分数与除法教学反思

时间:2024-07-16 07:39:57 教学反思 我要投稿

分数与除法教学反思

  作为一名人民老师,我们都希望有一流的课堂教学能力,借助教学反思我们可以快速提升自己的教学能力,那么教学反思应该怎么写才合适呢?下面是小编帮大家整理的分数与除法教学反思,仅供参考,欢迎大家阅读。

分数与除法教学反思

分数与除法教学反思1

  一个数除以分数是在一个数除以整数的基础上,让学生从一个数除以整数的计算方法迁移到一个数除以分数,教材通过图形和多个例子来证明一个数除以分数就是乘以这个分数的倒数。我采用数形结合的教学策略,引导学生在分析题意、弄清数量关系的基础上,理解算理、探究算法。实际上就是先让学生画线段图,用图形语言揭示分数除法计算过程的几何意义,然后,有意识的引导学生将“图”和“式”对照起来,进行分析和说理。帮助学生理解除以一个分数怎么就可以转化为乘它的倒数了呢?这节课的教学重点是学会一个数除以分数的计算方法,难点是理解一个数除以分数的算理。

  教学目标我是这样定位的:

  1. 通过合作探究、讨论交流,理解一个数除以分数的算理,概括并掌握分数除法的计算方法,并能正确地进行计算。

  2. 在合作探究的过程中,提高迁移类推、分析比较的综合能力。

  3. 获得成功的体验,认同数学在生活中应用的广泛性。

  在新课之前,我先做了个复习铺垫,让学生算算小红步行每小时走多少千米,引出数量关系式,路程÷时间=速度。然后呈现了书本上的主题图,把抽象的计算置于具体的情意中,通过解决“谁走得更快些”,列出分数除法的算式,接下来,让学生根据学习经验初步猜想“一个数除以分数”的计算方法,为学生提供开放的,富有挑战性的问题情境,从而激发学生的学习动机。有了猜想以后,我引导学生借助线段图来解决小明速度的问题,感受算理,推导算法,从而来验证当初的猜想。这部分的数学内容我主要渗透了数形结合、转化等数学思想方法,把除法转化成乘法计算,对学生来说是认识上的一次飞跃,在这一过程中主要是不断引导学生发现将2÷2/3转化为2÷2×3表示的是先求什么再求什么,进而转化为2×3/2的依据又是什么”,使学生掌握知识的内在联系并把新知纳入已有的认识结构的过程中,自然感受到每一步的转化都是新、旧知识、方法的转化。质疑:对于两个数都是分数的除法算式适合吗?再次组织学生通过自主探究来验证“前面总结出的方法是不是对其他除数是分数的`除法也同样适用?”深入理解算理,掌握算法。这样的设计,我意图让学生真实地经历知识的探索、发现过程,从而起到培养和提高学生的学习能力的作用。

  总结出算法之后,我首先让学生用自己的语言先来概括一个数除以分数的计算方法。然后又出示了一个数除以整数的数学问题,让学生通过解决一个数除以整数的计算,用比较简练的语言概括出分数除法的计算方法。将上节课与这节课的教学内容进行了整合,沟通了新旧知识的联系,进一步理解算理,统一了算法。

  对于这堂课,我感觉学生对于算法比较好理解和接受,但对于算理的理解存在有很大的难度,需要在练习中慢慢去理解和体会。

分数与除法教学反思2

  在复习《分数乘除法应用题对比》这节课时,我真切地感受到:学生在摸索中出错比在老师的扶持下永远正确更具有教育价值,因为它把学生的无知展示给他们自己看。这种错误直达心灵、催人反思。

  复习中,我通过“明察秋毫”这个小环节,让学生明确解决分数问题的关键是找准单位“1”。只有找准了单位“1”,才能找到正确的等量关系。接着,我设计了“自学时空”这个环节。我将4道类似的数学问题一次性教给学生,并提出了三点自学要求:

  1、找出单位“1”,做上记号。

  2、说出等量关系。

  3、列式计算。在这个过程中,身为教师的我没有给任何一名学生提示或指点。短短的4分钟很快过去了,全体学生在我的引导下一起针对三个自学要求进行了交流。统计正确率时,没有一个小组能够达到100%的正确率。这和平时教学过程中我指点以后再练习的正确率相差十万八千里。这时我注意到那些出现平时成绩很好,但这次出现了错误的学生脸上流露出一丝懊悔的神情。俗话说:爬得越高,摔得越重。这些自信满满的学生在这次猝不及防的“摔倒”中发现原来自己对知识的理解和掌握还不够透彻。接下来的“观察对比”环节中,很明显的就能发现那些出现了错误的学生无论是思考还是听讲都格外认真。因为学生在无意中“获得”了一次出错的.机会,因此他们都格外认真地去思考为什么有的算式中用加法,有的算式中用减法,有的算式中用乘法,有的算式中用除法。他们要知道自己为什么会出错,才能避免下次出现同样的错误。

  在学生比较深刻的理解了分数乘、除法应用题的解题思路和方法的基础上,再让学生进行一组四式的独立对比练习。学生运用刚才发现的步骤和方法解决问题,正确率大大提高。从一知半解到深入理解,从有对有错到正确无误,从随意应付到认真对待,学生们的学习态度在发生转变之时,学习质量也明显提高,并从中获得了成功的喜悦。

分数与除法教学反思3

  教学分数除以整数时,课堂上,我帮助学生首先理解了分数除法的意义,接着出示例题:把1米长的铁丝平均分成3段,每段长多少米?学生列出算式后,接着探究算法。出乎我意料的是学生经过思考后,争先恐后地说出了5种算法。学生的每种算法把算理都解释得非常清楚。我也被学生的情绪带动起来,对他们的每种算法不由得说:“你的想法真独特”。学生也被他们自己能够想出多种算法所鼓舞着。我接着让他们继续计算,使学生发现上述的方法并不适用于所有的计算题目。只适合于用乘倒数和商不变的性质解决。通过讨论归纳出:分数除以整数(0除外)等于乘这个数的倒数是最具普遍性的方法。学生获取的这个结论是在自己充分感知的基础上得出的:他们通过计算实践,逐步明确通用的方法只有两种(即乘倒数和运用商不变的性质)。

  下课以后,我回忆这一节充满了学生思维智慧的数学课,使我感悟颇深。《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。在以往的教学中,教师往往是代替学生发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。久而久之会慢慢抹煞孩子的创新意识。在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。计算教学要体现学生思维的开放性。鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思考的空间留给学生。在本课中,我比较注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的办法。每种方法都可以看作是一种创新意识的.体现。我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的能力,全面提高素质。

分数与除法教学反思4

  本节课含两部分内容。第一部分内容是分数除法的意义。第二部分是分数除以整数的计算方法。

  在教学第二单元分数的乘法时,出现学生对分数乘法的意义理解不够,所以,在进行分数除法的'意义教学时,没有匆匆带过,或直接告诉学生,而是由整数除法的意义引入,再引导学生通过改编成一组分数除法题,让学生观察、推理出分数除法的意义。我留给学生时间去做,但还是有部分学生不得其要领。

  第二部分内容通过例2引导学生用折纸的方法得出两种不同计算方法,再比较、归纳出分数除以整数(0除外)等于分数乘整数的倒数。这部分内容是教学的重点也是难点,所以动手操作是必要的。因为学生的动手操作能力较差,所以学生动手操作的时间花的比较多。大部分学生能理解为什么分数除以整数就是乘这个整数的倒数。但后面的练习就没有时间做了,所以,不值的学生掌握的怎么样,是否能熟练的计算分数除以整数。

  心有多大,舞台就有多大,所以不要拘束孩子,也不要拘束自己。

分数与除法教学反思5

  1、在对教材内容准确把握的基础上,注重以“人的发展为本”,灵活使用教材,积极为学生创设主动学习的情境,使学生自我感受数学、体验数学、实践数学,从而激发学习和探究教学的热情。

  2、在教学中,给学生充分提供表现、操作、研究、创造的空间,相信所有的学生都能学习,都会学习,学生的潜能就会像空气一样,放在多大的空间里,它就会有多大,使每个学生的潜能发挥出来,使他们能充分享受学习成功的乐趣。

