高一数学教学计划

时间:2022-12-24 13:46:11 教学计划 我要投稿

高一数学教学计划集锦15篇

  日子如同白驹过隙,不经意间,我们的工作同时也在不断更新迭代中,是时候写一份详细的计划了。相信大家又在为写计划犯愁了吧?以下是小编整理的高一数学教学计划,欢迎阅读,希望大家能够喜欢。

高一数学教学计划集锦15篇

高一数学教学计划1

  一、基本情况分析

  任教153班与154班两个班,其中153班是文化班有男生51人,女生22人;154班是美术班有男生23人,女生21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。

  二、指导思想

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

  三、教学建议

  1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

  2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

  3、树立以学生为主体的`教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

  4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

  5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。

  6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。

  四、教研课题

  高中数学新课程新教法

  五。教学进度

  第一周 集 合

  第二周 函数及其表示

  第三周 函数的基本性质

  第四周 指数函数

  第五周 对数函数

  第六周 幂函数

  第七周 函数与方程

  第八周 函数的应用

  第九周 期中考试

  第十十一周 空间几何体

  第十二周 点,直线,面之间的位置关系

  第十三十四周 直线与平面平行与垂直的判定与性质

  第十五十六周 直线与方程

  第十八十九周 圆与方程

  第二十周 期末考试

高一数学教学计划2

  一、教学分析

  1、分析教材

  本章教材整体主要分成三大部分:

  (1)、圆的标准方程与一般方程;

  (2)、直线与圆、圆与圆的位置关系;

  (3)、空间直角坐标系以及空间两点间的距离公式。

  圆的方程是在前一章直线方程基础上引入的新的曲线方程,更进一步要求“数与形”结合。所以学习有关圆的方程时,仍仍然沿用直线方程中使用的坐标法,继续运用坐标法研究直线与圆、圆与圆的位置关系等几何问题。此外还要学习空间直角坐标系的有关知识,以便为今后用坐标法研究空间几何对象奠定基础。这些知识是进一步学习圆锥曲线方程、导数和积分的基础。

  2、分析学生

  高中一年级的学生还没有建立起比较好的数形结合的思想,前面学习过直线知识,只是使学生有了用坐标法研究问题的基本思路,通过圆的概念的引入及其现实生活中圆的例子,启发学生学习的兴趣及研究问题的方法,培养学生分析探索问题的能力,熟练的掌握解决解析几何问题的方法-坐标法,渗透数形结合的思想研究问题时抓住问题的本质,研究细致思考,规范得出解答,体现运动变化,对立统一的思想

  3、教学重点与难点

  重点:圆的标准方程与一般方程;利用直线与圆的方程判断直线与圆、圆与圆的位置关系;空间直角坐标系的基本认识。

  难点:直线与圆的方程的应用;会求解简单的直线与圆的相关曲线的方程;建立空间直角坐标系。

  二、教学目标

  1、掌握圆的定义和圆标准方程、一般方程的概念;能根据圆的方程求圆心和半径,初步掌握求圆的方程的方法。

  2、掌握直线与圆的位置关系的判定。

  3、在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的`过程中,提高学生学习能力。

  4、培养学生科学探索精神、审美观和理论联系实际思想。

  三、教学策略

  1、教学模式

  本节内容是运用“问题解决”课堂教学模式的一次尝试,采用探究、讨论的

  教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识和基本能力,培养积极探索和团结协作的科学精神。

  2、教学方法与手段--充分利用信息技术,合理整合课程资源

  采用探究、讨论的教学方法,通过问题激发学生求知欲采用多媒体技术,目的在于充分利用其优良的传播功能,大容量信息的呈现和生动形象的演示(尤其是动画效果)对提高学生学习兴趣、激活学生思维、加深概念理解有积极作用。制作中,采用交互技术,使课件的机动性得到加强。

  四、对内容安排的说明

  本章分三部分:圆的标准方程与一般方程;直线与圆、圆与圆的位置关系;空间直角坐标系。

  1、建立圆的方程是本节的主要内容之一。根据圆的几何特征(主要是动点与定点间距离恒定)建立适当的坐标系,再根据曲线上的点所满足的几何条件,求出点的坐标所满足的曲线方程。

  通过研究方程来研究曲线的性质是解析几何的另一个主要内容,这就是解析几何通过代数方法研究几何图形的特点,也就是坐标法。始终强调曲线方程与曲线图像之间的一一对应。这一思想应该贯穿于整个圆的教学。

  2.通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面着手:

  (1)。两条曲线有无公共点,等价于由它们方程联立的方程组有无实数解。方程组有几组实数解,这两条曲线就有几个公共点;方程组没有实数解,这两条曲线就没有公共点。

  (2)。运用平面几何知识,把直线与圆、圆与圆位置关系的结论转化为相应的代数结论。

  3、坐标法是研究几何问题的重要方法,在教学过程中,应该始终贯穿坐标法这一重要思想,不怕重复;通过坐标系,把点和坐标、曲线和方程联系起来,实现形和数的统一。

  用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果翻译成相应的几何结论。这就是用坐标法解决平面几何问题的“三步曲”:

  第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;

  第二步:通过代数运算,解决代数问题;

  第三步:把代数运算结果翻译成几何结论。

  五、教学评价

  ㈠过程性评价

  1、教学过程中,教师的讲解和学生的练习紧扣教学目标,内容深浅要分层次,设计的问题要照顾好、中、差。

  2、对于方程的推导运用的方法,学生理解起来难度较大,主要采用让学生理解的基础上进行检测反馈

  ㈡终结性评价

  1、课程内容全部结束后,让学生分组交流、讨论后,选代表谈收获、体会和感想。

  2、留课后作业(扣教学目标、分类型、分层次,落实学生为主体),让学生认真理解和巩固,了解圆的标准方程和一般方程,以及直线与圆位置关系,做完课后习题,做好作业。

高一数学教学计划3

  1、指点思惟:

  (1)跟着本质教导的深化睁开,《课程计划》提出了“教导要面向天下,面向将来,面向古代化”以及“教导必需为社会主义古代化建立效劳,必需与消费休息相分离,培育德、智、体等方面片面开展的社会主义奇迹的建立者以及接棒人”的指点思惟以及课程理念以及变革要点。使先生把握处置社会主义古代化建立以及进一步进修古代化迷信技能所需求的数学常识以及根本技艺。其内收留包含代数、多少、三角的根本观点、纪律以及它们反应进去的思惟办法,几率、统计的开端常识,较量争论机的运用等。

  (2)培育先生的逻辑思想才能、运算才能、空间设想才能,和综合使用无关数学常识剖析成绩息争决成绩的才能。使先生逐渐地学会察看、剖析、综合、比拟、笼统、归纳综合、探究以及立异的才能;使用归结、归纳以及类比的办法停止推理,并精确地、有层次地表白推理进程的才能。

  (3)依据数学的学科特色,增强进修目标性的教导,进步先生进修数学的盲目心以及兴味,培育先生杰出的进修习气,脚踏实地的迷信立场,固执的进修毅力以及自力考虑、探究立异的肉体。

  (4)使先生具备必定的数学视线,逐渐看法数学的迷信代价、使用代价以及文明代价,构成批驳性的思想习气,崇尚数学的`感性肉体,领会数学的美学意思,了解数学中遍及存正在着的活动、变革、互相联络以及互相转化的景象,从而进一步建立辩证唯心主义以及汗青唯心主义天下不雅。

  (5)学会经过搜集信息、处置数据、制造图象、剖析缘由、推出论断来处理实践成绩的思想办法以及操纵办法。

  (6)本学期是高一的紧张期间,教员承当着两重义务,既要不时夯实根底,增强综合才能的培育,又要浸透无关高考的思惟办法,为三年的进修做好预备。

  2、学情份析及相干办法:

  高一作为肇端年级,作为从任务教导阶段迈进本质教导征程的顺应阶段,该有的是一份固执。他的非凡性就正在于它的超过性,抱负的期盼与学法的渐变,难度的增强与惰性的天生等等冲突抵触随同着高一重生的生长,面临新课本的咱们也是边探索边改动,建立新的教授教养理念,并落真实讲堂教授教养的各个关键,才干没有负众看。咱们要从先生的看法程度以及实践才能动身,研讨先生的心思特点,做好初三与高一的跟尾任务,协助先生处理好从初中到高中进修办法的过渡。从高一同就留意培育先生杰出的数学思想办法,杰出的进修立场以及进修习气,以顺应高中贯通性的进修办法。详细办法以下:

  (1)留意研讨先生,做好初、高中进修办法的跟尾任务。

  (2)会合精神打好根底,分项打破难点.所列根底常识根据课程规范计划,着眼于根底常识与重点内收留,要充沛注重根底常识、根本技艺、根本办法的教授教养,为进一步的进修打好坚固的根底,切勿忙于过早的拔高,上困难。同时应放眼高中教授教养全局,留意高考命题中的常识请求,才能请求及新趋向,如许才干兼顾布置,按部就班,使高一的数学教授教养与高中教授教养的全局无机分离。.

  (3)培育先生解答考题的才能,经过例题,从方式以及内收留两方面临所学常识停止才能方面的剖析,领导先生理解数学需求哪些才能请求。

  (4)让先生经过单位测验,检测本人的实践使用才能,从而实时总结经历,找出缺乏,做好充沛的预备

  (5)抓好尖子生与落后生的教导任务,提早睁开数学奥竞提拔以及数学根底教导。

  (6)留意使用古代化教授教养手腕辅佐数学教授教养;留意使用投影仪、电脑软件等古代化教授教养手腕辅佐教授教养,进步讲堂服从,激起先生进修兴味。

高一数学教学计划4

  本学期我担任高一(3)、(4)两班的数学教学工作,两班学生共有138人。大部分学生初中的基础较差,整体水平不高。从上课两周来看,学生的学习进取性还比较高,爱问问题的学生比较多;但由于基础知识不太牢固,没有良好的学习习惯,自控本事较差,不能正确地定位自我;所以上课效率一般,教学工作有必须的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、教学质量目标

