九年级下册数学教学计划

时间:2024-07-18 02:17:50 教学计划 我要投稿
  • 相关推荐

【精华】九年级下册数学教学计划3篇

  人生天地之间,若白驹过隙,忽然而已,前方等待着我们的是新的机遇和挑战,我们要好好计划今后的学习,制定一份计划了。想学习拟定计划却不知道该请教谁?以下是小编为大家收集的九年级下册数学教学计划3篇,希望能够帮助到大家。

【精华】九年级下册数学教学计划3篇

九年级下册数学教学计划 篇1

  一、学情分析

  本学期我担任初三年级两个班的数学教学工作,经过上一学期的努力,很多学生在学习风气上有了较大的改变,学习积极性有所提高,也有不少学生自制能力较差,特别是到了最后一学期,有些学生对自己要求不严,甚至自暴自弃,这些都需要针对不同情况采取相应的措施,耐心教育,此外,面临中考阶段对学生要有总体的掌握,使之考出好成绩。

  二、教材分析

  本学期的内容只剩两章:圆与统计与概率。

  圆这一章的主要内容是圆的定义和性质,点、直线、圆与圆的位置关系,圆的切线,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,视图。本章设涉及的概念、定理较多,应弄清来龙去脉,准确理解和掌握概念和定理。垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题,以及根据三视图描述基本几何体或实物原型,是本章的难点。

  统计与概率这章有总体与样本、用样本估计这两节内容。统计是统计理论和应用的一项重要内容,其基本思想是通过部分估计全体。本章在介绍总体、个体、样本、样本容量的概念后,先后以百分比、平均数和方差为例,介绍了用样本估计总体的统计思想方法。

  除了这两章,还要复习初中数学教材其他的内容。

  三、教学目标

  1、知识与技能:理解点、直线、圆与圆的位置关系,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,三视图,掌握圆的切线及与圆有关的角等概念和计算。教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理的进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理,提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,掌握初中数学教材、数学学科“基本要求”的知识点。

  2、过程与方法:经历探索过程,让学生进一步体会数学来源与实践,又反应用于实践,通过探索、学习,使学生逐步学会正确、合理的进行运算,逐步学会观察、分析、综合、抽象、会用归纳、演绎、类比进行简单的推理,围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学主要内容进行专题复习,适时地进行分层教学,面向全体学生、培养学生、发展全体学生。

  3、情感目标及价值观:通过学习交流、合作、讨论的方式,积极探索,激发学生的学习兴趣,改进学生的学习方式,提高学习质量,逐步形成正确的教学价值观,使学生的情感得到发展。

  四、教学重与难点

  重点:

  圆这章中垂径定理及推论、圆的'切线的判定定理和性质定理是本章的重点。

  统计与概率这章的重点是用样本的某种特殊性来估计总体的统计思想方法。

  难点:

  垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题,以及根据三视图描述基本的几何体或实物原型。

  统计估计是用样本的某种特殊性来估计总体的统计思想方法。

  五、教学中要采取的措施

  1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划。

  2、认真上好每一堂课,抓住关键,分散难点,突出重点,在培养能力上下功夫。

  3、重视课后反思,及时将每一节课的得失记录下来,不断的积累教学经验。

  4、积极与其他老师沟通,提高教学水平。

  5、积极听取家长与学生良好的合理建议。

  6、以“两头”带“中间”的战略。

  7、注重教学中的自主学习、合作学习、探索学习等学习方法的引导。

  8、开展课内、课外活动,激发学生的学习兴趣。

九年级下册数学教学计划 篇2

  教学目标

  【知识与技能】

  使学生能利用描点法作出函数y=ax2+k的图象.

  【过程与方法】

  让学生经历二次函数y=ax2+k的性质探究的过程,理解二次函数y=ax2+k的性质及它与函数y=ax2的关系,培养学生观察、分析、猜测并归纳、解决问题的能力.

  【情感、态度与价值观】

  培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.

  重点难点

  【重点】

  会用描点法画出二次函数y=ax2+k的图象,理解二次函数y=ax2+k的性质,理解函数y=ax2+k与函数y=ax2的相互关系.

