我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

  【设计意图】学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的`能力。

  3、概念深化,加深理解

  试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

  试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

  【设计意图】这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

  4、观察比较推导公式

  【设计意图】学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

  师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

  ①要判断该概率模型是不是古典概型;

  ②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  【设计意图】深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  5、应用与提高

  【设计意图】本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

  6、知识梳理课堂小结

  1、本节课你学习到了哪些知识?

  2、本节课渗透了哪些数学思想方法?

  7、作业布置

  1、阅读本节教材内容

  2、必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

  3、选做题课本134页习题B组第1题

  8、教学反思

  本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

高二数学教学计划2

  一、指导思想

  本学期高一备课组以学校教务处、教研组、年级组工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,认真贯彻学校提出的“先学后教”的课堂教学改革方案,抓好基础知识教学,着重学生能力的培养,打好基础,全面提高,争取优异的成绩。

  二、教学目标

  使大多数学生能够掌握高中数学基本知识,解决问题的基本能力,提高学生的数学素养。使多数学生能够进入高一级学府继续学习,提高学业水平测试的合格率以及优秀率。

  复习作为知识巩固的一个有效方法在学习中必不可少。而复习课中例题的精选很重要,是否能起到温故而知新的作用。对应的复习课之后的配套练习与作业的反馈的落实也是复习的一个重要环节。因此如何精选专题复习例题与落实作业反馈成了我们备课组的关注点。

  三、教学措施

  这学期的学习内容对学生来说,整体上偏难,特别是运算能力在这学期将得到深化和强化,所以对教师的要求也必将高。在教学内容方面,我们还是主要按照我们学生的特点,对症下药,讲清基本题,理顺中档题,适当补充难题;普通班不追求偏和难,特别对圆锥曲线部分的一些重点、难点的计算题,必须详细讲解给学生听,有些问题甚至需要多讲解几遍,让绝大部分学生真正落实到位。每位教师上完课之后需要思考三个问题:我这节课上得如何?有谁的课比我还优秀?怎样上这节课更好、最好并在备课笔记上做好记录,为以后的教育教学提供参考。在课课练上,以基本题为主,重点在中档题上,做错的'问题要抓落实,不放弃任何一个学生,不放过任何一个问题。在课堂上,每位教师都要重视板书,因为学生的书写不规范部分来源于教师的板书,每节课最低有1~2题在书写上力求规范。

  四、教学要求

  整体把握新课程,理清贯穿教材的主要脉络,反映和揭示教学内容的内在联系,展示重要概念的来龙去脉。完成新课标要求,培养学生的数学兴趣,发展学生的数学应用意识。还要渗透高考要求,倡导自主学习方式,逐渐提高学生的思维能力,养成独立思考、积极探索的习惯,注重数学思想和方法的渗透,注重数学思维能力的培养。

  五、具体工作

  为了能够将集体备课落到实处,集体备课做到统一时间,统一地点,确定主要内容。

  (1)按上周集体备课中预先确定备课章节,各位教师论轮流发言,指出备课中的思路,重点和难点。

  (2)然后就上述内容请备课组全体成员共同讨论教学任务中的有关教学大纲,疏通教材,指出重难点,列举一些典型例题,精选练习题等,并请有教学经验的老师做必要的解释、说明和补充,备课组长认真做好记录,对于一些认识分歧比较大的地方,认真讨论,达成共识。

  (3)讨论下周教案的编撰的具体事宜,确定四至五课时内容的个体教学目标、重难点、例题选编及作业的布置。

  (4)最后就当前的教学及工作情况,请备课组各成员相互交流,提出建议,说出不足,并由备课组长记录整理,为以后的教学计划或集体备课的适当调整提供第一手宝贵资料。

  以上几点就是我们高二数学组在本学期的工作计划,代表我们全体高二数学教师的工作打算,我们一定能够落实好学校和部门的任务,并能够按照自身的特点和所教班级的具体情况认真做好自己的教育教学工作。希望在我们全体教师的努力下,在期末联考中能取得辉煌的成绩。

高二数学教学计划3

  一、指导思想:

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。立足学生的实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

  二、学生基本情况分析:

  1、基本情况:高二10个理科班,4个文科班,每个班的学生对数学学习各不相同。其中,1—6班为实验班,大部分人,基础较好,数学学习兴趣较为浓厚。还有些学生对自己学习数学的信心不足,学习积极性和主动性不够,大部分学生学习上只满足完成老师所布置的任务,对于灵活运用知识分析问题、解决问题的能力还不够强,不能举一反三进一步挖深问题,在选例题时尽量选中等难度题目,以适应大多数学生的适应能力。