  (1)获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

  (2)培养学生的逻辑思维本事、运算本事、空间想象本事,以及综合运用有关数学知识分析问题和解决问题的本事。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的本事;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的本事。

  (3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4)使学生具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会经过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重职责,既要不断夯实基础,加强综合本事的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  二、教学目标、

  (一)情感目标

  (1)经过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

  (3)在探究基本函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时间和空间给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的`数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程法。

  (二)本事要求

  1、培养学生记忆本事。

  (1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (2)经过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆本事。

  2、培养学生的运算本事。

  (1)经过概率的训练,培养学生的运算本事。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。

  (3)经过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。

  (4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算本事。

  三、学情分析

  高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,梦想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,应对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际本事出发,研究学生的心理特征,做好初三与高一的衔接工作,帮忙学生解决好从初中到高中学习方法的过渡。从高一齐就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

  四、促进目标达成的重点工作及措施

  重点工作:

  认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要资料,坚持抓两头、带中间、整体推进,使每个学生的数学本事都得到提高和发展。

  分层推进措施

  1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

  2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、培养学生解答考题的本事,经过例题,从形式和资料两方应对所学知识进行本事方面的分析,引导学生了解数学需要哪些本事要求。

  4、让学生经过单元考试,检测自我的实际应用本事,从而及时总结经验,找出不足,做好充分的准备

  5、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

  6、加强培养学生的逻辑思维本事和解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育;同时重视数学应用意识及应用本事的培养。

  7、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不一样的教材资料选择不一样教法,提倡创新教学方法,把学生被动理解知识转化主动学习知识。

  8、注意研究学生,做好初、高中学习方法的衔接工作。集中精力打好基础,分项突破难点、所列基础知识依据课程标准设计,着眼于基础知识与重点资料,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,本事要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

高一数学教学计划5

  一、教材资料分析

  函数是高中数学的重要资料,函数的表示法是“函数及其表示”这一节的主要资料之一。学习函数的表示法,不仅仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的。同时,基于高中阶段所接触的许多函数均可用几种不一样的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。

  学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识。在本节中,从引进函数概念开始,就比较注重函数的不一样表示方法:解析法、图象法、列表法。函数的不一样表示法能丰富对函数的认识,帮忙理解抽象的函数概念。异常是在信息技术环境下,能够使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法。所以,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性。

  二、教学目标分析

  根据《普通高中数学课程标准》(实验)和新课改的理念,我从知识、本事和情感三个方面制订教学目标。

  1、明确函数的三种表示方法(图象法、列表法、解析法),经过具体的实例,了解简单的分段函数及其应用。

  2、经过解决实际问题的过程,在实际情境中能根据不一样的需要选择恰当的方法表示函数,发展学生思维本事。

  3、经过一些实际生活应用,让学生感受到学习函数表示的必要性;经过函数的解析式与图象的结合渗透数形结合思想。

  三、教学问题诊断分析

  (1)初中已经接触过函数的三种表示法:解析法、列表法和图象法、高中阶段重点是让学生在了解三种表示法各自优点的基础上,使学生会根据实际情境的需要选择恰当的表示方法。所以,教学中应当多给出一些具体问题,让学生在比较、选择函数模型表示方式的过程中,加深对函数概念的整体理解,而不再误以为函数都是能够写出解析式的。

  (2)分段函数很多存在,但比较繁琐。一方面,要加强用分段函数模型刻画实际问题的实践,另一方面,还能够经过动画模拟,让学生体验到,分段函数的问题应当分段解决,然后再综合。这也为下一步研究分段函数的单调性等性质打下伏笔。

  四、本节课的教法特点以及预期效果分析

  (一)、本节课的教法特点

  根据教学资料,结合学生的具体情景,我采用了学生自主探究和教师启发引导相结合的教学方式。在整个的教学过程中让学生尽可能地动手、动脑,调动学生进取性,充分地参与学习的全过程。倡导学生主动参与、乐于探究、勤于动手,逐步培养学生能够利用函数来处理信息的本事。

  (二)、本节课预期效果

  1、经过具体的实例,让学生体会函数三种表示法的优、缺点。

  创造问题情景这种情景的创设以具体事例出发,印象深刻。所以在引入时先从函数的三要素入手,强调要素之一对应关系,然后给出三个具体实例:

  (1)炮弹发射时,距离地面的高度随时间变化的情景;

  (2)用图表的`形式给出臭氧层空洞的面积与时间的关系;

  (3)恩格尔系数的变化情景。

  指出每种对应分别以怎样的形式展现。引出函数的表示方法这一课题。因为我们这节课的重点是让学生在实际情景中,会根据不一样的需要选择恰当的表示方法。会选择的前提是理解,这些完全靠学生的现实经验,让学生自我去发现各自的优劣。这为第一道例题打下基础。

