《三角形内角和》教学反思
身为一名刚到岗的人民教师,我们要有一流的教学能力,写教学反思能总结我们的教学经验,优秀的教学反思都具备一些什么特点呢?下面是小编为大家整理的《三角形内角和》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《三角形内角和》教学反思1
学生在学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:
一、创设情境,营造研究氛围
怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在研究三角形内角和时,没有按教材设计的量角求和环节进行,而是从学生熟悉的正方形纸的内角和是360°入手,再把正方形纸沿着对角线剪开后会怎样呢?猜想一下其中的1个三角形的内角和是几度?学生很快得出一个直角三角形内角和是180°。猜测以下是不是各种形状、大小不同的三角形内角和都是180°呢?再组织学生去探究,动手验证,并得出结论。生在不断的发现中很自然地得到“三角形内角和是180°”的猜想。这样既使学生在这个探究过程中得到快乐的情感体验,又使学生有高度的热情去继续深入地研究“是否任何三角形内角和都是180°”。
二、小组合作,自主探究
任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“是否任何三角形内角和都是180°”,这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。教师根据学生实际情况充分把握好生成性资源,让学生认识到有些客观原因会影响到研究的.结果的准确性。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生讨论一下有哪些因素会影响到研究结果的准确性。
三、练习设计,由易到难
研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形中两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。
四、教学中存在不足
在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,使教学任务不能完成,练习较少,新知没有得到充分巩固,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。
《三角形内角和》教学反思2
“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
《三角形的内角和》是人教版数学四年级下册第五单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
在课堂中,我引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的`小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
《三角形内角和》教学反思3
在教学《三角形的内角和》这一课时,为了达到本节的教学目标,我在教学中根据学生的认知特点,放开手让学生去自己验证三角形的内角和是多少。
上课前学生就已经知道三角形的内角和是180°,为了让学明白为什么是180°,激发了学生的学习兴趣。在讲“三角形的内角和”时,开始就由大小不同的三个角(锐角、直角、钝角)争论谁的角大入手,导出锐角三角形、直角三角形、钝角三角形争论谁的内角和大。对于这场争论的结果是什么,会引发学生的思考,究竟哪个三角形的内角和大?这也正是我本节课要与学生共同研究的问题。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我及时揭示课题,提出学习目标,引导学生讨论学习方法。当学生通过量一量、拼一拼、折一折之后得出自己的'结论时,他们体验了成功,也学会了学习。在这节课中师生互动交流,共同找到了几种验证三角形内角和是180°方法,很好地体现了师生的双边活动。试想,如果上课之初,我自己一味的的去告诉他们三角形的内角和为什么是180°,并且告诉他们探究方法,我想即便告诉的方法再多,再详细,他们学到的也只是有限的方法,而且是老师的方法,不是自己发现的方法。但换一种教学方式,孩子们不但找到了所有我知道的方法,也找到了我意想不到的方法,我们大家在研究中都是受益者。
为学生营造了探究的情境。学习知识的最佳途径是由学生自己去发现,因为通过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。
《三角形内角和》教学反思4
在课间我有意问了一下学生你们知不知道三角形的内角和是几度,发现有一些学生已经知道三角形三个内角的和是180°,因此在导入环节中插入了一个猜角游戏中,请量出自己准备的三角形的三个角的度数,只要你们说出其中两个角的度数,我能猜出第3个角的度数,让生说我猜,要求用自己准备的三角形进行操作。有一部分学生已经能跟着我说出第三个角的度数。当时我并没有批评这些学生,而是采用了表扬的方式,学生很开心。
在接下来的实验验证环节中,那些知道三角形内角和是180°的.学生就猜度数,而没有进行真正的实验验证,反倒是刚学到的学生真正做到用实验去验证“三角形的内角和中180°”。因此我一直在想,是不是能设计一些新的方式让已经知道三角形内角和是180°的学生也能真正参与到实验验证的环节中来。于是让学生请观察自己手中的三角板,问它们是什么三角形?你知道三角板三个内角的和是多少度吗?问学生发现了什么?