  三、教学目标

  针对以上问题的出现,在本学期拟订以下目标和措施。其具体目标如下:

  1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的.本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3、提高数学的提出、分析和解决问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  四、教法分析:

  1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。

  2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  五、教学措施:

  1、抓好课堂教学,提高教学效益。 课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是提高数学成绩的主要途径。

  ①认真落实,搞好集体备课。每周至少进行一次集体备课,星期一的上午升旗后至第二节课结束。每位老师都要提前一周进行单元式的备课,集体备课时,由两名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

  ②加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,逐步形成知识体系,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

  2、加强课外辅导,提高竞争能力。 课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

  ①加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一层楼。

  ②加强对双差生的辅导。双差生是一个班级教学成败的关键,因此,我将下大力气辅导双差生,通过个别或集体的方法进行耐性教学,从而使他们的纪律以及数学成绩有一定的进步。

  3、搞好单元考试、阶段性考试的分析。学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。

  六、教学进度安排

  本学期授课时间约为20周,本学期的教学任务:

  第一学段:数学必修3;

  第二学段:理科2-1。另完成选修4—5,和选修4—4的教学任务,保证完成教学任务。

高二数学教学计划4

  20xx-20xx年度工作已经开始,在新的一学年内,我们高二数学组全体老师将紧密团结在学校领导的周围,齐心协力、踏踏实实做好各自的教学和教育工作,在提高自己的教育教学的水平的同时,积极参与各项教育教学活动,组织和制定本学科的研究性课题,争取在各种考试中取得理想的成绩。现将这学期的'计划如下:

  一、指导思想

  “师者,传道授业解惑也。”教育的兴衰维系国家之兴衰,孩子的进步与徘徊事观家庭的喜怒和哀乐!数学这一科有着冰冻三尺非一日之寒的学科特点,在高考中的决定性作用亦举重非轻!夸张一点说数学是强校之本,升学之源。鉴于此,我们当举全组之力,充分发挥团队精神,既分工又合作,立足高考,保质保量地完成教育教学任务,在原来良好的基础上锦上添花。

  二、工作目标

  1、全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的同仁关系,力争使我们高一数学组成为一个充满活力的优秀集体。不拘形式不拘时间地点的加强交流,互相之间取长补短,与时俱进,教学相长。在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。

  2、在数学竞赛中,力争高二进入全国高中数学联赛的决赛阶段。

  3、在数学教学方面,积极尝试新的教学方法,用新的教学理念武装自己。配合学校教学改革,力求在“生本教育”方面走出自己的路。

  三、主要措施

  1、明确一个观念:高考好才是真的好。平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。

  2、以老师的精心备课与充满激情的教学,换取学生学习高效率。

  3、将学校和教研组安排的有关工作落到实处。

  四、活动设想

  1、按时完成学校(教导处,教研组)相关工作,如“激活课堂”,“同课异构”。

  2、轮流出题,讲求命题质量,分章节搞好集体备课,形成电子化文稿。

  3、每周集体备课一次,每次有中心发言人,组织进行教学研讨。

  4、互相听课,以人之长,补己之短,完善自我。

  5、认真组织好培优辅差工作以及竟赛的组织工作。

  6、认真组织数学兴趣小组与数学选修课的开展。

高二数学教学计划5

  (一)20xx年秋季班高二数学大纲

讲次高二理科
第1讲计数原理
第2讲概率初步
第3讲必修模块复习(一) (集合、函数)
第4讲必修模块复习(二) (三角函数与正余弦定理)
第5讲必修模块复习(三) (数列、不等式)
第6讲必修模块复习(四) (解析几何、立体几何、向量)
第7讲简易逻辑
第8讲轨迹与椭圆
第9讲双曲线与抛物线
第10讲直线与圆锥曲线
第11讲圆锥曲线综合
第12讲空间向量与立体几何
第13讲立体几何综合
第14讲知识点睛及期末考试
第15讲试卷分析及期末点拨

  (二)具体说明

  高二数学秋季主要学习两本书:必修3和选修2-1。选修2-1的讲义基本上与各学校同步,所以不再详说。必修3的前二章是算法和统计,内容以概念的介绍与了解为主,侧重于对知识本身的理解,在高考的考查时也只要求掌握最基本的内容,一般多以选择或填空的题型出现,比较简单。考虑这两章内容的性质与考查的难度,以及在暑期班已经预习的情况下,在秋季讲义中我们不专门安排对这两章的学习,学生只需掌握学校所学的基本内容即可。高考中这几部分内容的难度与考查的主要形式大家可以看后面附的20xx年新课标省份的高考题。对于算法中比较难掌握的程序语言等内容,高考中都不作要求。