  例1经过具体例子,让学生用三种不一样的表示方法来表示的同一个函数,进一步理解函数概念。把问题交给学生,学生独立完成,并自我检查发现问题,加深学生对三种表示法的深刻理解。学生思考函数表示法的规定。注意本例的设问,此处“”有三种含义,它能够是解析表达式,能够是图象,也能够是对应值表。

  由于这个函数的图象由一些离散的点组成,与以前学习过的一次函数、二次函数的图象是连续的曲线不一样。经过本例,进一步让学生感受到,函数概念中的对应关系、定义域、值域是一个整体、函数y=5x不一样于函数y=5x(x∈{1,2,3,4,5}),前者的图象是(连续的)直线,而后者是5个离散的点。由此认识到:“函数图象既能够是连续的曲线,也能够是直线、折线、离散的点,等等。”并明确:如何确定一个图形是否是函数图象方法

  2、让学生会根据不一样的实例选择恰当的方法表示函数

  例2用表格法表示了函数。要“对这三位运动员的成绩做一个分析”不太方便,所以需要改变函数表示的方法,选择图象法比较恰当。教学中,先不必直接把图象法告诉学生,能够让学生说说自我是如何分析的,选择了什么样的方法来表示这三个函数、经过比较各种不一样的表示方法,达成共识:用图象法比较好。培养学生根据实际需要选择恰当的函数表示法的本事。

  学生经过观察、思考获得结论、比如总体水平(朱启南成绩好)、变化趋势(刘天佑的成绩在逐步提高)、与运动员的平均分的比较,等等。培养学生的观察本事、获取有用信息的本事。同时要求学生注意图中的虚线不是函数图象的组成部分,之所以用虚线连接散点,主要是为了区分这三个函数,直观感受三个函数的图象具有整体性,也便于分析成绩情景,加以比较。

  3、经过具体的实例,了解分段函数及其表示

  生活中有很多能够用分段函数描述的实际问题,如出租车的计费、个人所得税纳税税额等等。经过例3的教学,让学生了解分段函数及其表示。为了便于学生理解,给出了实际情景的模拟。能够使函数在数与形两方面的结合得到更充分的表现,使学生经过函数的学习更好地体会数形结合的数学思想方法。

高一数学教学计划6

  本学期的措施及打算

  1.一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。

  2.落实“每周测试”过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。

  3.根据学生学力状况进行分层次的培优补差。

  三、教学进度安排

  周次学习内容目标要求

  1必修4 第一章三角函数:第1至3节周期,角的推广及表示,弧度制及互化

  2军训

  3第4节:正弦函数单位圆,正弦函数定义,象限符号,诱导公式,五点法画图像,图像及性质。

  4第5节:余弦函数,第6节正切函数余弦函数正切函数定义,象限符号,诱导公式,图像及性质

  5第7节: 的图像,第8节:同角的基本关系。图像变换规律,同角三角函数的基本关系及其运用。章节复习,章节过关测试。

  6第二章:平面向量:第1节至第2节向量,有向线段,向量的长及相等、平行、共线、单位向量等概念,向量的加减法运算

  7第3节至第5节数乘向量,基本定理,向量运算的巩固训练,平面向量的坐标表示及运算。数量积的应用。

  8第5节至第7节数量积的应用及坐标表示,向量应用举例。习题课,章节复习,章节过关测试。

  9第三章:三角恒等变换:第1节至第2节两角和差的公式得推导,记忆及灵活运用,二倍角公式得来源及运用。期中复习。

  10期中考试期中复习,期中考试。

  11第三章第3节:三角函数的简单应用试卷讲评改错,简单应用,三角恒等变换的'综合习题课,练习,章节复习,必修4基本测试。

  12“五。一”长假

  13必修3第一章:统计。第1节至第5节统计的程序,统计图,统计方案设计,普查与抽样,抽样方法,分层抽样与系统抽样,花统计图表及读统计图表,数字特征:平均数,中位数,众数,级差,方差的意义及计算分析,

  14第6节至第9节样本对总本的估计及相应的数字特征的计算分析,统计实践活动,变量的相关性及例题分析,最小二乘估计。章节复习,章节过关测试。

  15第二章:算法初步:第1节至第3节基本思想,基本结构及设计,排序问题。

  16第4节:几种基本语句条件语句,循环语句,复习三角函数的基本内容,章节复习,三角函数与算法初步过关测试。

  17第三章:概率:第1节至第2节频率,概率,古典概率,概率计算公式。

  18第2节至第3节建概率模型,互斥事件,习题课,章节复习,章节过关测试。

  19期末复习

  20期末复习,期末考试

高一数学教学计划7

  一.基本情况分析:

  1.学生情况分析:4个重点班的学生,基础比较好,学习积极性高.普通班学生在基础、学习习惯、学习自觉性等方面都有一定差距,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于强化基础知识,培养学生的计算能力,提高思维能力,争取每堂课教学一个知识点,掌握一个知识点。

