高三上学期数学教学计划

时间:2024-10-16 18:39:21 教学计划 我要投稿
  • 相关推荐

有关高三上学期数学教学计划三篇

  时间一晃而过,我们的教学工作又将在忙碌中充实着,在喜悦中收获着,现在就让我们好好地规划一下吧。那么一份同事都拍手称赞的教学计划是什么样的呢?下面是小编整理的高三上学期数学教学计划3篇,希望对大家有所帮助。

有关高三上学期数学教学计划三篇

高三上学期数学教学计划 篇1

  一、总的情况

  执教高三189、191两个理科班,总人数115人。189班学习习惯不好,边缘生特别多;优生少且普遍基础不好,习惯差,学习主动性不强;191班一些学生成绩极不稳定,191班培尖任务艰巨。

  二、指导思想

  研究新教材,了解新的信息,更新观念,倡导理性思维,重视多元联系,探求新的教学模式,加强教改力度,注重团结协作,全面贯彻党的教育方针,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。

  三、教学设想

  ㈠总的原则

  1、认真研读20xx数学考试大纲及湖南省考试说明的说明,做到宏观把握,微观掌握,注意高考热点,特别注意长沙的信息。根据样卷把握第二、三轮复习的整体难度。

  2、不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路。

  3、立足基础,不做数学考试大纲以外的东西。精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试大纲的范围和要求。不选做那些有孤僻怪诞特点、内容和思路的题目。利用历年的高考数学试题作为复习资源,要按照新教材以及考试大纲的要求,进行有针对性的训练。严格控制选题和做题难度,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目。

  ㈡.体现数学学科特点,注重知识能力的提高,提升综合解题能力

  1、加强解题教学,使学生在解题探究中提高能力。

  2、注重联系实际,要从解决数学实际问题的角度提升学生的综合能力。

  不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。

  多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。

  ㈢合理安排复习中讲、练、评、辅的时间

  1、精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战”

  2、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果

  3、注重实效,努力提高复习教学的效率和效益

  ㈣改变传统复习模式,体现小组交流合作

  1、淡化各自为战,加强备课小组交流合作,资源共享。

  2、坚持学生主题,教师主导。

  3、更新教学手段,提高复习效率

  (1)用电脑多媒体技术辅助数学复习教学,提高课堂教学效率。

  (2)利用电脑课件和积件,突破教学难点。

  4.注重学法指导及心理辅导

  (1)及时向学生介绍学习方法和学习策略,及时收集教学过程中反馈信息并弥补学生的不足。

  (2)针对不同学生的实际水平,合理安排教学难度,有利于学生成功情感体验,促进其提高。

  (3)加强边缘生的个别辅导。A类边缘生采用各个击破,B类边缘生抓基础,促能力,A类边缘生注意备课组集体研究,个别指导;B类边缘生手把手的教,主要课堂重点关注,课后重点辅导。㈤第二、三轮复习穿插进行

  四、教学重点

  1、数学思想方法

  2、教材的重点、高考的热点

  3、依据新大纲、夯实基础,突出新增内容,新课程增加内容中的向量、概率以及概率与统计、导数等的教学。函数,解析几何,立体几何,数列仍是重点。

  4、注意以单元块的纵向复习为主到综合性横向发展为主。

  从数和形的角度观察事物,提出有数学特点的问题,注重知识间的内在联系与综合。

  注意知识的交叉点和结合点。

  五、教学措施

  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

  2、坚持集体备课,加强学习,多听课,探索第二轮复习的教学模式。

  3、脚踏实地抓落实

  (1)当日内容,当日消化,加强每天必要的练习检查督促。

  (2)坚持每周一次小题训练,每周一次综合训练。

  (3)周练与综合训练,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。

  ①注意研究高考考试说明,及20xx年高考试题,特别是湖南省的高考试题。我们要想尽一切办法,搞到长沙市的考试试题,特别是平时的练习题,进行研究。

  ②在综合练习中,不缩小考试难度,既注意重点知识的考查,注重对数学思想和方法的考查。

  ③在综合练习中注意实践能力的考查,要求学生能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题;能阅读、理解对问题进行陈述的材料;能够对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述、说明.

  ④在综合练习中注意创新意识的考查:要求学生能对新颖的信息、情境和设问,选择有效的方法和手段收集信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.

  ⑤在综合练习中注意个性品质要求的考查:要求学生能具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.

  4、加强备课组的协作,发挥集体智慧

  各备课组成员要心往一处想,劲往一处使,针对复习中存在的突出问题,加强集体备课,共同研究寻找对策,加强互相交流,互相学习,精选好每一次周练,精心筛选各类高考信息,加强研究讨论,加强合作,发挥每一位老师的特长。

  5、加强应试心理的指导

  为学生减压,开启他们心灵之窗,使他们保持最佳状态。

  6、高考数学试卷上的题与我们平日练习的题目不一样,怎么办?复习时应注意什么?

  (1)力求作到“三个避免”

  避免需要死记硬背的内容;避免呆板的`试题;避免繁琐的计算.