  必修3的第三章内容是概率初步,涉及到基本事件空间,需要计算基本事件的数目时,如果没有计数原理的.基础知识,计算和理解会比较肤浅,而且高考中的概率题(可参考附录中《概率》部分),大多都会与计数原理相结合,因此在学习概率前我们补充了计数原理的基础知识。计数原理和概率的更深入的内容,将在选修2-3中学习。

  学完概率初步后,接下来是高一所学内容的简单复习,力求做到温故知新。同时本学期后半部分2-1的任务非常繁重,需要学习两大块重点内容:圆锥曲线、空间向量与立体几何,这两块内容都是高考解答题的必考内容,占到解答题的1/3,并且解析几何常常以压轴题形式出现。这里对以前内容的复习也是利用前半学期比较轻松的时间,为后面2-1部分的内容作好充分的准备。

高二数学教学计划6

  一、指导思想

  以培养创新型人材为目标,以联合办学为契机,深入钻研教材,靠集体智慧处理教研、教改资源及多媒体信息,根据我校实际,合理运用现代教学手段、技术,提高课堂效率。

  二、目标要求

  1.深入钻练教材,在借鉴她校课件基础上,结合所教学生实际,确定好每节课所教内容,及所采用的教学手段、方法。

  2.本期还要帮助学生搞好《数学》必修内容的复习,一是为学生学业水平检测作准备,二是为高三复习打基础。

  3.本期的专题选讲务求实效。

  4.继续培养学生的学习兴趣,帮助学生解决好学习教学中的困难,提高学生的数学素养和综合能力。

  5.本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力,提高学生解题能力。

  三、教学措施:

  一、认真落实,搞好集体备课。每周至少进行一次集体备课,每位老师都要提前一周进行单元式的备课,集体备课时,由一名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。在星期一的集合备课中,主要是对上周备课中的情况作补充。每次备课都要用一定的时间交流一下前一段的教学情况,进度、学生掌握情况等。

  二、详细计划,保证练习质量。教学中用配备资料是《高中数学新新学案》,要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。每周以内容滚动式编一份练习试卷,星期五发给学生带回家完成,星期一交,老师要进行批改,存在的普遍性问题最好安排时间讲评。试题量控制为10道选择题(4旧6新)、4道填空题(1旧3新)、4道解答题。

  三、抓好第二课堂,稳定数学优生,培养数学能力兴趣。本学期第二课堂与数学竞赛准备班继续分开进行辅导。平常意义上的第二课堂辅导学生,主要是以兴趣班的`形式,以复习巩固课堂教学的同步内容为主,一般只选用常规题为例题和练习,难度低于高考接近高考,用专题讲授为主要形式开展辅导工作。

  四、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要,所以每位老师必须重视搞好辅导工作。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

高二数学教学计划7

  本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.

  ②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

  ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

  体思想求解.

  (4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

  一、基本概念:

  1、 数列的定义及表示方法:

  2、 数列的项与项数:

  3、 有穷数列与无穷数列:

  4、 递增(减)、摆动、循环数列:

  5、 数列的通项公式an:

  6、 数列的前n项和公式Sn:

  7、 等差数列、公差d、等差数列的结构:

  8、 等比数列、公比q、等比数列的结构:

  二、基本公式:

  9、一般数列的通项an与前n项和Sn的关系:an=

  10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。

  11、等差数列的前n项和公式:Sn= Sn= Sn=

  当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。

  12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

  (其中a1为首项、ak为已知的第k项,an0)

  13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

  当q1时,Sn= Sn=

  三、有关等差、等比数列的结论

  14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。

  15、等差数列中,若m+n=p+q,则

  16、等比数列中,若m+n=p+q,则

  17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。

  18、两个等差数列与的和差的数列、仍为等差数列。

  19、两个等比数列与的积、商、倒数组成的.数列

  、 、 仍为等比数列。

  20、等差数列的任意等距离的项构成的数列仍为等差数列。

  21、等比数列的任意等距离的项构成的数列仍为等比数列。

  22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

  23、三个数成等比的设法:a/q,a,aq;

  四个数成等比的错误设法:a/q3,a/q,aq,aq3

  24、为等差数列,则 (c0)是等比数列。

  25、(bn0)是等比数列,则 (c0且c 1) 是等差数列。

  四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

  26、分组法求数列的和:如an=2n+3n

  27、错位相减法求和:如an=(2n-1)2n

  28、裂项法求和:如an=1/n(n+1)

  29、倒序相加法求和:

  30、求数列的最大、最小项的方法:

  ① an+1-an= 如an= -2n2+29n-3

  ② an=f(n) 研究函数f(n)的增减性

  31、在等差数列 中,有关Sn 的最值问题常用邻项变号法求解:

  (1)当 0时,满足 的项数m使得 取最大值.