  2.教材分析:本学期时间短,教学任务是必修4第二章,必修5,必修2涉及平面向量,解三角形,数列,空间几何体,点,线面的位置关系,直线与方程,圆与方程。

  二.工作要点及措施

  1、教案学案一体化继续探索适合我校学生实际的课堂教学模式,为发挥学生的主体作用,切实提高课堂效率,本学期推行三图四化的使用,基本操作办法是,提前一天把学案发给学生,让学生课前预习,即先自主学习,在课堂上,让学生充分活动,在教师的问题引导下,积极思考,同学之间认真讨论,确定问题的解决的方法途径和结论,教师在课堂上做好问题的引导和问题的变式,想方设法的激励学生思考问题,在学生回答问题后对学生进行肯定和鼓励。

  三图四化工厂的设计

  组内成员先自行设计出学案初稿,然后经备课组全体成员集体教研、讨论,确定学案的定稿。由于课型不同,学案的环节也相应存在着不同,但每个学案都应包括学习目标、学习重点、导学问题、学法指导、达标训练等环节,在设计中要把握问题的难度,在操作中低重心运行,为保证高考升学取得大面积丰收,教学要面向全体学生,教学要求要低一些,让后进生能接受,调动他们的学习积极性,促进后进生的转变,由此来督促中上等学生的学习。

  (1)学习目标的制定。学习目标要明确,学生能一目了然,切忌学习目标过多,让学生在课堂的开始就引起消极情绪。

  (2)导学问题的设计。导学问题的设计不是把课本所学知识变成问题然后简单逻列,而是根据教材的特点,学生的实际水平能力,联系社会现实问题,设计成不同层次的问题。问题的设计和问题的形式灵活多样,可以是问题式、简答式等等,根据学习内容的不同采用不同的形式。

  (3)学法指导。

  学法指导也就是学习方法、活动方式的指导及疑难问题的提示等。学生对每节课知识掌握的如何,学习方法的指导起到了关键作用。本环节的目的是让学生在平时的学习过程中随时掌握解决问题的方法,逐步由学会变为会学。

  (4)达标训练的设计。为了使学到的知识及时得到巩固、消化和吸收,进而转化为能力,要精心设计有阶梯性、层次性的达标训练,要注意此环节应面向全体学生,发展各类学生的潜能,让每个学生在每节课后都有收获,都有成就感。

  2、集体备课我们要克服以往集体备课中存在的问题,真正提高说课质量,使集体备课对每位教师尤其是新教师起到有效的指导和帮助作用,将集体备课落到实处。具体做法如下:

  (1)提前确定教学进度、中心发言人(详情见附表)及说课时间(每周五下午6、7节)。

  (2)中心发言人针对本年级学生实际情况,精心设计课堂结构,精选例题和作业,设计好学案,可以适当多选些题目,文科生在此基础上可进行适当删改(本学期在教学内容上文理没有什么差别),要注意低起点、多重复。说课时,要说透教材、教法、教学重点和难点,例题要说明选题意图,要有详细的解题过程、注意事项等,特别要在教学方法的改进上多下功夫,要从学生现有的认知水平出发,设想学生可能出现的种种问题及应对措施。作业要有针对性,层次性,既巩固课上的知识点、题型,又要有一定的思维延展性,使文理科的学生在作业上有一定的区分度,使学有余力的学生有一个锻炼、培养思维能力的平台。

  (3)每位教师在说课前都要做好准备,认真研究教材教法知道要说的是什么内容,包括哪些基础知识和基本题型,了解本部分内容涉及的数学思想方法,做完说课稿上的例题、习题、作业,对例题的讲解和其中蕴含的数学思想和解题技巧、计算技巧形成一个明确的认识,并写好初备提纲,以备说课时作出必要的补充和自己的见解。每位教师可以对说课稿进行补充,也可就初备中发现的问题提问,然后全组教师进行交流,以改进教法、增删例题和作业,使说课稿更加完善和实用。

  3、集体听评课为提高每位教师的教育教学水平,依据学校教学计划,青年教师每周听课1节,其他教师月至少2节。每周进行一次集体听评课活动(详情见附表)。评课时不仅要说优点,更要说不足和遗憾,提出意见和建议。当局者迷,这样做有利于授课教师认清自身存在的问题,以改进教学,这也是对授课教师负责任的一种表现。通过评他人的课,对比查找自己存在的问题,有利于改进教学。

  4、教案:要写明教学时间、课题、教学重点难点、教学方法、教学过程等。集体说课后,每位教师都要结合本班学生实际情况,精心设计课堂45分钟应如何分配到各个教学环节,要提问什么问题,提问谁,例题怎样分析,渗透什么思想方法。教学过程要有复习回顾、导入设计、师生活动、例题的分析、作业设计与小结等。每位教师上完课之后都要思考两个问题:我这节课上得如何?怎样上这节课更好、最好?并结合课堂上出现的各种情况,认真写好教学反思,或总结经验,或反思失误,或记录灵感,为今后教学和科研工作积累最实用的资料。

  5、上课要重视三图四化的应用,要用好学案,设计整个课堂的`教学环节;