三角尺的三个内角和是180°。然后让学生撕下三角形的三个内角并把它们拼在一起和折三角形的三个内角,使它们正好折在一起,都能拼成一个平角,
最后拿出课前准备好的长方形、正方形,让学生自己想办法验证三角形内角和是180°。我个人认为学生通过亲自动手操作实验得出三角形内角和是180°,这样使他们大胆地想,学生课上注意力比较集中。教师也能在教学活动中从一个知识的传播者自觉转变为与学生一起发现问题、探讨问题、解决问题的组织者、引导者、合作者。
在“想想做做”第2题中,学生在还没有拼的时候先看了书,就猜拼出来的大三角形的内角和是360°,经过提醒“内角”的含义,学生才真正体会到“任何一个三角形的内角和都是180°”,不管这个三角形是大还是小。
《三角形内角和》教学反思5
1、通过直观操作的方法,探索并发现三角形的内角和等于180度,在实验活动中,体验探索的过程和方法。
2、能运用三角形的内角和的性质解决一些简单的问题。上课时,我先出示了书本上的图片,大的三角形对小的三角形说:“我的三个角的和一定比你大”。问学生是这样的吗。起先就有同学问了,什么是内角和,我稍微解释后,同学们就开始些争论了,带着这个问题,我让孩子们自己在练习本上画三角形(什么样的三角形都可以)。然后让他们量出三个角的度数,并求出他们的和。我在巡视的过程中,选出了一些同学的三角形以及他们测量出来的结果。也发现有些同学已经忘记量角的方法,或者量的过程不认真,导致结果出错,我在巡视的过程中就给予纠正。
最后,同学们也都发现,大小、形状不同的三角形,其内角和都在180度左右。然后让他们看智慧老人的一句话“实际上,三角形三个内角和就是180度,只是因为测量有误差”,所以有些同学量出来的并不刚好是180度。那么智慧老人的话有没有道理呢?我抛出了这么一个疑问,让同学们想办法证明。最开始,有人提出了用折的方法,我就拿出了事先准备好的三角形,让他折给大家看,发现三个角拼在一起后就成了一个平角,也就是180度。但是问到还有没有其他方法的'时候,就没有同学回答了,时间也快到了,我就自己匆匆忙忙的把先撕后拼的方法给讲了。之后讲了一道内角和的应用,然后就让他们下课了。
在这节课的过程当中,我对自己不满意的地方有几个,主要是后半节:
首先,同学在用折一折的方法证明三角形的内角和时,虽然上台演示的同学有折出来,但速度不是很快,而且但并不是没个同学都能折出来的,所以在上面的同学折出来后,我觉得让其他同学也试一下,肯定有人没办法,所以要提醒他们,折时要注意平行折。这样也会更有说服力。但是我也没让大家准备三角形,也就没办法了。这里我更体会到提前备好一周的课的重要性了。这也是我们校长和教导时常强调的,以后一定得改正。
其次,让同学们想办法用令一种方法证明时,我显得急躁了,虽然同学们没有一下子想出来,但是我也应该多给他们些时间,让他们多思考,或者稍微给点提示。我想起上学期中关村的老师上认识角的时候,就很耐心的给孩子们时间去探索,去发现。所以在课堂的时间安排上,我还要思考如何才能更加合理。
最后,也是我经常在思考的。为什么我们班发言的情况总是那么不如人意呢。没次到我的师傅班上听课时,我都发现他们班孩子充满了激情,而到了我们班,情况就大大的改变呢?是提问的方式有问题吗?不过可能有一点,是因为我在课堂当中对于学生的回答激励性的语言太少了,导致有部分人失去热情,还有就是自己上课总是急于求成,让孩子们失去了思考的机会,也使有些人已经懒得思考了。在这方面我以后还得大大的改善才行。
《三角形内角和》教学反思6