  (2)当 0时,满足 的项数m使得 取最小值。

  在解含绝对值的数列最值问题时,注意转化思想的应用。

  以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!

高二数学教学计划8

  教学目标

  1.通过实例理解样本的数字特征,如平均数,方差,标准差.

  2.能根据实际问题的需求合理地选取样本,从数据样本中提取基本的数字特征,并作出合理的解释.

  重点难点

  重点(1)用算术平均数作为近似值的理论根据.(2)方差和标准差刻画数据稳定程度的理论根据.

  难点:(1)平均数对总体水平进行评价时的可靠性(和中位数和众数之间的联系).(2)通过实例使学生理解样本数据的方差,标准差的意义和作用.

  教学过程

  算术平均数和加权平均数

  (一)问题情境

  某校高一(1)班同学在老师的布置下,用单摆进行测试,以检验重力加速度.全班同学两人一组,在相同条件下进行测试,得到下列实验数据(单位:m/s2):

  9.62 9.54 9.78 9.94 10.019.66 9.88

  9.68 10.32 9.76 9.45 9.99 9.81 9.56

  9.78 9.72 9.93 9.94 9.65 9.79 9.42 9.68 9.70 9.84 9.90

  问题1:怎样用这些数据对重力加速度进行估计?

  一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数(median).

  一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数

  一组数据中出现次数最多的那个数据叫做这组数的众数,

  算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数.

  问题2:用这些特征数据对总体进行估计的优缺点是什么?

  21世纪教育网

  用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系.对这些数据所包含的信息的反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响.

  用众数作为一组数据的代表,可靠性较差,但众数不受极端数据的影响,并且求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的.“集中趋势”.

  用中位数作为一组数据的代表,可靠性也较差,但中位数也不受极端数据的影响,也可选择中位数来表示这组数据的“集中趋势”.

  平均数、中位数、众数都是描述数据的“集中趋势”的“特征数”,它们各自特点如下:

  任何一个样本数据的改变都会引起平均数的改变.这是中位数、众数都不具备的性质,也正是这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.

  问题3:我们常用算术平均数 (其中ai(i=1,2,…,n)为n个实验数据)作为重力加速度的近似值,它的依据是什么呢?

  处理实验数据的原则是使这个近似值与实验数据之间的离差尽可能地小,我们考虑(x-a1)2+(x-a2)2+…+(x-an)2,当x为何值时,此和最小.

  (x-a1)2+(x-a2)2+…+(x-an)2=nx2-2(a1+a2+…+an)x+ a12+a22+…+an2.

  所以当x=a1+a2+…+ann时离差的平方和最小.

  (二)数学理论

  故可用x=a1+a2+…+ann作为表示这个物理量的理想近似值,称其为这n个数据a1+a2+…+an的平均数或均值一般记为:

  -a=a1+a2+…+ann.

  (三)数学应用

  例1 某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些.

  甲班:

  112 86 106 84 100 105 98 102 94 107

  87 112 94 94 99 90 120 98 95 119

  108 100 96 115 111 104 95 108 111 105

  104 107 119 107 93 102 98 112 112 99

  92102 93 84 94 94 100 90 84 114

  乙班

  116 95 109 96 106 98 108 99 110 103

  94 98 105 101 115 104 112 101 113 96

  108 100 110 98 107 87 108 106 103 97

  107 106 111 121 97 107 114 122 101 107

  107 111 114 106 104 104 95 111 111 110

  分析:我们可用一组数据的平均数衡量这组数据的水平,因此,分别求得甲、乙两个班级的平均分即可.

  解:用科学计算器分别求得

  甲班的平均分为101.1,

  乙班的平均分为105.4,

  故这次考试乙班成绩要好于甲班.

  此处介绍Excel的处理方法.

  例2:已知某班级13岁的同学有4人,14岁的同学有15人,15岁的同学有25人,16岁的同学有6人, 求全班的平均年龄.