  (1)我们要率先遵守课堂常规,及时到位候课,提醒学生做好上课的准备。上课过程中,语言要简洁生动,板书、解题、作图要规范严谨,不要出现知识性错误。身教胜于言教,我们怎样要求学生,就应比他们做地更好,用自身的行动为学生作好示范。

  (2)把主动权交给学生,多作主持人,少当播音员。学生能做的事,就交给学生做,不要好心办坏事。但必须指出,对于学生理解有困难、易混、易错的知识和题目,一定要多讲、讲透,千万不要为了形式上的留时间、留空间造成学生在知识和方法上出现漏洞。

  (3)针对学生存在的问题,继续加强对学生学习习惯的培养,包括如何记笔记,记什么;培养先复习再做作业的习惯;独立思考的习惯;遇到困难查教材、查笔记的习惯等。

  6、作业批改批改作业前,全组成员要校对答案,汇总解题方法。批改作业的基本要求是全批全改、及时准确。对错误较多的题目,认真分析原因,集中讲评,并督促他们改正;对学生书写、计算、作业整理方面存在的问题,要进行学法指导;认真书写评语,既要指出问题,又要多些鼓励

  7、坐班:全组教师严格遵守学校的坐班纪律,保持办公室的安静,搞好办公室的卫生,责任到人,全组教师共同努力,创设良好的办公环境,提高干事的效率。

高一数学教学计划8

  本学期担任高一xx两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的`数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教学目标:

  (一)情意目标

  (1)通过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

  (3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)能力要求培养学生记忆能力

  (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (2)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

  2、培养学生的运算能力

  (1)通过概率的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

高一数学教学计划9

  教材分析:

  解不等式是不等式学习的主要内容,是中学数学的一项重要技能。主要类型有:一元一次不等式或不等式组的解法,一元二次不等式或不等式组的解法。其中,一次不等式的解法是基础,初中已经学习,二次不等式是重点,也是学习的难点。作为数学重要的工具及方法,经常运用于其它数学知识之中。一元二次不等式的解法主要有二种,课本上介绍的是“数形结合”方法,这种方法将二次函数,二次方程结合为一体,并且借助“图形”直观地得出答案,充分展现了数学知识之间的内在联系,另外也展现了“数形结合”思想方法的巨大魅力。然而,个人认为,还有一种更加自然的方法,将二次不等式转化为一次不等式组的方法,这种方法思路自然,同时也体现了“转化”思想,难度也不大,应该更加符合学生的实际思维及思路。

  学情分析:

  初中已经学习了一元一次不等式(或组)的解法,积累了一定的解题经验。同时,对于二次方程,二次函数等相关知识学生均较为熟悉。然而,根据自己的调查,一少部分学生对于一元一次不等式及不等式组的解法都表现出一定程度的陌生。进而,可以先从复习简单的一次不等式及不等式组入手加以展开教学。

  学生心理方面,学习积极性较高,对数学的学习兴趣、信心也比较理想,有较强的学习动机——考上大学,尽管是外在的诱因。

  教学目标:

  ①知识与技能

  熟练掌握一元一次不等式及不等式组的解法,初步学会两种方法求出一元二次不等式的解集

  ②过程与方法

  经历不等式求解的探索及发现过程,体验“数形结合及转化”思想的魅力,掌握方法,学会学习

  ③情感、态度及价值观

  在上述过程中,体验成功,激发了对数学学习的兴趣及信心,发展了对数学学习的积极情感,增强了学习的内在动机

  教学重点:

  一元二次不等式的解法

  教学难点:

  解法的探索及发现,关键在于“识图能力”

  反思:

  今天的课堂,这个难点突破欠缺力量,主要缘于自己备课时对难点考虑不到位,进而缺乏必要的设计。在课堂上,就难点特别与个别差生进行了交流,并且给予了帮助及指导。在指导过程中,我找出了他们困难的二个环节:

  首先,对平面曲线上点的横坐标与纵座标之间的对应关系表现陌生,进而对它们的取值变化情况感到费解。

  其次,是差生的思维能力尚处于“经验思维”,辩证思维能力薄弱,进而对运动中的点的坐标取值范围只能是“一筹莫展”。

  在了解情况后,遵循“最近发展区”原理,以问题串的形式给差生提供必要的帮助后,差生也顺利度过了难关。由此足以说明,从知识的角度而言,“没有教不好的学生,只有不会教的教师:这句话还是相当有道理的。当然,这一切的前提就是对学生“学情”的掌握。美国著名心理学家、结构主义学派的代表人布鲁纳也有类似观点:给我一打健康的儿童,我可以教会他任何任何学科任何年龄段的任何知识。

  教学程序:

  一、复习一元一次不等式及不等式组的解法

  以题组形式设计习题

  ①2x+3>7

  ②不等式组

  ③ax>b

  二、创设二次不等式的生活背景实例,引入课题

  采用课本上的实例,有关网络收费问题

  三、一元二次不等式的解法探索

  (1)