在“三角形内角和”这一内容的教学时,采用的教学方式是教给学生测量或者是撕拼的方法,然后得出结论,进行应用。虽然可以节省时间,短期内收到较好的效果,特别是要求学生把结论给记住,学生应用结论解决相关问题一般是不会有困难的。但把数学知识的发生过程轻描淡写,缺乏探究过程,这样学数学,学生感觉学得累,很乏味,在他们的感受中,数学渐渐地变成枯燥无味的了。本节课应着眼于学生的能力和学习数学的兴趣,上课一开始,可通过创设动画的问题情境,以较好地激发了学生的学习兴趣,然后给学生提供一些材料,让学生以先独立思考再合作的方式,为学生留有足够的空间去探究出结论。学生通过测量、撕拼、折叠等方法,探究出三角形内角和的结论。方法不是唯一的,对于学生通过独立思考出来的.解决问题的多种策略,教师适时给予鼓励表扬,特别是对学生解决问题的思维方法给予充分的肯定。在这一过程中,学生又出现不同的理解和观点,产生真实的辩论,从而更深刻地理解了“三角形内角和是180度的结论。如此学生收获的不仅仅是数学知识,更多的是对学习数学的兴趣和信心,获得的是解决问题的策略和方法。
而后,通过拓展应用环节,再让学生通过应用练习和发展性练习,既巩固了本节课的知识,又培养了学生思维的灵活性和深刻性,使学生进一步深入理解了“任何三角形内角和都是180度。”这一结论,并大胆猜测推算出长方形和正方形的内角和。
《三角形内角和》教学反思7
《三角形的内角和》是人教版四年级下册第五单元的内容,是学生学习了三角形的特性及分类的基础上学习的。本节课我主要设计了四个环节,提出问题→合作探究→学以致用→分享收获。
第一个环节中,我先设计了一个情境,三角形三兄弟(锐角三角形、钝角三角形、直角三角形)争论谁的内角和大,一下子激起了学生的探究兴趣,这个时候就有学生说一样大,此时引出课题,同时学生提出问题:什么是内角?三角形的内角和是多少度?
第二个环节是合作探究三角形的内角和,这个环节里学生小组合作,通过量、撕、折等方法,验证三角形的内角和是180。
第三个环节是学以致用,我设计了三个闯关游戏,第一关是已知两个角的度数求第三个角的度数,第二关是等边三角形、等腰三角形和直角三角形一个角的度数,第三关是两个相同的三角形组成一个大三角形后,大三角形的内角和是多少度。
反思师生互动的过程,本节课的优点有:
1、本节课中学生探究欲很高,课堂研讨气氛浓厚。
2、小组合作中,学生们发现测量时,三角形的内角和不一定是180,培养了学生事实求是的科学态度,此时学生能运用转化思想解决问题,从而提升了学生解决问题的能力。
3、量、撕、折的`动手实践活动,不仅提高了学生的动手操作能力,而且让在动手的同时动脑、动口,积极参与知识学习的全过程,鼓励学生多观察、动脑想、大胆猜、勤钻研,增强了学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
4、课堂练习题的设计层层递进,以及实践活动的设计,让学生体验了学以致用的快乐,获得成功的喜悦。
5、学生在分享收获中,各抒己见,提升了自己的表达能力和归纳能力。
本节课需要改进的地方:
1、在合作探究环节,我提出问题:怎样来验证三角形的内角和?此时学生提出了测量的方法之后,我没有给学生留有足够的思考空间,而是直接介绍了“撕、折”的方法,让孩子们进行探究,课堂中缺少了更多的生成。
2、课堂中设计了实践活动环节,学生们非常感兴趣,但是由于时间不充足,有些学生理解的不够充分,这个环节学生的参与度不够,考虑可以放到课后思考。
《三角形内角和》教学反思8
备学提纲:
1、你能用哪些方法验证“三角形的内角和是180°”这一猜想?至少想出两种。写出具体的操作过程。
2、阅读课本P28-29,记下收获和问题。
3、准备三个锐角三角形,三个直角三角形,三个钝角三角形和一张正方形纸。
批阅了孩子们的预习作业,亮点是孩子开始会提问题了,如:
1、什么是内角?
2、两个三角尺拼成一个三角形,这个三角形的内角和是多少?是360°吗
3、两个三角形拼成一个大三角形,画出来的时候中间有1竖,1竖两边的直角为什么不算呢?
4、所有的三角形的内角和都是180°吗?
5、用正方形纸折几次,才有8个三角形呢?
6、既然有内角那有没有外角呢?如果有外角,那外角的度数是和内角的一样吗?