  解:13×4+14×15+15×25+16×64+15+25+6

  =13×450+14×1550+15×2550+16×650

  这里的450,1550,2550,650,其实就是13,14,15,16的频率.

  [数学理论]一般地若取值为x1,x2,…xn的频率分别是p?1,p2,…pn,则其平均数为x1p1+x2p2+…+xnpn.

  睡眠时间 人 数 频 率

  [6,6.5) 5 0.05

  [6.5,7) 17 0.17

  [7,7.5) 33 0.33

  [7.5,8) 37 0.37

  [8,8.5) 6 0.06

  [8.5,9] 2 0.02

  合计 100 1

  例3.下面是某校学生日睡眠时间的抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间.

  分析:要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间.由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示.

  解法1:总睡眠时间约为

  6.25×5+6.75×17+7.25×33+7.75×37+8.25×6

  +8.75×2=739(h).

  故平均睡眠时间约为7.39h.

  解法2:求组中值与对应频率之积的和

  原式=6.25×0.05+6.75×0.17+7.24×0.33

  +7.75×0.37+8.25×0.06+8.75×0.02=7.39(h).

  答 估计该校学生的日平均睡眠时间约为7.39h.

  21世纪教育网

  例4.某单位年收入在10000到15000、15000到20000、20000到25000、25000到30000、30000到35000、35000到40000及40000到50000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入.

  分析:上述比就是各组的频率.

  解 估计该单位职工的平均年收入为

  12500×10%+17500×15%+22500×20%+27500×25%+32500×15%

  +37500×10%+45000×5%=26125(元).

  答估计该单位人均年收入约为26125元.

  例5.小明班数学平均分是78分,小明考了80分,老师却说他是倒数几名,你觉得这可能吗?(再看书P64思考)

高二数学教学计划9

  一、指导思想:

  全面贯彻教育方针,深入实施素质教育,使学生在高一学习的基础上,进一步体会数学对发展自己思维能力的作用,体会数学对推动社会进步和科学发展的意义以及数学的文化价值,提高数学素养,以满足个人发展与社会进步的需要。

  二、教学具体目标

  1、期中考前完成必修3、选修2-3第一章

  2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  三、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,强调了问题提出,抽象概括,分析理解,思考交流等研究性学习过程。具体特点如下:

  1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2、“问题性”:专门安排了“课题学习”和“探究活动”,培养问题意识,孕育创新精神。

  3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4、“时代性”与“应用性”:教材中有“信息技术建议”和“信息技术应用”,以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  5、“人文应用价值性”:编写了一些阅读材料,开拓学生视野,从数学史的发展足迹中获取营养和动力,全面感受数学的科学价值、应用价值和文化价值。

  四、教法分析:

  1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的.冲动,以达到培养其兴趣的目的。

  2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法

  6、重视数学应用意识及应用能力的培养。

  六、教学进度安排(略)

高二数学教学计划10

  一、学术条件分析

  二年级五班有73名学生,

  八班有70名学生。这两个班是高二理科班的第三个班。大多数学生基础薄弱,学习兴趣低,甚至很多学生害怕数学。但是他们还是有一颗学好数学的心,也想融入到日新月异的数学世界中去,甚至想在每一次考试中领先。有鉴于此,通过正确引导,教学中适当调整难度,降低起点,一小步一小步,就能取得好成绩。

  二、教学计划

  1、加强自学。

  (1)加强教材的学习。课本是一切教学的起点,也是考试的归宿。任何一个数学知识点都会从课本上找到类型题或者类似的题或者它们的影子。教学知识的全面性和系统性直接决定于教材能否被透彻理解和专题研究。也决定了学习课本的必要性。

  (2)他山之石可以攻玉。由于生活环境、面对的对象、自身知识的局限等原因,自己的视野和起点有限,思考和解决问题的'广度和深度也有限。所以多读一些教学参考书,吸收别人的经验,取长补短,对于增强教学的针对性和刺激性大有裨益。

  强化课程改革意识。新课程改革全面展开,其精神和思想具有独特的时代性、前瞻性和科学性。因此,加强新课程改革知识的学习,理解新课程改革理念,增强新课程改革意识,是时代和发展的需要。因此,要积极参与新课改的培训,把握新课改的精髓,并应用于实践。这样才能让我们的知识代谢。

