高二数学教学计划汇总10篇
时光飞逝,时间在慢慢推演,又迎来了一个全新的起点,现在就让我们好好地规划一下吧。如何把教学计划写出新花样呢?以下是小编为大家整理的高二数学教学计划10篇,欢迎大家借鉴与参考,希望对大家有所帮助。
高二数学教学计划 篇1
一.学情分析
高二5班共有学生73人, 8班共有学生70人。两个班级都是高二理科班的三类班,大部分学生基础不扎实,学习兴趣不高,甚至很多学生存在怕数学科的心理。但他们还是存在一颗想学好数学的心,也想融入变化多端的数学世界,更想在每次考试中独领风骚,鉴于此,对他们正确引导,教学中适当调整难度,起点放低点,步子迈小点,还是会有好成绩的。
二.教学计划
1.加强自身学习。
①加强课本的研读。教科书是一切教学的出发点,同时也是考试的归属地,任何一个数学知识点都会从教科书中找到类型题或者相似题或者其影子。对教科书能否吃透,专研到位,直接决定着教学知识的全面性和系统性。也就决定着研读教材的必要性。
②他山之石,可以攻玉。一个人由于生活的环境,面对的对象,自身知识局限等多方面原因,视野和出发点都有局限,思考问题和解决问题的广度和深度都有局限,因此,多阅读教学参考类的书,吸取他人的经验,借鉴他人所长弥补自己所短,对于增强教学的针对性和精彩性大有裨益。
③强化课改意识。新课改已经全面铺开,新课改的精神和思想都独具时代性,前瞻性,科学性,因此,加强新课改知识的学习,领悟新课改思想,增强新课改意识,是时代的需要,是发展的需要。因此,积极参与新课改培训,领会新课改精髓,并应用于实践中是当前必须要做的,只有这样,才能使自己的知识新陈代谢。
④认真参与组内备课。珍惜每周一次的集体备课,充分利用好这次集体备课机会,从同行们那里学习到自己缺乏或者不擅长的东西,并积极实施好组内的各项安排,落实好课时要求。
⑤增强听课的意识。按照学校的要求,积极参加新课改年级的'课堂听课活动,听取授课教师的点评,发现亮点,记录亮点,积累亮点,点亮亮点。
2.抓好课堂教学的主战场,激发师生学习数学热情。
①加强新课情景创设,激发学生学习热情。每一节新课的开展,都有其现实意义,有其价值所在,有其趣味性,充分挖掘好这方面知识,可起到一个良好的开端作用。
②精选精讲例题。对于学生自己学得会的,不讲,对于学生讨论后可以解决的,给以适当点拨,对于学生在老师引导下完成的,要慢慢讲,细细的讲,争取每个学生都听得进,听得懂,学得会。对于超越学生承受能力的,一概不讲。
③精心布置课后作业。课后作业是课堂教学的反馈,作业质量的高低,一定层面可以反映教学效果的高低,因此,作业的布置需要科学化,分层化,多样化,且知识点具有全面性。
3.做好课后辅导工作。
①利用晚自习是时间,充分给以每个学生耐心、细心、全面的辅导。让学生积累的问题得到彻底解决。
②利用自习课的时间,寻找需要帮助的学生进行辅导,公式背不出来的,抓背公式,不交作业的,责令补交作业。
4.做好作业、考试反馈工作。
学生认真完成作业和考卷,老师进行批改,总结共性问题,发现个性问题,有针对性的给以反馈,及时消除困惑。
5.规范作答,养成良好习惯。
现在学生的数学答卷,条理不清晰,逻辑混乱,因果颠倒,这是基础不扎实的表现,更是一种思维的缺陷。因此,现阶段抓好规范答题,有助于学生良好数学思维的养成,避免将来高考失分和日后生活的凌乱。
6.培养学生的数学兴趣,普及数学价值规律的应用。
兴趣是学生最好的老师。数学难,数学烦,难在何处,烦在何方?找到原因,对症下药,通过课堂,移植中外数学趣味知识,让学生体会到数学的价值所在,通过多媒体,降低数学思维难度等等都是提高学生兴趣的好方法。
以上是这个学期的教学工作计划,在实施过程中,将及时作出调整,以期达到教与学的最佳效果。
高二数学教学计划 篇2
一、指导思想:
在我校整体构建的和谐教学模式下,学生可以在九年义务教育数学课程的基础上,进一步提高作为未来公民的数学素养,以适应个人发展和社会进步的需要。具体目标如下。
1.获取必要的数学基础知识和技能,了解基本数学概念和结论的本质,了解概念和结论的背景和应用,了解其中包含的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习和探究活动,体验数学发现和创造的过程。
