初二数学教学工作计划三篇
日子在弹指一挥间就毫无声息的流逝,我们又将迎来新的喜悦、新的收获,写一份计划,为接下来的学习做准备吧!那么你真正懂得怎么制定计划吗?以下是小编整理的初二数学教学工作计划4篇,欢迎大家借鉴与参考,希望对大家有所帮助。
初二数学教学工作计划 篇1
一、指导思想:
初中代数、几何是初中数学的重要组成部分,通过这两部分的教学,要使学生学会适应日常生活,参加生产和进一步学习所必须的代几何的基础知识与基本技能,进一步培养运算能力、思维能力和空间观念:能够运用所学的知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质及初步的辩证唯物主义的观点。
二、教学内容:(代数、几何共三章)
代数第八章:《因式分解》
代数第九章:《分式》
代数第十章:《数的开方》10.1开平方
几何第三章:《三角形》
几何第四章:《四边形》4.1四边形
三、情况分析:
本人本学期担任初二(2)、(3)两个班的数学教学工作。根据上学期的情况来分析学生的数学成绩并不理想,总体的水平较差、尖子生少、低分的学生非常多,而且学习欠缺勤奋。
根据上述情况本期的工作重点将扭转学生的学习态度,抓优扶差,同时强调对数学知识的灵活运用,反对死记硬背,以推动数学教学中学生素质的培养。
四、具体教学措施:
1、教材是教学质量的保证,是教学的基础设施。地教学中必须依纲靠本,以教学大纲为指导,以教材为依据钻研教材抓好重点。
2、在课堂中尽量充分调动学生的积极性,发挥学生的主体作用及教师的指导作用。
3、设计好的开头尽量以引趣的形式引入课题集中学生的`注意力,在课堂教学中以“练”为主。
4、要扭转学生的厌学现象。利用休息时间将对他们进行辅导,在平时的课堂中多给予提问,给后进生树立信心。
5、坚持因材施教原则,逐步实施分层教学,向基础不同的学生提出相应的要求,力求使中下生吃得上,中等生吃得下,优生吃得饱,即课堂练习、作业及要求等进行分层即课堂练习、作业及要求等进行分层。
6、课堂纪律是教学质量的保证。因此在课堂教学中将严抓课堂纪律使学生形成自学遵守纪律的习惯,要求他们上课专心听讲,积极发言,作业认真完成。
7、关心学生的学习、生活,利用课余时间多接触学生,与学生建立良好的师生关系,营造和谐的课堂气氛。
8、 在课堂教学中坚持循序渐进原则,正确组织课堂教学。
9、做好知识的衔接及章元过关工作。及时检查学生掌握知识的情况,进行查漏补缺。
10、使用多媒体教学,充分利用学校已有的教学条件与设备如投影机、小黑板等。
五、教学进度表:
周次
教学内容
重点、难点
节数
1至4
代数第八章《因式分解》
重点:是因式分解的四种方法:
难点:是综合运用各种方法分解因式;关键在掌握各种方法的特点
24
5至12
几何第三章《三角形》
重点:是三角形的性质与三角形的判定;难点:是推理论证。
35
10
期中检测
13至16
代数第九章《分式》
重点:是让学生熟练掌握分式的基础知识和基本技能;难点:是分式四则混合运算、分式议程的增根和验根、含有字母系数的一元一次议程的解法及分式方程的应用。
20
17
代数第十章《数的开方》
10.1平方根
重点:是平方根及算术平方根的求法;难点是算术平方根的概念。
6
18
几何第四章《四边形》
4.1 四边形
掌握四边形的概念
6
19至21
期末复习、考试
初二数学教学工作计划 篇2
教学目标:
(一)教学知识点
1.了解立方根的概念,会用根号表示一个数的立方根.
2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.
3.了解立方根的性质.
4.区分立方根与平方根的不同.
(二)能力训练要求
1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.
2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.
(三)情感与价值观要求
当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的`养成.
教学重点:
立方根的概念.
教学难点:
1.正确理解立方根的概念.
2.会求一个数的立方根.
3.区分立方根与平方根的不同之处.
教学方法:
类比学习法.
教学过程:
Ⅰ.新课导入
上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=± .
若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?
Ⅱ.新课讲解
1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?