  认真参与小组备课。珍惜每周一次的集体备课,充分利用这次集体备课的机会,向同龄人学习自己的不足或不擅长,积极落实小组内的各项安排,落实课时要求。

  增强听课意识。根据学校的要求,积极参与新课改年级的课堂听力活动,听取老师的意见,发现亮点,记录亮点,积累亮点,点亮亮点。

  2、把握课堂教学主战场,激发师生学习数学的积极性。

  (1)加强新课情景的创设,激发学生的学习热情。每一节新课的开发都有其现实意义、价值和趣味性。充分挖掘这些知识可以起到很好的启动作用。

  (2)选择一些例子。对于能学好的同学,就不说了;对于经过讨论能够解决的学生,给予适当的指导;对于在老师指导下完成的学生,慢慢地、仔细地讲,努力让每个学生都听得懂,学得好。我不说超出学生承受范围的话。

  课后认真安排作业。

  课后作业是课堂教学的反馈。作业质量能在一定程度上反映教学效果。所以作业安排需要科学,分层,多样化,知识点要全面。

  3、做好课后辅导。

  (1)充分利用晚自习给每个学生耐心、细致、全面的指导。让学生积累的问题得到彻底解决。

  利用自习课的时间,找到需要帮助的同学进行辅导。如果你不会背公式,掌握公式,交作业,就会被勒令补课。

  4、做好作业和考试反馈。

  现在学生的数学答案顺序不清,逻辑混乱,因果颠倒,这不是扎实的基础,也是思维上的缺陷。因此,在现阶段,有助于培养学生良好的数学思维,避免高考失分和未来生活的凌乱。

  5、培养学生对数学的兴趣,普及数学价值规律的应用。

  兴趣是有的,老师。数学难,很烦。哪里难,哪里烦?找到原因,对症下药,通过课堂移植有趣的中外数学知识,让学生认识到数学的价值,通过多媒体降低数学思维的难度,都是提高学生兴趣的途径

高二数学教学计划11

  教学目标:

  1. 知识与技能目标:

  (1)了解中国古代数学中求两个正整数最大公约数的算法以及割圆术的算法;

  (2)通过对“更相减损之术”及“割圆术”的学习,更好的理解将要解决的问题“算法化”

  的思维方法,并注意理解推导“割圆术”的操作步骤。

  2. 过程与方法目标:

  (1)改变解决问题的思路,要将抽象的数学思维转变为具体的步骤化的思维方法,提高逻

  辑思维能力;

  (2)学会借助实例分析,探究数学问题。

  3. 情感与价值目标:

  (1)通过学生的主动参与,师生,生生的合作交流,提高学生兴趣,激发其求知欲,培养探索精神;

  (2)体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

  教学重点与难点:

  重点:了解“更相减损之术”及“割圆术”的算法。

  难点:体会算法案例中蕴含的算法思想,利用它解决具体问题。

  教学方法:

  通过典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑

  结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。

  教学过程:

  教学

  环节 教学内容 师生互动 设计意图

  创设 情境

  引入新课 引导学生回顾

  人们在长期的生活,生产和劳动过程中,创造了整数,分数,小数,正负数及其计算,以及无限逼近任一实数的方法,在代数学,几何学方面,我国在宋,元之前也都处于世界的前列。我们在小学,中学学到的算术,代数,从记数到多元一次联立方程的求根方法,都是我国古代数学家最先创造的。更为重要的是我国古代数学的发展有着自己鲜明的特色,也就是“寓理于算”,即把解决的问题“算法化”。本章的内容是算法,特别是在中国古代也有着很多算法案例,我们来看一下并且进一步体会“算法”的概念。

  教师引导,学生回顾。

  教师启发学生回忆小学初中时所学算术代数知识,共同创设情景,引入新课。

  通过对以往所学数学知识的回顾,使学生理清知识脉络,并且向学生指明,我国古代数学的发展“寓理于算”,不同于西方数学,在今天看仍然有很大的优越性,体会中国古代数学对世界数学发展的.贡献,增强爱国主义情怀。

  阅读课本 探究新知

  1. 求两个正整数最大公约数的算法

  学生通常会用辗转相除法求两个正整数的最大公约数:

  例1:求78和36的最大公约数

  (1) 利用辗转相除法

  步骤:

  计算出78 36的余数6,再将前面的除数36作为新的被除数,36 6=6,余数为0,则此时的除数即为78和36的最大公约数。

  理论依据: ,得 与 有相同的公约数

  (2) 更相减损之术

  指导阅读课本P ----P ,总结步骤

  步骤:

  以两数中较大的数减去较小的数,即78-36=42;以差数42和较小的数36构成新的一对数,对这一对数再用大数减去小数,即42-36=6,再以差数6和较小的数36构成新的一对数,对这一对数再用大数减去小数,即36-6=30,继续这一过程,直到产生一对相等的数,这个数就是最大公约数

  即,理论依据:由 ,得 与 有相同的公约数

  算法: 输入两个正数 ;

  如果 ,则执行 ,否则转到 ;

  将 的值赋予 ;

  若 ,则把 赋予 ,把 赋予 ,否则把 赋予 ,重新执行 ;

  输出最大公约数

  程序:

  a=input(“a=”)

  b=input(“b=”)

  while a<>b

  if a>=b

  a=a-b;

  else

  b=b-a

  end

  end

  print(%io(2),a,b)

  学生阅读课本内容,分析研究,独立的解决问题。

  教师巡视,加强对学生的个别指导。

  由学生回答求最大公约数的两种方法,简要说明其步骤,并能说出其理论依据。

  由学生写出更相减损法和辗转相除法的算法,并编出简单程序。

  教师将两种算法同时显示在屏幕上,以方便学生对比。

  教师将程序显示于屏幕上,使学生加以了解。 数学教学要有学生根据自己的经验,用自己的思维方式把要学的知识重新创造出来。这种再创造积累和发展到一定程度,就有可能发生质的飞跃。在教学中应创造自主探索与合作交流的学习环境,让学生有充分的时间和空间去观察,分析,动手实践,从而主动发现和创造所学的数学知识。

  求两个正整数的最大公约数是本节课的一个重点,用学生非常熟悉的问题为载体来讲解算法的有关知识,,强调了提供典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。为了能在计算机上实现,还适当展示了将自然语言或程序框图翻译成计算机语言的内容。总的来说,不追求形式上的严谨,通过案例引导学生理解相应内容所反映的数学思想与数学方法。

高二数学教学计划12

  二、教学工作

  1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。同时对辅助资料加大研究,扩大自己的知识面以及同类学科之间的联系。

  2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。针对我们这的学生数学认知能力和基础不是很好,上课要精选试题,做好教案和学案。要使每位学生掌握基础知识为教学落脚点。

  3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的'氛围。教好学前提要了解学生,关心爱护每位学生,要为学生提供宽松愉悦的课堂教学环境。

  4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

  5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。要和同仁根据教材各章节的重难点制定教学进度,认真对待集体备课和听课。积极听有经验的老师的教研活动,积累教学经验。

  三,教学计划

  要提前一周制定好下周教学学案和教案。要精选试题,力求少而精,有针对性。要备好课,选好教学方法。

  总之,教学是慢功夫,我会试图把它做好。

高二数学教学计划13

  一、指导思想:

  在我校整体建构和谐教学模式下,使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三、教法分析:

  1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的.学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、学情分析:

  高一班学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻整体建构,和谐教学。

  6、重视数学应用意识及应用能力的培养。

高二数学教学计划14

  一、学生基本情况

  118班共有学生66人,115班共有学生48人。118班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣,……

  二、教学要求

  (一)情意目标

  (1)通过分析问题的方法的教学、通过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

  (2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

  (3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程的幻妙多姿

  (二)能力要求

  1、培养学生记忆能力。

  (1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

  (2)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)通过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

  2、培养学生的运算能力。

  (1)通过解不等式及不等式组的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。(5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)通过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

  (2)通过解析几何与不等式的一题多解、多题一解、通过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过不等式引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)通过解析几何的.概念教学,培养学生的正向思维与逆向思维的能力。

  (6)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  4、培养学生的观察能力。

  (1)在比较鉴别中,提高观察的准确性和完整性。

  (2)通过对个性特征的分析研究,提高观察的深刻性。

  (三)知识要求

  1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;

  2、通过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

  3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

  3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

  (二)难点

  1、含绝对值不等式的解法,不等式的证明。

  2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。 3、用坐标法研究几何问题,求曲线方程的一般方法。

  三、教学措施

  1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

  2、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

  3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以“发现式教学模式”为主的教学方法,全面提高教学质量。

  4、积极参加与组织集体备课,共同研究,努力提高授课质量

  5、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。

  6、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。 7、加强数学研究课的教学研究指导,培养学识的动手能力。