2.提高空间想象、抽象概括、推理论证、计算求解、数据处理等基本能力。
3.提高数学上提出问题、分析问题和解决问题(包括简单的实际问题)的能力,数学上表达和交流的能力,培养独立获取数学知识的能力。
4.培养数学应用和创新意识,努力思考和判断现实世界中包含的一些数学模型。
5.提高学习数学的兴趣,树立学好数学的信心,形成坚忍不拔的精神和科学的态度。
6.有一定的数学视野,逐渐了解数学的科学价值、应用价值和文化价值,形成批判性思维习惯,崇尚数学的理性精神,体验数学的审美意义,从而进一步树立辩证唯物主义和历史唯物主义的世界观。
二、教材的特点:
我们用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新的关系,体现基础、时代、典型性、可接受性等。并具有以下特征:
1.“亲和力”:以生动活泼的方式激发兴趣和美感,激发学习热情。
2.“问题”:用适时问题指导数学活动,培养问题意识,培养创新精神。
3.“科学”与“思想性”:通过不同数学内容的联系与启发,强调类比、通俗化、特殊化、转化等思想方法的应用,学会数学思维,提高数学思维能力,培养理性精神。
4.“时代性”和“适用性”:用具有时代性和现实感的材料创设情境,加强数学活动,培养应用意识。
三、教学方法分析:
1.选择内容典型、丰富、熟悉的材料,用生动活泼的语言,创造能反映数学、数学思想方法、数学应用的学习情境的概念和结论,让学生对数学产生亲切感,引发学生“看发生了什么”的冲动,以培养兴趣。
2.通过“观察”、“思考”、“探究”等栏目,可以激发学生的思考和探究活动,提高学生的学习效率
高一班学习不错,但是学生自我意识差,自控力弱,需要时不时提醒学生培养自我意识。上课最大的问题是计算能力差。学生不喜欢算题。他们只关注想法。因此,在未来的教学中,重点是培养学生的计算能力,进一步提高他们的思维能力。同时,由于初中课程改革,高中教材与初中教材衔接不够强,需要在新的教学时间补充一些内容。所以时间可能还是比较紧。同时它的基础比较薄弱,只能在教学中先注重基础再注重基础,力求每节课落实一个知识点,掌握一个知识点。
五.教学措施:
1.激发学生的'学习兴趣。通过数学活动、故事、吸引人的课堂、合理的要求、师生对话等方式,可以建立学生的学习信心,在主观行动下提高和提高学生的学习兴趣。
2.注意从实例出发,从感性走向理性;注意运用比较的方法反复比较相似的概念;注意结合直观的图形来说明抽象的知识;关注已有知识,启发学生思考。
3.加强学生逻辑思维能力的培养,就是解决实际问题,培养和提高学生的自学能力,养成善于分析问题的习惯,进行辩证唯物主义教育。
4.掌握公式的推导和内部联系;加强审查和检查工作;掌握典型例题的分析,讲解解题的关键和基本方法,注重提高学生分析问题的能力。
5.自始至终实施整体建设,和谐教学。
6.注重数学应用意识和能力的培养。
高二数学教学计划 篇3
一、指导思想:
贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的.终身学习、终身受益奠定良好的基础。
二.学情分析:
上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。
三.教学目的任务要求分析:
本学期教学的主要任务是数学选修2-2,2-3和学考复习。(1)认真把握“标准”的教学要求。(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。(3)关注现代信息技术的运用。(4)把握学考大纲复习标准
四、主要措施
1.明确一个观念:高考好才是真的好。平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。
2.以老师的精心备课与充满激情的教学,换取学生学习高效率。 3.将学校和教研组安排的有关工作落到实处。
高二数学教学计划 篇4
教学目标:
1、知识与技能
(1)了解算法的含义,体会算法的思想;
(2)能够用自然语言叙述算法;
(3)掌握正确的算法应满足的要求;
(4)会写出解线性方程(组)的算法;
(5)会写出一个求有限整数序列中的最大值的算法.