  【难点】

  正确理解二次函数y=ax2+k的性质,理解抛物线y=ax2+k与抛物线y=ax2的关系.

  教学过程

  一、问题引入

  1.二次函数y=2x2的图象是,它的开口向,顶点坐标是,对称轴是,在对称轴的左侧,y随x的增大而;在对称轴的右侧,y随x的增大而.函数y=ax2在x=时,取最值,其最值是.

  2.抛物线y=x2+1,y=x2-1的开口方向、对称轴和顶点坐标各是什么?

  3.抛物线y=x2+1,y=x2-1与抛物线y=x2有什么关系?

  二、新课教授

  问题1:对于前面提出的第2、3个问题,你将采取什么方法加以研究?

  (画出函数y=x2+1、y=x2-1和函数y=x2的图象,并加以比较.)

  问题2:你能在同一直角坐标系中画出函数y=x2+1与y=x2的图象吗?

  师生活动:

  学生回顾画二次函数图象的三个步骤,按照画图的步骤画出函数y=x2+1、y=x2的图象,观察、讨论并归纳.

  教师写出解题过程,与学生所画的图象进行比较,帮助学生纠正错误.

  解:(1)列表:

  x…-3-2-10123…

  y=x2…9410149…

  y=x2+1…105212510…

  (2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点.

  (3)连线:用光滑曲线顺次连接各点,得到函数y=x2和y=x2+1的图象.

  问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

  师生活动:

  教师引导学生观察上表并思考,当x依次取-3、-2、-1、0、1、2、3时,两个函数的函数值之间有什么关系?

  学生观察、讨论、归纳得:当自变量x取同一数值时,函数y=x2+1的函数值比函数y=x2的函数值大1.

  教师引导学生观察函数y=x2和函数y=x2+1的图象,先研究点(-1,1)和点(-1,2)、点(0,0)和点(0,1)、点(1,1)和点(1,2)的位置关系.

  学生观察、讨论、归纳得:反映在图象上,函数y=x2+1的图象上的点都是由函数y=x2的图象上的相应点向上移动了一个单位.

  问题4:函数y=x2+1和y=x2的图象有什么联系?

  学生由问题3的探索可以得到结论:函数y=x2+1的图象可以看成是将函数y=x2的图象向上平移一个单位得到的.

  问题5:现在你能回答前面提出的第2个问题了吗?

  生:函数y=x2+1与函数y=x2的图象开口方向相同、对称轴相同,但顶点坐标不同,函数y=x2的图象的顶点坐标是(0,0),而函数y=x2+1的图象的顶点坐标是(0,1).

  问题6:你能由函数y=x2+1的图象得到函数y=x2+1的一些性质吗?

  生:当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值是y=1.

  问题7:先在同一直角坐标系中画出函数y=2x2+1与函数y=2x2-1的图象,再作比较,说说它们有什么联系和区别.

  师生活动:

  教师在学生画函数图象的同时,巡视指导.学生动手画图,观察、讨论、归纳.

  解:先列表:

  x…-2-1.5-1-0.500.511.52…

  y=2x2+1…95.531.511.535.59…

  y=2x2-1…73.51-0.5-1-0.513.57…

  然后描点画图,得y=2x2+1,y=2x2-1的图象.

  教师让学生发表意见,归纳为:函数y=2x2+1与函数y=2x2-1的图象的开口方向、对称轴相同,但顶点坐标不同.函数y=2x2-1的图象可以看成是将函数y=2x2+1的图象向下平移两个单位得到的.

  问题8:你能说出函数y=x2-1的图象的开口方向、对称轴、顶点坐标以及这个函数的性质吗?

  师生活动:

  教师让学生观察y=x2-1的图象.

  学生动手画图,观察、讨论、归纳.

  学生分组讨论这个函数的性质,各组选派一名代表发言.最后归纳总结:函数y=x2-1的图象的开口向上,对称轴为y轴,顶点坐标是(0,-1);当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大;当x=0时,函数取得最小值,最小值为y=-1.