  四、课时安排

  本学期共81课时

  1、不等式18课时

  2、直线与圆的方程25课时

  3、圆锥曲线20课时

  4、研究课18课时

高二数学教学计划15

  数学分析

  1。解析几何是利用代数方法来研究几何图形性质的一门学科,它包括平面解析几何和空间解析几何两部分。它的主要研究对象是直线和平面、二次曲线和二次曲面。在大学阶段,“解析几何”是以圆锥曲线和圆锥曲面为研究对象的一门学科,研究三元二次方程表示的曲线和曲面,如空间直线、平面、柱面、锥面、旋转曲面和二次曲面的方程等,研究的内容比较固定,研究方法比较成熟。高中阶段主要研究二元二次方程所表示的曲线,比如圆、椭圆、双曲线、抛物线等。

  2。“解析几何思想”代表了研究曲线和曲面的一般方法和手段,即用代数为工具解决几何问题。用解析几何的思想方法来研究几何问题,思维工程可以表现为以下步骤:第一,用代数的语言来描述几何图形,例如“点”可以用“数对”表示,“曲线”可以用“方程”表示等;第二,把几何问题转化为代数问题,例如,“两直线平行”可以转化为“两直线方程组成的方程组无解”等;第三,实施代数运算,求解代数问题;第四,将代数解转化为几何结论。随着数学本身的发展,出现了代数数论、代数几何等的数学分支,而拓扑学、泛函等代数工具都可以作为研究心得曲线和曲面的工具,这些都是“解析几何思想”的发展个推广。解析几何初步的重点是帮助学生理解解析几何的基本思想,即把代数作为一种工具和手段来研究几何问题。

  3。“坐标系”是解析几何思想的主要组成部分,因为建立了坐标系,就能把曲线和曲面的性质用代数来表示,从而把几何问题转化为代数问题来解决。适当地选择坐标系可以大大简化对图形性质的研究,但图形的性质不会竖着坐标系的`变化而改变。我们要研究的正是那些和坐标系的选择无关的性质;或者说建立坐标系正是为了摆脱图形对坐标系的依赖,这在对数上就表现为某个线性变换群下的不变量和不变关系。

  4。圆锥曲线是我们生活中最基本的图形。①圆锥曲线(面)可以帮助我们刻画一些基本的运动。例如,太阳系中,八大行星的运动轨迹都是椭圆。②光学性质和圆锥曲线是密不可分的,基本的光学性质都是由圆锥曲线体现出来的。例如,探照灯就是利用抛物面的光学性质制作而成的,它可以将点光源发出的光折射成平行光,照射到足够远的地方。几乎所有的光学仪器都是依照圆锥曲线(面)的性质制成的。③研究圆锥曲线(面)的性质时体现解析几何本质的最好载体,即便是在大学数学系的学习中,如何利用方程的系数确定二次曲线的形状,揭示其规律也是数学的经典内容。

  教育分析

  1。有助于学生数形结合思想的培养。

  解析几何的本质是用代数的方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。

  2。是培养学生运算能力的重要载体。

  运算思想是数学中最重要的思想之一。解析几何的.运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的几何结论,这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。

  课标解读

  1。整体定位

  “解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。

  “解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。

  2。具体要求

  (1)直线与方程

  ①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

  ②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

  ③能根据斜率判定两条直线平行或垂直;

  ④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

  ⑤能用解方程组的方法求两直线的交点坐标;

  ⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

  (2)圆与方程

  ①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;

  ②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;

  ③能用直线和圆的方程解决一些简单的问题。

  (3)在平面“解析几何初步”的学习过程中,体会用代数方法处理几何问题的思想。

  (4)空间直角坐标系

  ①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;

  ②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

  《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的`理解不能要求一步到位。

  3。课标解读

  (1)要注重知识的发生与发展的过程

  解析几何初步的教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。

  数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。

  比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。

  (2)在高中阶段,直线的斜率一般一般有三种表示方式

  ①用倾斜角的正切

  这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。

  这需要先引入0°到180°的正切函数的概念。

  ②用向量

  内容结构

  1。知识内容

  2。 章节安排

  本章教学时间约需18课时,具体分配如下:

  1 直线与直线的方程 8课时

  2 圆与圆的方程 5课时

  3 空间直角坐标系 3课时

【高二数学教学计划】相关文章:

高二数学教学计划01-09

高二数学教学计划02-25

高二数学教学计划(优)07-23

高二数学下教学计划06-22

(集合)高二数学教学计划06-22

高二数学教学计划(精)01-13

【优】高二数学教学计划07-05

【荐】高二数学教学计划12-24

高二数学教学计划【推荐】12-25

【精】高二数学教学计划12-26