2、过程与方法
(1)通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法;
(2)同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法.
3、情感与价值观
通过本节的学习,对计算机的算法语言有一个基本的了解;明确算法的要求,认识到计算机是人类征服自然的一个有力工具,进一步提高探索、认识世界的能力.
教学重点、难点:
重点:算法的含义,解二元一次方程组、判断一个数为质数和利用“二分法”求方程近似解的算法设计.
难点:把自然语言转化为算法语言.
教学过程:
(一)创设情景、导入课题
问题1:把大象放入冰箱分几步?
第一步:把冰箱门打开;
第二步:把大象放进冰箱;
第三步:把冰箱门关上.
问题2:指出在家中烧开水的过程分几步?(略)
问题3:如何求一元二次方程 的解?
第一步:计算 ;
第二步:如果 ,
如果 ,方程无解
第三步:下结论.输出方程的根或无解的信息.
注意:在以上三个问题的求解过程中,老师要紧扣算法定义,带领学生总结,反复强调,使学生体会以下几点:
①有穷性:步骤是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。
②确定性:每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。
③逻辑性:从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。
④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。
⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。
注:其他还有输入性、输出性等特征,结论不固定.
提问:算法是如何定义?
(二)师生互动、讲解新课
x-2y=-1 ①
回顾(课本P2内容): 写出解二元一次方程组 2x y=1 ② 的算法.
解:第一步,②×2 ①,得5x=1;③
第二步,解③,得x= ;
第三步,②-①×2得5y=3;④
第四步,解④ ,得y= ;
第五步,得到方程组的解为 x= ;y= 。
思考1:你能写出求解一般的二元一次方程组的步骤吗?
上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法
对于一般的二元一次方程组 可以写出类似的求解步骤:
第一步,①×b2-②×b1,得 ;③
第二步,解③,得 .
第三步,②×a1-①×a2,得 ;④
第四步,解④,得 ;
第五步,得到方程组的解为
(高斯消去法)
思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?
思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.
你认为:
(1)这些步骤的个数是有限的还是无限的'?
(2)每个步骤是否有明确的计算任务?
总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.
算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.
广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算
法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.
(三)例题剖析,巩固提高
例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?
算法:
第一步,用2除7,得到余数1,所以2不能整除7.
第二步,用3除7,得到余数1,所以3不能整除7.
第三步,用4除7,得到余数3,所以4不能整除7.
第四步,用5除7,得到余数2,所以5不能整除7.
第五步,用6除7,得到余数1,所以6不能整除7.
因此,7是质数.
课堂练习1:
整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?
思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.
(1)用i表示2~88中的任意一个整数,并从2开始取数;
(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i 1替代,再执行同样的操作;
(3)这个操作一直进行到i取88为止.
你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?
算法设计:
第一步,令i=2;
第二步,用i除89,得到余数r;
第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i 1替代;
第四步,判断“i>88”是否成立?若是,则89是质
数,结束算法;否则,返回第二步.
探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?
在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的答案呢?
例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?
算法1:S1 首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。
S2 再确定每多一只小兔、减少一只小鸡增加的腿数2条。
S3 再根据缺的腿的条数确定小兔的数量: (48-34)/2=7只
S4 最后确定小鸡的数量:17-7=10只.
算法2:S1 首先设 只小鸡, 只小兔。
S2 再列方程组为:
S3 解方程组得:
S4 指出小鸡10只,小兔7只。
算法3:S1 首先设 只小鸡,则有 只小兔
S2 列方程
S3 解方程得 ,则
S4 指出小鸡10只,小兔7只.
算法4:S1 “请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿
S2 有小兔 只
S3 有小鸡 只
S4 指出小鸡10只,小兔7只.
算法5:S1 有小兔 只
S2 有小鸡 只
二分法:
对于区间[a,b ]上连续不断,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,而得到零点近似值的方法叫做二分法.
例3(课本P4例2):写
出用“二分法”求方程 的近似解的算法.
算法分析:
令f(x)= ,则方程 的解就是函数f(x)的零点.
第一步,令f(x)= ,给定精确度d.
第二步,确定区间[a,b],满足f(a)·f(b)<0.