存在的问题:
1、孩子们想到的验证内角和的方法局限在:用计算直角三角形的各个角的度数的和;画一个三角形,量出每个角的度数再计算。只有一人(季##提到用折的方法来验证,看来,孩子们还是不会读数学课本,没有看懂课本上图示的折的过程,要加强阅读课本的指导,这是以前忽视阅读文本带来的不良结果,直接影响了孩子们的自学能力。
2、我设计的预习题,没能从学生的实际出发,我觉得孩子们已经知道了三角形的内角和是180°,就没有引导他们去理解什么叫内角?这也是孩子们不知如何去验证内角和的一个原因。
今天的课堂,花了一些时间指导孩子如何阅读课本,尤其是阅读课本上的图,看着课本上的图示来操作,所以教学环节不那么紧凑了,印象最深的是:
孙##和陈##两个有些内向的.女孩子,在课堂上能主动站起来说出自己的想法,带着自己的三角形到前面来演示如何用折的方法验证三角形的内角和是180°。刘##今天能主动补充别人的回答。
每一个孩子都充满着无穷的潜力,他们暂时的落后,是因于学习对象没有激起他们的兴趣,是因为缺少一个能挖掘潜力的人!
《三角形内角和》教学反思9
本节课我通过生动活泼的多媒体课件和学生们一起探讨三角形的内角和是180°这一规律并运用这一规律解决实际问题。课件中不仅有动画而且插入音频,激发学生的学习兴趣,开阔学生的眼界,调动他们学习的激情。
首先课件演示三种不同的三角形在争吵,(学生录音,把每个三角形说的话录下放入课件中)让学生判断他们在争吵什么,引入本节课内容。这样可以使学生的眼睛一亮,耳朵受到刺激,吸引珠学生们的注意力,很巧妙就把学生带到课堂上,激发他们的学习兴趣。
再次让学生观察每把三角尺的内角和内角和,以及用两个一样的三角尺拼成一大三角形,它的内角和内角和是多少,利用身边的学具材料猜想是不是所有的'三角形内角和都是180°呢?提出问题,提出质疑,学生带着问题和质疑进行小组合作探究。合作探究时同桌两人一组测量三角形的内角以及计算三角形的内角和,并抽查小组上台把合作探究结果输入电脑表格一便统计和观察。但是由于需要帮助学生输入电脑,不能对每组学生的测量进行指导及询问,很多学生是运用180度这个结论来量的,不过还是有一组学生测量后得出结论是189°,有了误差。下面我就引导学生哪个角是180°,以致学生提出把三角形的三个内角撕下来看看能否拼成一平角,,师生共同撕拼一个任意的三角形,撕拼过程中学生不知如何下手 我对学生进行辅导。但是有时间的有限,不能让所学生都亲自感受一下这一撕拼的过程。但是课件上我运用动画演示,学生可以亲眼看到这一过程。
课堂练习我是通过一个游戏“挑战不可能”巩固三角形的内角和是180°这一规律,运用课件展示了练习题的多样化,层次化,有易到难,并运用一些可爱的图片吸引学生的注意力。会后有主角“三角形”(音频)出题带到“荣誉殿堂”。游戏是孩子都喜欢,在课堂上设计一些游戏环节可以激起孩子的活力,调动他们高涨的情趣。但是我觉得这节课我设计的这个游戏只激起部分孩子的兴趣,如果把这个游戏设计成小组比赛或者男女比赛,看谁最终进入“荣誉殿堂”更激发学生的激情。
总之,本节课我和学生完成的教学目标,学生也能感受到课件不仅能播放图片,而且可以播放音频、动画。通过这节课我深刻体会到运用多媒体教学的优势,可以开阔学生眼界,刺激学生的各种感官,激发他们的学习兴趣,同时也使教学重点难点可以清晰的展示给学生,可以增大课堂的容量。在今后的教学中,我会是自己不断提升自己的教学水平,多学习和运用信息技术手段改善自己的教学方式,以致提高学生课堂上的学习效率!
《三角形内角和》教学反思10
“合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。
一是学生独立思考,教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。
二是动手操作验证猜想。让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通过小组合作交流,印证猜想,得出任意三角形的内角和是180°的结论。
三是进行总结强化了学生对结论的理解与记忆,激发学生探索知识的热情。科学验证了结果,让学生用简洁的语言总结结论:三角形的内角和是180°。
《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力.