  在教师的启发引导下,从特殊到一般,学生经历“转化”方法的探索及发现过程。

  由于这种方法课本没有给出,进而课堂上不作为重点,重在引导学生自行归纳、体验及总结“转化”思想,最后以课外思考题的形式设计相应习题。

  (2)

  采取启发式教学,师生共同经历“数形结合”方法的探索及发现过程,引导学生归纳出主要的解题步骤。今天的课堂上,这些解题步骤全部由学生的语言组织并完成,并撰写在黑板上,教师没有作任何干涉。我一直认为,只有学生自己亲身体验的知识才是有意义的知识,尽管这些知识不完整,语言或许不规范,思维或许不严密。

  之后,从特殊到一般,研究一般的二元一次不等式的`解法。由于经历了前面的解题过程,这个环节全部放手让学生完成,鼓励他们通过或独立或合作的方式解决学习任务,完成课本上的表格。

  反思:根据课堂反馈,二个班级大约有70%的同学能够胜任这个任务。于是,在大多数学生完成的基础上,我又进行了一次讲解,特别加强了对“识图”环节的讲解力度,力求突破难点。

  四、练习环节

  可以说,即使到了高三,仍然有不少同学对于一元二次不等式解法的困惑。因此,熟练掌握二次不等式的解法,既是重点,也是难点。从学习类型看,这节课显然属于技能课,对于技能的学习及掌握,关键是强化练习,“力求熟能生巧”,达到自动化的水平。

  课本上,配置了不少练习题。对于练习,我采取多种方式,或叫学生上黑板板书,借助学生练习规范解题格式;或者口答,说解题思路及答案;或者下面独立练习。

  五、课堂小结

  知识,思想、方法及感悟等

  六、课后作业

  ①作业设计:分成A、B两层,难度不一,让学生自主选择,均来源于课本上的A组或B组

  ②课外思考题:

  1比较两种解题方法即“转化及数形结合”方法的优劣,以及它们之间的异同

  2已知不等式mx^2-(m-2)x+m>0的解集为R,求m的取值范围

  变式一:戓将R改为空集,此时结论如何

  变式二:仿上,自己改编条件,并解之。

  反思:课外思考题的设计,可以提升课堂容量,深化课堂知识,提高课堂思维含量,为优生服务,发展学生的思维能力,激发他们的学习兴趣。同时,加强变式教学,可以充分拓展习题的潜在价值,期望实现“举一反三”的目标。

高一数学教学计划10

  平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形 。

  教学目标

  (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.

  (2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.

  (3)掌握直线方程各种形式之间的互化.

  (4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.

  (5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.

  (6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.

  教学建议

  1.教材分析

  (1)知识结构

  由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的'一般式;同时一般式也可以转化成特殊式.

  (2)重点、难点分析

  ①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.

  解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.

  直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.

  ②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.

  2.教法建议

  (1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.

  (2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习曲线方程打下基础.

  直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点

  (3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.

  (4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.

  求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.

  (5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).

  (6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.

  (7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.

  (8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.

高一数学教学计划11

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会提高的需要。具体目标如下。

  1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。

  2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。

  3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。

  4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。

  5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

  6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可理解性等到,具有如下特点:

  1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习活力。

  2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3、“科学性”与“思想性”:经过不一样数学资料的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维本事,培育理性精神。

  4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三、教法分析:

  1、选取与资料密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以到达培养其兴趣的'目的。

  2、经过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改善学生的学习方式。

  3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、学情分析:

  两个班均属普高班,学习情景良好,但学生自觉性差,自我控制本事弱,所以在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算本事太差,学生不喜欢去算题,嫌麻烦,只注重思路,所以在以后的教学中,重点在于培养学生的计算本事,同时要进一步提高其思维本事。

  同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些资料。所以时间上可能仍然吃紧。同时,其底子薄弱,所以在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。

  2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维本事就解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

  5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。

  6、重视数学应用意识及应用本事的培养。

高一数学教学计划12

  新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下

  一,指导思想

  加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。

  二,教材分析

  本册教材具有以下几个明显的特点:

  1。为学生的数学学习构筑起点

  教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。

  2,向学生提供现实,有趣,富有挑战性的学习素材

  教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。

  3,为学生提供探索,交流的时间与空间

  教科书依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的知识,建立符合个体认知特点的知识结构。

  4,展现数学知识的形成与应用过程

  教科书采用"问题情境—建立模型—解释,应用与拓展"的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。

  5,满足不同学生的发展需求

  教科书中"读一读"给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。

  三,教材的重点和难点

  本册教材从内容上看,教学重点是三角形和四边形的性质定理

  和判定定理的应用以及一元二次方程的`应用。教学难点是对反

  比例函数的理解及应用;用试验或模拟试验的方法估计一些复

  杂的随机时间发生的概率。

  四,教学措施:

  1,根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。

  2,加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对象的途径,促使他们更加乐意接近数学,更好地理解数学。