第三步,取区间中点 .
第四步,若f(a)·f(m)<0,则含零点的区间为[a,m],否则,含零点的区间为[m,b].
将新得到的含零点的区间仍记为[a,b];
第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.
(四)课堂小结,巩固反思
1、算法的主要特点:
(1)有限性:一个算法在执行有限步后必须结束;
(2)确切性:算法的每一个步骤和次序必须是确定的;
(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.
(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.
2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果.设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:
(1)符合运算规则,计算机能操作;
(2)每个步骤都有一个明确的计算任务;
(3)对重复操作步骤作返回处理;
(4)步骤个数尽可能少;
(5)每个步骤的语言描述要准确、简明.
高二数学教学计划 篇5
一、学情分析:
本学期我负责的是1班和6班的数学教学工作,这两个班级共有学生78人。6班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣。
二、教材分析:
1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。
2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。
3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并通过分析标准方程研究它们的性质。
三、教学的重点与难点:
(一)重点
1、不等式的证明、解法。
2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。
3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。
(二)难点
1、含绝对值不等式的解法,不等式的证明。
2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。
3、用坐标法研究几何问题,求曲线方程的一般方法。
四、教学目标:
(一)情意目标
(1)通过分析问题的方法的教学、通过不等式的'一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。
(2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。
(3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程的幻妙多姿
(二)能力要求
1、培养学生记忆能力。
(1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。
(2)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过解不等式及不等式组的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。 (3)通过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。 (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。 (5)利用数形结合,另辟蹊径,提高学生运算能力。
3、培养学生的思维能力。
(1)通过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。
(2)通过解析几何与不等式的一题多解、多题一解、通过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)通过不等式引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的能力。
(5)通过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。
(6)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
4、培养学生的观察能力。
(1)在比较鉴别中,提高观察的准确性和完整性。
(2)通过对个性特征的分析研究,提高观察的深刻性。
(三)知识要求
1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;
2、通过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。
3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。
五、教学措施:
1、积极参加与组织集体备课,共同研究,努力提高授课质量
2、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。
3、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。
4、加强数学研究课的教学研究指导,培养学识的动手能力。
5、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。
6、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。
7、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以“发现式教学模式”为主的教学方法,全面提高教学质量。
六、课时安排:
本学期共81课时
1、不等式18课时
2、直线与圆的方程25课时
3、圆锥曲线20课时
4、研究课18课时。
高二数学教学计划 篇6
一、学生基本情况
X班共有学生56人,X班共有学生60人。X班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩没有尖子生,成绩特差的学生有4人,但若能杂实复习好函数部分,加上学生有很努力,将来前途无量。X班的学生学习气氛不及X班,但是有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,特差生比X班要少,此班若能好好的引导,进一步培养他们的学习兴趣,将来一定能赶超X班。但本期新课只有32课时,可以有充足的时间提前仅行高考复习
二、教学要求
(一)知识要求
1.1理解复数及其有关的概念。掌握复数的代数、几何、三角表示及其转换。
1.2掌握复数的运算法则,能正确的进行复数的运算,边理解复数运算的几何意义。
1.3掌握在复数集中解实系数一元二次方程和二次方程的方法。
2.1掌握加法原理及乘法原理、并能用这两个原理分析和解决一些简单的问题。
2.2理解排列、组合的意义,掌握排列数的计算公式和组合数的性质,并能用它们解决一些简单问题。
2.3掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题。
3.1掌握圆锥曲线的标准方程及其几何性质,会根据所给的条件化圆锥曲线。
3.2理解坐标变换的意义,掌握利用坐标轴平移化简圆锥曲线方程的方法。
3.3掌握弦问题求解方法。
(二)能力要求
1、培养学生的观察力和数学记忆力。
2、培养学生数学化的能力。
3、培养学生的思维能力。
4、培养学生的想象能力。
三、教材简要分析
1、解析几何这一章是高考的重点。必须打下扎实的基础。
2、复数的三角形式,是“三角”与复数的'有机结合。
3、复数的几何意义有益于培养学生的数形结合的能力。
4、排列组合二项式定理高考分数不多,但是也是难点。由于实际运用相当广泛,高考要求提高,不容忽视。
四、重点与难点
1、复数的三角形式、代数形式、几何形式、复数的几何意义是重点。
2、复数的辐角与辐角主值、复数的减法的几何意义、两非零向量相等的条件,复数的开方是难点。
3、排列组合综合问题、二项式系数的性质及运用是重点。
4、排列组合综合问题及如何区分排列与组合是难点。
5、轨迹问题是教学的重点与难点.