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。
本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。
在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的'练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。
《三角形内角和》教学反思11
本节课采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养了学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
“大胆猜想,小心求证”是科学探究的普遍规律,也是获取知识的一条重要途径。在学生已有知识的基础上,类比猜想四边形的内角和,通过测量、计算,讨论、交流、总结出四边形的内角和为360°的规律的结论。亲身体验所得的`知识,会掌握得更加牢固。引导学生学会探究总结事物所含的数学规律,提高了学生综合运用知识去解决问题的能力。探究过程中,归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。
《三角形内角和》教学反思12
在教学中我关注到学生的情绪状态,想法设法调动学生的积极性,维持他们学习的兴趣和注意力,环节设计松紧有度。看来,要上好一节课,教育心理学方面的知识是不可缺少的。自己在教学理念上的转变。以前自上课总不放心让学生自主探索,总希望在有限的时间内多灌输一点,提高课堂“效率”。课堂中,我成了“职业灌输器”,学生充当了“专业接收站”,造成了老师累,学生烦的局面。这次我思想开放了,课堂上做到了“三活”——“学生活中的”,“在活动中学”,“灵活地学”,总之“活”贯穿于整个课堂。整节课,学生是在老师的引导下,以小组为单位自主探索、自主总结归纳。比以前的满堂灌强多了。所以说,放心让学生探索,精心引导学生是成功的关键。
在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。总体来说这节课还有不足之处。学生在折纸验证三角形的内角和后汇报时,我引导小结不够。在练习时基本练习题太少。
1.在学生小组合作学习的时候,老师应该干什么?
我们经常会看到,学生小组合作学习时,老师会边走边不停地提示学生应该干什么、怎么干。其实,这个时候老师的提示对学生而言往往是没有任何价值的,不仅影响学生的'思路,还会干扰学生的思维。我想,这个时候教师应该做的是快速浏览每个小组,看看每个小组的问题所在,帮助每个小组排除学习的障碍。然后找到最需要帮助的小组,介入到这个小组的学习中,了解学生的状态,为后面的交流做好准备。因为在几分钟的交流时间内,老师不可能每个小组都照顾到,但是一定要做到心中有数,帮助每个小组找到解决问题的思路。
2.当学生的认知和原有的经验发生冲突时怎么办?
在新课程理念下,就是让学生去研究和探索,然后获得结论。但是,在实际的课堂情境中往往会有很多情况出现。如果我这样做了,我的教学任务就完不成了;如果我那样做了,就可能会偏离我的教学设计,学生的问题可能会让我不知所措。其实,在课堂中,这是进行探究性教学的最好契机,抓住学生最核心的问题,重组我们的课堂思路,留给学生思考的空间,让学生去探讨问题。我想,课堂教学是为学生的学习和成长服务的,教师要勇于放手,给学生更大的思维空间。
《三角形内角和》教学反思13
三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。
在上课前我通过故事情境导入:“大三角形”将军和“小三角形”将军内角和一样大吗?引起同学们思考,激发出学生探究学习的热情。接着学生讨论:有什么办法可以验证得出这样的结论。学生首先提出度量角的度数的方法,之后通过测量角的度数,发现有的三角形内角和是180°,有的非常接近180°,让学生发现测量角的`度数时容易产生误差,方法具有一定的局限性。之后学生通过撕角拼一拼的方法进行验证。通过“合作探究,实验论证”生动地诠释了新教育的基本理念。
本课新知识传授很好的把握三个环节:
1.重视动手操作,让学生在探究中收获知识。
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养“空间观念”和动手操作能力。让学生独立思考,教师引导学生讨论验证方法,掌握要领。还有什么办法可以验证得出这样的结论?学生就发挥想象,提出度量、折一折、拼一拼等方法。
2.在动手操作中验证猜想。
让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形,通过撕拼角的方式,小组合作交流,验证猜想,得出任意三角形的内角和是180°的结论。
3.重视问题预设,培养“空间观念”。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是学生“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,鼓励学生发挥想象,鼓励学生动手操作,鼓励学生验证猜想,培养学生“空间观念”。我在归纳总结环节,有意识地培养学生的推理能力,逻辑思维能力,增强了语言表达能力。最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,强化了学生对这节课的掌握。
作为一名新教师,在接下来的教学中,我要学会大胆放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!