  (2)“用学过的知识解决没有见过的问题”.利用已有的知识内容、思想方法和基本能力,自己去研究试题所提供的新素材,分析试题所创设的新情况,找出已知和未知间的联系,重新组织若干已有的规则,形成新的高级规则,尝试解决试题所确立的新问题.

  7、对重点知识与重点方法要真正理解,并且理解准、透.如概念复习要作到:灵活用好概念的内涵和外延,分清容易混淆的概念间的细微差别,提防误用或错用;全面准确把握好所用概念的前提条件;熟练掌握表示有关概念的字符、记号.

  8、加强学法指导

  在教学中要让学生明白:

  第二轮复习,通常称为“方法篇”。在这一阶段,老师将以方法、技巧为主线,主要研究数学思想方法。老师的复习,不再重视知识结构的先后次序,而是以提高同学们解决问题、分析问题的能力为目的,提出、分析、解决问题的思路用“配方法、待定系数法、换元法、数形结合、分类讨论”等方法解决一类问题、一系列问题。同学们应做到:

  ①主动将有关知识进行必要的拆分、加工重组。找出某个知识点会在一系列题目中出现,某种方法可以解决一类问题。

  ②分析题目时,由原来的注重知识点,渐渐地向探寻解题的思路、方法转变。

  ③从现在开始,解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家务必将解题过程写得层次分明,结构完整。

  ④适当选做各地模拟试卷和以往高考题,逐渐弄清高考考查的范围和重点。

  第三轮复习,大约一个月的时间,也称为“策略篇”。老师主要讲述“选择题的解发、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性题的解法”,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应对策略为目的。同学们应做到:

  ①解题时,会从多种方法中选择最省时、最省事的方法,力求多方位,多角度的思考问题,逐渐适应高考对“减缩思维”的要求。

  ②注意自己的解题速度,审题要慢,思维要全,下笔要准,答题要快。

  ③养成在解题过程中分析命题者的意图的习惯,思考命题者是怎样将考查的知识点有机的结合起来的,有那些思想方法被复合在其中,对命题者想要考我什么,我应该会什么,做到心知肚明。

  最后,就是冲刺阶段,也称为“备考篇”。将复习的主动权交给学生。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,这阶段要求学生直接、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向,并要求学生做到:

  ①检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练和突击措施(可请老师专门为你拎一拎);锁定重中之重,掌握最重要的知识到炉火纯青的地步。

  ②抓思维易错点,注重典型题型。

  ③浏览自己以前做过的习题、试卷,回忆自己学习相关知识的历程,做好“再”纠错工作。

  ④博览群书,博闻强记,使自己见多识广,注意那些背景新、方法新,知识具有代表性的问题。

  ⑤不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考

  六、目标承诺

  1、毕业会考通过率不低于95%。

  2、高考数学成绩不拖后腿。

  3、高考人平分在重点学排名不低于20xx年。

  七、时间及内容安排

  1、导数(4课时)

  2、立体几何(16课时)(3月18日)

  3、函数、方程、不等式;(3月19日)

  (1)函数的性质(2课时)

  (2)二次函数(2课时)

  (3)函数的综合运用(2课时)

  4、数列;(2课时)

  5、不等式(2课时)

  6、三角函数(2课时)

  7、向量及应用;(2课时)

  8、解析几何

  (1)轨迹问题;(2课时)

  (2)总和问题(2课时)

  9、立体几何

  (1)平行与垂直;(2课时)

  (2)空间角与距离(2课时)

  10、概率与统计(2课时)

  11、导数(2课时)

  12、选择题的解法(1课时)

  13、填空题的解法(1课时)

  14、综合测试(做信息题,每周一套,12课时)

  15、周练(做小题,每月三套)

  16、模拟练习四套(5月10日开始至5月28日中的连堂客)

  17、查漏补缺(5月10日开始至5月28日,非连堂课)

  18、考前信息练习

  19、回归课本文 章,上学期高三数学教学计划

高三上学期数学教学计划 篇2

  今年我继续担任高三325(理)班的数学教学,全班48人,有文化生、专业生,结合本班实际,制定了优质的教学计划,坚持高效课堂教学,培养学生的基本素质和基本能力。即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展、培养学生的能力,为今年高考的优异成绩打下良好的基础。

  一、内容

  完成高中课程的第一轮复习,在3月下旬进入第二轮复习(专题)和小题训练。

  二、立足课本夯实基础

  高三的课堂教学,适合高考需求,这就要求我们必须转变观念,立足课本,夯实基础。复习时要求全面周到,注重教材的科学体系,打好双基,准确掌握考试内容,做到复习不超纲,不做无用功,使复习更有针对性,细心推敲对高考内容四个不同层次的要求,准确掌握那些内容是要求了解的,那些内容是要求理解的,那些内容是要求掌握的,那些内容是要求灵活运用和综合运用的;细心推敲要考查的数学思想和数学方法;在复习基础知识的同时要注重能力的培养,要充分体现学生的主体地位,将学生的学习积极性充分调动起来,教学过程中,不仅要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时还适当增加难度,教学起点总体要高,注重提优补差,高考将更加注重对学生能力的考查,适当增加教学的难度,为更多优秀的学生脱颖而出提供了更多的机会和空间,有利于优秀的学生最大限度发挥自己的潜能,取得更好的成绩;对于差生充分利用辅导课的时间帮助他们分析学习上存在的问题,解决他们学习上的困难,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,最大限度提高他们的数学成绩。