五、教学措施
1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。
2、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。
3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以“五段发现式教学”模式为主的教学方法,全面提高教学质量。
4、积极参加与组织集体备课,共同研究,努力提高授课质量
5、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。
6、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。
六、课时安排
1、复数共26课时
2、排列组合二项式定理16课时
3、函数32课时
4、参数方程与极坐标10课时
高二数学教学计划 篇7
一、指导思想:
为进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、 教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、 教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的`亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、 学情分析:
1、基本情况:高二(1) 班共50 人,男生36 人,女生14 人;本班相对而言,数学尖子约13 人,中上等生约23 人,中等生约6 人,中下生约6人,后进生约 2 人。
高二(2) 班共49 人,男生37 人,女生12 人;本班相对而言,数学尖子约0人,中上等生约7人,中等生约8人,中下生约22人,后进生约12人。
2、(1)班学生学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
五、教学要求:
1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。
2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点。
3、(理)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
4、理解复数相等的充要条件;了解复数的代数表示法及其几何意义;会进行复数代数形式的四则运算;了解复数代数形式的加、减运算的几何意义。
5、(理)理解分类加法计数原理和分类乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题;理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。
6、(理)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。
7、了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题:了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用;了解假设检验的基本思想、方法及其简单应用;了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用。
9、了解程序框图;了解工序流程图(即统筹图);能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;了解结构图;会运用结构图梳理已学过的知识、整理收集到的资料信息。
8、所有考生都学习选修4-4 坐标系与参数方程,理科考生还需学习选修4-5不等式选讲这部分专题内容。
六、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
七、教学进度安排(略)
高二数学教学计划 篇8
一、指导思想
在学校和数学小组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”“五严”。在有限的时间内,学生可以获得必要的基本数学知识和技能,同时可以提高数学能力,从而为未来的发展奠定坚实的数学基础。
二、教学措施
1.以能力为中心,以基础为基础,调整学生的学习习惯,激发学生的学习热情,使学生在学习中获得成功
3、脚踏实地做好实施工作。内容和消化当天,加强检查和实施每日和每月的通关演习。每周练习,每次考试一章。通过每周一次的练习,突破一些重点和难点,在考试的每一章检查差距和填空,考完试再对每一章的不足之处进行点评。
4、周练章考,认真把握试题选择,认真把握高考脉搏,注重基础知识的考查,注重能力的考查,注重思维的层次性(即解题的多样性),及时引入一些新题型,加强应用题的考察。每次考试都坚持集体研究,努力提高考试效率。
5.注意所选的例子和练习:
6.精心规划合理安排,根据数学的特点,注重知识和能力的.提高,增强综合解题能力,加强解题教学,使学生提高解题探究能力。
7.从“贴近教材、贴近学生、贴近实际”的角度,选择典型的数学与生活、生产、环境、科技等方面的问题联系起来,有计划、有针对性地培养学生,给学生更多锻炼各种能力的机会,从而达到提高学生数学综合能力的目的。基础扎实的学生,不脱离基础知识,能力未必强。基础知识在教学中不断应用于解决数学问题。