《三角形内角和》教学反思14
《三角形内角和》是人教版四年级下在学生掌握了三角形的特性和分类之后的一个内容。三角形的内角和为180°是三角形的一个重要性质。它有助于学生理解三角形三个内角之间的关系,也是学生下一步学习三角函数的基础。通过前面的摸底,我发现百分之八十的学生对三角形的内角和是180度是知道的,但都没有仔细研究过。学生有了这样的基础之后,对教师来说,要展开教学还是有困难的。怎么样才能让学生在整堂课中有所收获呢?我把教学目标定位在让学生经过操作、验证等一系列活动,经历猜测、验证的过程,从而习得知识,并得以巩固。我是这样安排的:
一、认识内角
通过回忆旧知,引出钝角三角形,让学生指钝角,接着说另外二个角为锐角,
教师接着引出这三个角叫做这个钝角三角形的三个内角,并画上相应的角的符号。师接着呈现直角三角形和锐角三角形,让学生找内角,让内角这一概念得到巩固。应该说在这个过程中,内角这个概念是落实得比较到位的,学生也能很快领悟到每个三角形的三个内角分别是什么。
二、认识并猜测内角和
通过前一阶段的说课,教研员指出在学习三角形的内角和是180度这一内容
时,我们首先要告诉学生,或者是形成一个共识,那就是三角形的内角和都是一样的,也就是是一个固定的数,有了这样的前提之后才能让学生进行猜测并验证。所以在设计的时候,我把这二个活动结合在一起进行了。通过让学生观察,猜测哪个三角形的三个内角和相加的和最大?通过这一问题,既引出了内角和,也抛出了猜测。在这个问题抛出之后,通过和吴校长讨论,我们做了各种各样的预设。在课上,问题一抛下去,学生都说是一样的.,是180度。面对这样的起点,我就接着问学生一个问题,你是怎么知道的?第一位学生回答得支支吾吾,也不知道该怎么说,就坐下了。第二位学生说:因为三角板上有过的,相加的和是180度。这个回答也是在我预设之内的,学生对三角形的内角和接触最多的就是从三角板上获得的,所以当学生有了这样的回答之后。我就说,同学们,看一看我们的三角板,你发现它们都是……(直角三角形)那钝角三角形和锐角三角形呢?你们仔细研究过吗?今天我们就来研究一下这个问题。通过这一环节,直接把话题引到了今天学习的内容上来了。
三、动手测量,验证猜测
在这个过程中,我分了二个层次,第一:学生量教师给的三种类型的三角形。
第二:生任意画一个三角形进行验证。让学生经历从特殊到普遍的过程。这是动手操作的过程。因为前面没有试教过,所以在这里花的时间比较多,我自己觉得课上得有点拖,也有点沉闷。但在这一过程中,我也发现了很多的问题。很多学生是运用180度这个结论来量的。比如说他先量了二个角,最后一个角就不量了,直接用180度减去前面二个角,就是第三个角。我想如果这样的话就失去了测量的意义了。在交流的过程中,很多同学都说他们测量的结果是180度,导致另外一些不是180度的学生不敢表达自己的意见。我想面对这样的问题,如果我在交流反馈的时候,再多加一个环节,问你量出来的三个角分别是几度,内角和是几度,这样是不是会减少一些这样的问题。
四、通过剪剪拼拼,再次验证
这一环节,我选择了直接告诉学生,剪下三个角来拼一拼,看看有什么发现。
通过了解,其实有一些学生是知道的。(在听课的过程中,旁边的四年级老师告诉我,他们以前组织过这样的活动,让学生剪角、拼角,所以一些学生有这样的基础)因为事先没有了解,所以我低估了学生的能力。如果我选用抛问题的方法,可能会出现一些亮点。当然这也只是一小部分学生而已,其实在实际的操作过程中,在我电脑演示了剪与拼的过程之后,再让学生自己任意剪一剪、拼一拼的时候,还是有很多学生是不会拼的,不知道三个角该怎样放。我想在这个过程中,我在电脑演示的时候,如果再多加引导一下的话,可能在操作的过程中,更多的学生能够参与进来。