  三、巩固练习

  1.在同一直角坐标系中,画出函数y=x2、y=x2+2、y=x2-2的`图象.

  (1)填表:

  x… …

  y=x2… …

  y=x2+2… …

  y=x2-2… …

  (2)描点,连线:

  【答案】略

  2.观察第1题中所画的图象,并填空:

  (1)抛物线y=x2+2的开口方向是,对称轴是,顶点坐标是;抛物线y=x2+2是由抛物线y=x2向平移个单位长度得到的;

  (2)对于y=x2-2,当x0时,函数值y随x的增大而;当x0时,函数值y随x的增大而;

  (3)对于函数y=x2,当x=时,函数取最值,为.

  对于函数y=x2+2,当x=时,函数取最值,为.

  对于函数y=x2-2,当x=时,函数取最 值,为 .

  【答案】(1)向上 x=0 (0,2) 上 2 (2)增大 减小 (3)0 小 0 0 小 2 0 小 -2

  四、课堂小结

  1.函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到函数y=ax2+k的图象.

  2.抛物线y=ax2+k(a≠0)的性质.

  (1)抛物线y=ax2+k(a≠0)的对称轴是y轴,顶点坐标是(0,k).

  (2)当a0时,抛物线开口向上,并向上无限伸展;

  当a0时,抛物线开口向下,并向下无限伸展.

  (3)当a0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.这时,当x=0时,y有最小值k.

  当a0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.这时,当x=0时,y有最大值k.

  教学反思

  通过本节课的学习,学生做到了以下三个方面:首先,掌握函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当k0时)或向下(当k0时)平移|k|个单位就得到y=ax2+k的图象;其次,能够理解a、k对函数图象的影响,初步体会二次函数关系式与图象之间的联系,渗透数形结合的思想,为今后的学习打下良好的基础;最后,形成严谨的学习态度和求简的数学精神.

  以上就是数学网为大家整理的九年级下册数学教学计划:第6章第2节二次函数的图象和性质(2课时),怎么样,大家还满意吗?希望对大家有所帮助,同时也祝大家学习进步,考试顺利!

九年级下册数学教学计划 篇3

  本学期是初中学习的关键时期,教学任务非常艰巨,因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。下面特制定以下教学复习计划。

  一、学情分析

  经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,本班最大的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

  二、指导思想

  坚持贯彻党的十八大教育方针,继续深入开展新课程教学改革。立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

  三、教学内容分析

  本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

  在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。

  学生解题过程中存在的主要问题:

  (1)审题不清,不能正确理解题意;

  (2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;

  (3)对所学知识综合应用能力不够;

  (4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。

  四、教学目标

  态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

  知识与技能:理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的应用。掌握锐角三角函数有关的'计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。班级教学目标:中考优秀率达到30%,合格率:80%。

  五、采取的措施。

  1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划;

  2、认真上好每一堂课,抓住关键点,分散难点,突出重点,在培养能力上下工夫;

  3、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;

  4、加强学校教师与家长、社会的联系,共同努力提高学生的学习成绩;

  5、积极与其他教师沟通,加强教研教改,提高教学水平;

  6、经常听取学生良好的合理化建议;

  7、以“两头”带“中间”的战略不变;

  8、注重教学中的自主学习、合作学习、探究学习等学习方式的引导;

  9、认真开展课内、课外活动,激发学生的学习兴趣,工作计划《九年级数学下册教学计划》。

  10、抓好中招备考工作。认真研读中招数学的考试要求和近期的考试题目类型,设计好复习内容,让学生有针对性做好复习,迎接中招的到来。

【九年级下册数学教学计划】相关文章:

数学下册教学计划04-06

数学下册的教学计划01-07

数学下册教学计划04-30

小学数学下册教学计划05-25

关于数学下册教学计划12-29

数学下册教学计划15篇11-24

关于下册数学教学计划11-28

初二数学下册教学计划02-02

初三数学下册教学计划06-08

高三数学下册教学计划02-02