三、对自己的要求——实施各方面的教学
1.认真教每一节课
备课时要从实际出发,精心设计每节课,分工协作,用集体智慧制作课件,充分运用现代教育手段服务教学,45分钟内提高课堂效率。
2.严格控制考试,认真做好每次复习资料和练习
教材要要求学生根据教学进度完成相应的练习,教师要给予检查和必要的点评,教师要提前指出自己没有做的问题,以免影响学生的学习。三类习题(大习题、限时训练、月考)试题制作分工落实到每个人(月考试卷由备考组制作,大习题、限时训练试卷由其他老师制作),经组长严格把关后才能使用。
注重考试质量和试卷分析,定期组织备考组老师分析学习情况,发现问题,找到对策,及时解决,确保学生学习积极性不断提高。
3.做好批改作业,加强疏导
高二数学教学计划 篇9
周次 | 内容 | 课时 | 备注 |
第1周 (2月29日3月4日) | 第一章常用逻辑用语 1.1命题及其关系 | 2 | 政治学习三天 |
第2周 (3月7日3月11日) | 1.2充分条件与必要条件 1.3简单逻辑联结词 1.4全称量词与存在量词 小结 | 2 2 1 1 | |
第3周 (3月14日3月18日) | 单元小测 第二章圆锥曲线与方程 2.1曲线与方程 2.2椭圆 2.3双曲线 | 1 1 3 1 | |
第4周 (3月21日3月25日) | 2.3双曲线 2.4抛物线 | 2 4 | |
第5周 (3月28日4月1日) | 小结 单元小测 第三章空间向量与立体几何 3.1空间向量及其运算 | 1 1 4 | |
第6周 (4月4日4月8日) | 3.1空间向量及其运算 3.2立体几何中的向量方法 | 2 4 | 清明节 休一天 |
第7周 (4月11日4月15日) | 3.2立体几何中的向量方法 小结 单元小测 第一章导数及其应用 1.1变化率与导数 1.2导数的计算 | 1 1 1 2 1 | |
第8周 (4月18日4月22日) | 1.2导数的计算 期中考试 | 3 3 | |
第9周 (4月25日4月29日) | 1.3导数在研究函数中的应用 1.4生活中的优化问题举例 1.5定积分的概念 | 2 3 1 | |
第10周 (5月2日5月6日) | 1.6微积分基本定理 1.7定积分的.简单应用 小结 单元小测 | 2 2 1 1 | 五一 |
第11周 (5月9日5月13日) | 第二章推理与证明 2.1合情推理与演绎推理 2.2直接证明与间接证明 | 3 3 | |
第12周 (5月16日5月20日) | 2.3数学归纳法 第三章数系的扩充与复数的引入 3.1数系的扩充与复数的概念 3.2复数代数形式的四则运算 | 2 2 2 | |
第13周 (5月23日5月27日) | 第一章计数原理 1.1分类加法计数原理与 分布乘法计数原理 1.2排列与组合 | 2 4 | |
第14周 (5月30日6月3日) | 1.3二项式定理 2.1离散型随机变量及其分布列 | 3 3 | |
第15周 (6月6日6月10日) | 2.2二项分布及其应用 2.3离散型随机变量的均值与方差 2.4正态分布 | 2 3 1 | |
第16周 (6月13日6月17日) | 复习考试 | 6 | |
第17周 (6月20日6月24日) | 期末考试 | ||
第18周 (6月27日7月1日) | 成绩分析 |
高二数学教学计划 篇10
一、教材分析
1.算法章节:
新课标中算法内容的引入,是适应信息技术高速发展的需要,算法体现了通用化、机械化、程序化等特点,在算法教学中的几点建议如下:
(1)同时走好算法表示的三条路,即自然语言、程序框图、算法语句.在教学中,可以结合具体的算法实例,分析用自然语言表示算法的步骤,绘制相应算法的程序框图,并编写相应框图的算法程序.注意三条途径的目的都是体会其中的算法思想.
(2)剖析清楚教材中的几例典型算法实例.例如解一元二次方程、二元一次方程组,质数的判定,按大小顺序输出三个数,1~100的累加,二分法求方程近似解,分段函数的求值等.
(3)学习程序框图时,先结合一个流程图的实例,认知基本的程序框及功能,并分析出其中的逻辑结构.各种逻辑结构(顺序结构、条件结构、当循环结构、直到循环结构)的学习,都应当配合一个具体的例子来逐步分析,特别是循环结构,要一次次循环进行分析,让学生彻底理解框图的功能,提高逻辑思维能力.
(4)可以根据实际情况调整教材中框图的实例.我们在教学中,感觉必修③第5页的框图引例的理解有一定难度,从而结合前面所练的自然语言表示的算法,用框图表示出来,让学生认知框图符号与逻辑结构.参考的算法实例如下:
例1任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积;(教材P4)
例2任意给定一个正整数n,试设计一个算法判断n是否为偶数;(教材P3例1改编)
例3设计一个计算1 2 … 100的值的算法.(教材P9例5提前)
(5)大胆试验,程序框图与算法语句同步教学.我们在分析顺序结构的框图时,讲授算法语句中的输入语句INPUT、输出语句PRINT和赋值语句.在分析条件结构框图时,讲授条件语句,即IF-THEN语句.在分析两种循环结构的框图时,讲授两类循环语句,即WHILE语句与UNTIL语句.每种类型的语句,都配以相应的程序框图进行流程分析,强调语句的格式及功能,结合几个典型实例进行算法分析、框图设计、程序编写等,三者的配合训练,才能更好地加强、巩固算法知识.