  三、搞好专业的文化培训工作及培优工作

  学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求每位教师要从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习、课堂训练、课后作业的布置和课后的辅导的内容也就因人而异,对不同班级、不同层次的学生提出不同的要求。在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题、解决问题的能力。抓好专业生的文化培训工作,教学及作业要有针对性,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高。

  四、优化练习提高练习的有效性

  知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的练习才能实现;首先,练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的`原因。练习的讲评是高三数学教学的一个重要的环节,为了最大限度地发挥课堂教学的效益,课堂的讲评要科学化,要注重教学的效果,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生板演,充分暴露学生的思维过程,加强教学的针对性。多做限时练习,有效的提高了学生的应试能力。

  五、加强应试指导培养非智力因素

  充分利用每一次练习、测试的机会,培养学生的应试技巧,提高学生的得分能力,如对选择题、填空题,要注意寻求合理、简洁的解题途经,要力争保准求快,对解答题要规范做答,努力作到会而对,对而全,减少无谓失分,指导学生经常总结临场时的审题答题顺序、技巧,总结考前和考场上心理调节的做法与经验,力争找到适合自己的心理调节方式和临场审题、答题的具体方法,逐步提高自己的应试能力;帮助学生树立信心、纠正不良的答题习惯、优化答题策略、强化一些注意事项。

  第一轮复习是整个数学复习的基础工程,其主要任务是在老师的指导下,让学生自己对基础知识、基本技能进行梳理,使之达到系统化、结构化、完整化;在老师的组织下通过对基础题的系统训练和规范训练,使学生准确理解每一个概念的高考要求和考纲要求,能从不同角度把握所学的每一个知识点所有可能考查到的题型,熟练掌握各种典型问题的通性、通法。只有真正改变教师一包到底,实施学生自主学习,才能真正达到夯实双基的目的。为此,我们延长第一轮的复习时间,减少第二轮的时间,目的是能使第一轮的复习确实做到细且实。

  第二轮复习必须面向高考要求,提高复习起点,在夯实双基的前提下,注重培养学生的能力,包括:空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等诸多方面,提高学生对实际问题的阅读理解、思考判断、分析解决能力;教学要充分考虑到本校、本班学生的实际水平。

  六、认真研究近三年的高考试题

  近三年高考试题提醒我们要善于将基础问题学实学活。要把复习内容中反映出来的数学思想方法的教学体现在复习的全过程中,使学生真正领悟到如何灵活运用数学思想方法把握、数学思维方法思考、数学基本方法解题。

  最后,希望小编整理的高三上学期数学教学计划对您有所帮助,祝同学们学习进步。

高三上学期数学教学计划 篇3

  一、教学设计

  1、教学背景

  在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题,这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢?即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在20xx级进行了“创设数学情境与提出数学问题”的以学生为主的“生本课堂”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。

  2、教材分析

  “余弦定理”是高中数学的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的'有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

  3、设计思路

  建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。

  为此我们根据“情境—问题”教学模式,沿着“设置情境—提出问题—解决问题—反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境—问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计:①创设一个现实问题情境作为提出问题的背景;②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用余弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知三角形的两条边和他们的夹角,求第三边。③为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过作边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出余弦定理的表达式,进而引导学生进行严格的逻辑证明。证明时,关键在于启发、引导学生明确以下两点:一是证明的起点 ;二是如何将向量关系转化成数量关系。④由学生独立使用已证明的结论去解决中所提出的问题。

  二、教学反思

  本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。

  例如,新课的引入,我引导学生从向量的模下手思考:

  生:利用向量的模并借助向量的数量积. .

  教师:正确!由于向量 的模长,夹角已知,只需将向量 用向量 来表示即可.易知 ,接下来只要把这个向量等式数量化即可.如何实现呢?

  学生8:通过向量数量积的运算.

  通过教师的引导,学生不难发现 还可以写成 , 不共线,这是平面向量基本定理的一个运用.因此在一些解三角形问题中,我们还可以利用平面向量基本定理寻找向量等式,再把向量等式化成数量等式,从而解决问题.

  (从学生的“最近发展区”出发,证明方法层层递进,激发学生探求新知的欲望,从而感受成功的喜悦.)

  创设数学情境是“情境·问题·反思·应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。

  从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材解三角形应用举例的例1。实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。

  “情境·问题·反思·应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程.把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。

【高三上学期数学教学计划】相关文章:

高三上学期教学计划08-14

高三上学期数学教学总结10-12

高三上学期语文教学计划08-24

高三上学期数学教学总结7篇08-05

高三上学期数学教学总结(7篇)06-06

高三上学期数学教学总结(汇编4篇)11-07

数学新学期教学计划09-20

关于数学学期教学计划05-23

高三上学期数学教学工作总结01-12

高三上学期数学教学工作总结11-01