  3,关注学生的个体差异,有效的实施有差异的教学,使每个学生都能得到充分的发展。

  4,加强学生学习习惯的培养,主要培养学生的书写,认真分析问题的习惯。同时注意学习态度的培养。

  五,时间安排

  4月1日——4月20日一元二次方程

  5月16日——5月31日反比例函数

  6月1日——6月10日频率与概率

  6月11日——7月11日复习考试

  >高中数学教学计划10

  本学期我担任高一(5)、(16)班的数学教学工作,本学期的教学工作计划如下。

  一、指导思想:

  (1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

  (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

  (3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  二、学情分析及相关措施:

  高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

  (1)注意研究学生,做好初、高中学习方法的衔接工作。

  (2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。。

  (3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

  (4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

  (5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

  (6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

高一数学教学计划13

  一、高考要求

  ①了解映射的概念,理解函数的概念;

  ②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法;

  ③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;

  ④理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;

  ⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题.

  二、两点解读

  重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题.

  难点:①抽象函数性质的研究;②二次方程根的分布.

  三、课前训练

  1.函数的`定义域是 ( D )

  (A) (B) (C) (D)

  2.函数的反函数为 ( B )

  (A) (B)

  (C) (D)

  3.设则 .

  4.设,函数是增函数,则不等式的解集为 (2,3)

  四、典型例题

  例1 设,则的定义域为 ( )

  (A) (B)

  (C) (D)

  解:∵在中,由,得, ∴,

  ∴在中,.

  故选B

  例2 已知是上的减函数,那么a的取值范围是 ( )

  (A) (B) (C) (D)

  解:∵是上的减函数,当时,,∴;又当时,,∴,∴,且,解得:.∴综上,,故选C

  例3 函数对于任意实数满足条件,若,则

  解:∵函数对于任意实数满足条件,

  ∴,即的周期为4,

高一数学教学计划14

  教学目标:

  知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.

  过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.

  情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.

  教学重点:

  重点从五个具体幂函数中认识幂函数的一些性质.

  难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.

  教学程序与环节设计:

  材料一:幂函数定义及其图象.

  一般地,形如 的函数称为幂函数,其中 为常数.

  幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种形式定义的函数,引导学生注意辨析.

  下面我们举例学习这类函数的一些性质.

  作出下列函数的图象:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.

  定义域

  值域

  奇偶性

  单调性

  定点

  师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.

  师生共同分析,强调画图象易犯的错误.

  材料二:幂函数性质归纳.

  (1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);

  (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

  (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

  例1、求下列函数的定义域;

  例2、比较下列两个代数值的大小:

  [例3]讨论函数 的定义域、奇偶性,作出它的'图象,并根据图象说明函数的单调性.

  练习

  1.利用幂函数的性质,比较下列各题中两个幂的值的大小:

  2.作出函数 的图象,根据图象讨论这个函数有哪些性质,并给出证明.

  3.作出函数 和函数 的图象,求这两个函数的定义域和单调区间.

  4.用图象法解方程:

  1.如图所示,曲线是幂函数 在第一象限内的图象,已知 分别取 四个值,则相应图象依次为:.

  2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?

高一数学教学计划15

  一、指导思想

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

  二、教学建议

  1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

  2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

  3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

  4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

  5、落实课外活动的内容。组织和加强数学兴趣小组的'活动内容。

  三、教学内容

  第一章集合与函数概念

  1.通过实例,了解集合的含义,体会元素与集合的属于关系。

  2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

  3.理解集合之间包含与相等的含义,能识别给定集合的子集。

  4.在具体情境中,了解全集与空集的含义。

  5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

  6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

  7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

  8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

  9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

  10.通过具体实例,了解简单的分段函数,并能简单应用。

  11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

  12.学会运用函数图象理解和研究函数的性质。

  课时分配(14课时)

1.1.1集合的含义与表示约1课时9月1日
1.1.2集合间的基本关系约1课时9月4日 | | 9月12日
1.1.3集合的基本运算约2课时

小结与复习约1课时
1.2.1函数的概念约2课时
1.2.2函数的表示法约2课时9月13日 | | 9月25日
1.3.1单调性与最大(小)值约2课时
1.3.2奇偶性约1课时

小结与复习约2课时

  第二章基本初等函数(I)

  1.通过具体实例,了解指数函数模型的实际背景。

  2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

  3。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

  4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。

  5。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。

  6。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。

  7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

  课时分配(15课时)

2.1.1引言、指数与指数幂的运算约3课时9月27日30日
2.1.2指数函数及其性质约3课时10月8日10日
2.2.1对数与对数运算约3课时10月11日14日
2.2.2对数函数及其性质约3课时10月15日18日
2.3幂函数约1课时10月19日24日

小结约2课时

  第三章函数的应用

  1。结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

  根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

  2。利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

  3。收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

  4。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

  课时分配(8课时)

3.1.1方程的根与函数的零点约1课时10月25日
3.1.2用二分法求方程的近似解约2课时10月26日27日
3.2.1几类不同增长的函数模型约2课时10月30日 | 11月3日
3.2.2函数模型的应用实例约2课时

小结约1课时

  考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。