.若x的平方等于a,则x叫a的平方根,记作x=± ,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=± ,读作x等于正、负三次根号a,简称x等于正、负根号a.
[师]请大家对这位同学的回答展开讨论,小组总结后选代表发言.
[生甲]我认为这位同学回答得不对.如果x2=a,则x=± ,x3=a时,x=± 也成立的话,那如何区分平方根与立方根呢?
[生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是±2,所以立方根的个数不正确.
[师]大家的分析非常有道理,请认真看书第13、14页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x= ,读作x等于三次根号a.
开立方的定义
[师]大家先回忆开平方的定义,再类推开立方的定义.
[生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.
(2)立方根的性质
[师]2的立方等于多少?是否有其他的数,它的立方也是8?
[生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.
[师]-3的立方等于多少?是否有其他的数,它的立方也是-27?
[生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.
[师]0的立方等于多少?0有几个立方根?
[生]0的立方等于0,0有1个立方根是0.
[师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?
[生]正数有一个立方根,0有一个立方根是0,负数有一个立方根.
[师]对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.
(3)平方根与立方根的区别与联系.
[师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.
[生]从定义来看,若一个数x的平方等于a,即x2=a,则x叫a的平方根;若一个数x的立方等于a,即x3=a,则x叫a的立方根,都是一个数x的乘方等于a,但一个是平方,另一个是立方.
[生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.
初二数学教学工作计划 篇3
在这秋高气爽的日子,我们又迎来了新的学期,本学期我代初二118、119两个班的数学,现制定本学期教学工作计划如下:
一、学生知识现状分析
经过一学年的学习,学生们已经适应了新的学习环境,对初中数学的数学思维和数学思想也已经有所领悟,但经过初一学年的学习和考试,我们发现学生的理解能力和运用所学知识分析、解决问题的能力都需要进一步培养和提高。
二、教材分析
本学期主要教学任务:数的开方、整式的乘除、勾股定理、平移和旋转、平行四边形的认识。
教材简单分析:八年级数学上册力求教学活动以学生为本,从实际问题情境入手,选择贴近学生实际生活的素材,使学生通过问题解决的过程,获得数学概念,掌握解决问题的技能和方法;同时也编排一些应用性、探索性和开放性的问题,调动学生的主动性,给学生留有充分的时间和空间,自主探索实践,从而促进学生数学思维能力、创造能力的培养和提高,为学生的终身可持续发展奠定良好的`基础
三、教材重难点:
1、平方根、算术平方根、立方根的概念,会用根号表示;会用计算器求一个非负数的算术平方根和任意一个数的立方根。
2、会用幂的运算法则、整式乘法公式、乘法公式进行计算;会用提公因式、公式法进行因式分解。
3、掌握勾股定理、其逆定理,会运用勾股定理和其逆定理解决相关的问题。
4、认识平移、旋转的概念,理解平移、旋转的基本特征和性质,并利用轴对称、平移和旋转进行设计简单的图案;了解图形全等的概念。
5、掌握平行四边形和特殊的平行四边形(矩形、菱形和正方形)的概念、性质,解决相关的问题;掌握梯形和等腰梯形的概念、性质,并解决一些简单的问题。
难点:培养学生分析问题、解决问题的综合能力。
四、教学措施
1、认真备课。设计好课堂活动,收集相关资料给学生更多的知识补充。
2、认真上好每一堂课,加强课堂教学的驾驭能力,精心选择好课堂练习。
3、虚心向老师请教,多听其他老师的课,吸收精华,提高教学质量。
4、科学组织好单元考试、期中考试,认真坐好评卷工作。
5、加强和班主任的沟通和联系,形成教育合力,努力做到因材施教。
五、教学目标
通过本学期的教学要使学生进一步感受数学学科的独特魅力和乐趣,感受到经历学生自主探索,培养学生学习数学的兴趣,培养学生探索数学知识的能力,培养学生分析问题和解决问题的能力,使每个学生都能学到有用的数学。
【初二数学教学工作计划】相关文章:
初二数学教学反思06-20
初二数学教学反思07-01
初二数学教学总结05-09
初二数学教学工作计划08-30
初二数学教学计划07-14
初二的数学教学计划02-02
(实用)初二数学教学反思07-07
(荐)初二数学教学反思07-07
数学初二教学计划06-23
初二数学教学计划02-29