(6)典型算法案例(辗转相除法与更相减损术、秦久韶算法、进位制)的学习,都必须奠基在其历史背景之上,讲清楚具体的解题步骤,剖析如此解题的原理,在熟练解题的基础上,再结合框图或语句,从算法思维的角度进行分析.
2.统计章节:
统计是研究如何收集、整理、分析数据的科学.必修③第二章的学习过程,实质就是学习如何逐步解决一个实际问题,我们先认识随机抽样的重要性,并掌握随机抽样的三种类型,通过科学的抽样得到样本,进一步研究如何用样本的频率分布去估计总体分布,又如何用样本的数
字特征估计总体的数字特征.在样本数据的分析过程中,发现一些变量之间有一定的规律,例如两个变量的线性相关等.
统计部分的教学,我们需遵循以上认知规律,密切联系现实生活来渗透统计方法与思想,强化抽样方法的步骤及区别、频率分布直方图的五步曲(极差→组距→分组→列表→画图)、数字特征(众数、中位数、平均数、标准差、方差)的计算、线性回归中的数形结合思想及计算器的配合使用.教学中重点训练的一些题型是:关于分层抽样的数字客观题、频率分布直方图的研究、标准差与方差的实际应用、线性回归模型的求解等.
3.概率章节:
概率是研究随机现象规律性的科学.对比大纲教材,课标教材在概率部分有较大的区别.在必修③概率一章中,利用随机事件的频率给出概率的定义,并学习概率的基本性质及两个概率模型(古典概型、几何概型).我们在教学中需注意如下几个方面:
(1)坚决不补充排列与组合.必修③概率的计算,不是建立在排列组合的计数基础上,而是通过逐一列举来进行计数,或者由简单的分类加法计数方法及分步乘法计数方法来进行计数,两种计数方法也不必上升到计数原理的.学习,结合简单的实例渗透计数方法的学习即可.补充排列与组合,违背了课标的精神,淡化了概率思想,也加重了学生的学习负担.排列与组合只是选修2-3的内容,以后选修文科的学生根本不学,概率的学习只是要求达到必修③概率一章的水平.
(2)强调概率意义的理解.教材中呈现了广泛的实例,例如购彩票中奖的可能性、游戏的公平性、决策中的概率思想、天气预报的概率解释、生物试验中的发现、遗传机理中的统计规律等,通过这些实例阐述了概率的意义,这部分内容往往却被教师轻描淡写的一带而过.我们在教学中,应当认真剖析这些实例,让概率的意义在学生脑海中根深蒂固,从而激发学生进一步学习概率知识的欲望.
(3)在古典概型的基础上,类比学习几何概型.可以从模型特征的共同点与不同点,计算公式及求解步骤等方面进行比较.特别注意古典概型的计算是以简单计数为基础,几何概型的计算则需运用数形结合思想.
本章教学中,重点训练的一些题型是:由概率性质进行概率计算、古典概型的概率计算、几何概型的概率计算.常常融合的实际背景是抛掷硬币、摸球、质检、会面等,渗透的数学思想则以分类讨论思想、数形结合思想为主.
二、任教班级学情分析
12班虽是理科重点班,但数学成绩仍很差,分班数学成绩仅86分(满分150)
全班48人,男生31人,女生17.
三、教学工作目标
尽力提高学生的数学学习能力
四、教学进度
安排
本期教学任务:理科:必修三、选修2—1;
【高二数学教学计划】相关文章:
高二数学教学计划10-27
高二数学教学计划01-09
【荐】高二数学教学计划05-10
高二数学教学计划【精】09-06
高二数学教学计划【推荐】08-12
高二数学教学计划【荐】09-04
【热门】高二数学教学计划10-25
【热】高二数学教学计划08-31
【优】高二数学教学计划07-05
高二数学教学计划(精)01-13