整堂课下来,我自己觉得上得很沉闷,由于操作活动比较多,学生的注意力也不是非常集中,当然这和我自己有很大的关系,因为没试教,心里紧张,也因为自己没有经验,课堂气氛没能调节得很好。幸亏有幸听了另外二位老师的课,感觉受益匪浅。特别是徐老师的设计,给了我很大的启示。在自己的课中,我就觉得虽然验证的过程很严密,从特殊到普遍这样一个过程,但是留给学生思考的空间特别少,学生只是进行一些操作。而徐老师通过对直角三角形的验证,继而请学生选择自己喜欢的方法对钝角三角形和直角三角形进行验证,我认为这样设计比我这样设计要好,学生的学习主动性也一下子体现了出来。在验证的过程中,也是方法的运用。总而言之,在上课的过程中,给了我一次学习的过程,在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节。在听课的过程中,让我有了茅塞顿开的感觉,当然这些离不开执教者对教材的深入理解,所有这些,都让我这个新教师感动……
《三角形内角和》教学反思15
我所讲的课题是“三角形内角和定理的证明”。我认为本节的重点是通过证明三角形的内角定理让学生感悟出辅助线的做法。
我的导入市让学生感受一些动手操作实验中误差,从而进一步认识到证明的必要性,引出本节所要研究的课题“三角形的内角和定理”,这个定理我们在初一的时候就已经学会运用了,但是这个定理到底如何证明呢?这时,本节的目标就已经明确下来了——三角形内角和定了的证明。证明的过程中,我通过课前准备好的三角形道具,让我的学生通过撕撕拼拼的方法,把三角形的三个内角拼成我们所熟悉的平角或者是同旁内角的关系,那么这个定理的证明过程就完全展示出来了,然后师生共同把我们自己的做法转化成准确的数学语言加以证明,在证明的过程之中,辅助线就自然而然的运用到其中。这时,本节的重点和难点也就自然而然地被突破,要让学生感觉辅助线不是由老师强加告之而明白证明的方法,而是由学生自己在拼图的过程中亲身感悟出来的知识。
课后我认为本节中的成功之处有以下几点
1、引入简单精炼,给了全体学生的自信心,能使所以学生的注意力迅速地集中到课堂上来;
2、利用拼图的方法来找到“三角形内角和定理”的证明方法的过程中,学生充分地配合,学生的思维得到了最大限度的`发挥,而且采用此种方法来引出辅助线在几何中应用,巧妙地分散了本节的重点和难点,事实也证明学生的接受程度很好;
3、教师在多媒体上展示每个三角形都是用三种不同颜色的彩纸拼成的,学生在学习的过程中看起来会更加的清晰、醒目;
4、在本节“三角形内角和定理”的应用阶段,我设置了“你来讲”题目,而且此类题目的要求是哪位同学想尝试一下,等学生站起来准备好之后,教师再把题目投影出来,不仅要锻炼学生的思维速度,而且也间接地培养了学生的临考能力,同时得到结果后要为同学们讲解本题的解法。我个人认为,给同学们讲题目的过程中收获是更多的。
5、在本节课的整个流程中,师生之间的配合非常地默契,教师能够关注每一个学生,学生的思维也在短短的45分钟内得到了充分地发散和发挥,通堂的气氛活跃、轻松。
课后我认为本节课中的不足之处:
1、在学生拼图寻求“三角形内角和定理”证明之前的铺垫,有些过快,导致个别学生不太明白这些铺垫对于利用拼图来证明定理时有什么用途;
2、不完全相信学生的能力,比如在学生讨论拼图方法后,让学生到黑板上来展示作品的时候,我似乎不敢距离学生太远,恐怕中间会出现什么差错。而实践证明学生完全是通过自己来完成作品的展示的;
3、还是没有改掉急躁的毛病,一些问题还是急于说出答案,没有给学生们足够的思考时间,这是其一。其二,教师讲得过多,没有给学生充足的自主权,没有把课堂还给学生。针对自己的优点和缺点,在以后的教学工作中要注意积累和进步。
【《三角形内角和》教学反思】相关文章:
三角形的内角和教学反思06-28
《三角形内角和》的教学反思04-07
三角形的内角和教学反思02-19
《三角形的内角和》教学反思03-22
《三角形的内角和》教学反思06-23
三角形的内角和教学反思通用04-07
【精品】《三角形的内角和》教学反思07-06
三角形内角和的教学反思优秀05-15
多边形的内角和教学反思09-14
三角形内角和教学总结范文04-07