  3、在教学中,注重学生自己的思维过程,而不能仅仅提供前人的思维结果。创设开放的教学情景,营造积极的思维状态和宽松的思维气氛,肯定学生的“标新立异”、“异想天开”,努力保护学生的好奇心、求知欲和想象力,进而激发学生的创新热情,形成学生的`创新意识,培养学生的创新精神,训练学生的思维能力。

  4、要让学生经历自主探究的过程。探究是感悟的基础。没有探究就没有深刻的感悟。教学中,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟。

  不足之处

  1、对单位“1”的理解在课堂上渗透还得加深理解。

  2、巩固练习不够趣味性,缺少层次性。在巩固练习的教学过程中,为了增加练习的趣味性,应多安排一些数学游戏,以此来调动学生学习的积极性,使得学生在娱乐中巩固和深化所学知识,达到了寓教于乐的目的。

  3.多交流。给学生一定的时间去画一画线段图(其实这是有助于学生理解题意的)。

  4、给学生独立思维的空间。

分数与除法教学反思6

  “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自己的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点:

  1、提供丰富的素材,经历“数学化”过程。

  分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的表象的'支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。

  2、问题寓于方法,内容承载思想。

  数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。

  就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。

  分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。新课标指出:“学生的教学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察,猜测,验证,推测与交流等教学活动。”这说明创设有效的学习情境,可以引导学生开展“自主,探索,合作”的学习活动,促进学生主动的参与。”

  成功之处有,不足之处也有。课后反思之,对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别却并没有在课堂上引导学生去发现和归纳。除法表示两个数相除,是一道算式,而分数是一个数。这说明课前我对教材的解读不够深入,还没有把握住知识的整体性和连贯性。在以后的教学中,努力做到对教材的深入理解,同时要多查阅资料,以便对教材知识进行拓展和延伸。

分数与除法教学反思7

  板书设计(需要一直留在黑板上主板书)

  分数除法

  例1:每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  例2 :把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数( 结果最简。除号要变成乘号)

  学生学习活动评价设计

  通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的几分之几是多少求这个数的实际问题;并且这一节课的.学习将要为后面运用比的知识解决有关的实际问题打好基础。

  教学反思

  本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。

  主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。

分数与除法教学反思8

  小数除法这部分知识的基础是分数乘法的意义和计算方法以及倒数的认识。首先对本单元的学习内容进行分析,主要是让学生能够利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法和分数除以分数的计算方法,在掌握分数除法的基础上,能运用除法知识解决实际问题

  分数除法(一)这节课在设计时让学生通过折纸让学生再次感受平均分,通过具体的操作活动,探索并理解分数除法的意义及算理;掌握分数除以整数的计算方法,并能熟练进行计算;能够运用分数除法解决简单的实际问题。

  在清楚地知道了本节课的学习目标之后,我紧扣学习目标复习引入。先出示一组分数,让学生快速说出这些分数的倒数,并强调学生语言描述的完整性。出示第二个练习题,设计意图:依据本节课的学习目标,进行有针对性的复习引入,第二个问题的设计,让学生作图并将所作的图留在黑板上,目的是让学生与书本第二个绿点进行对比,让学生更加清楚地认识到两者之间的联系,从而联想到七分之四平均分成3份,求每份是这张纸的几分之几?其实就是求这张纸的七分之四的三分之一是多少”,在课前就进行了复习,其实就是将第二个绿点的难度进行了分散教学。改进:在听了孙主任的点评后,孙主任对此也给出了建议,听了之后茅塞顿开,如果还是想有针对性的进行复习引入,不妨将第二个问题改成“2个七分之二是多少?”学生自然能想到2个七分之二就是2乘七分之二,就是七分之四,并且能够作图进行说明。这时再抛出第一个绿点的问题,通过折纸操作,与所画的图进行对比,让学生认识到分数除法的意义同整数除法的意义完全相同。这样的.复习引入同样能达到我们所想达到的目的。 在处理第一、二个绿点时,我在第二个绿点设计了小组合作的环节,通过课堂观察,发现小组合作并没有达到很好的效果。改进:由于将整张纸平均分成7份对很多学生来说有难度,在给学生提示方法时,语言描述应该更加准确;在以后的教学中需要注重培养学生的小组合作意识,让小组合作真正的为学生的学习服务。

  本节课学生的思维很活跃,出现了两种不同的计算方法:在以后的课堂教学中,需要更加关注课堂的生成,多从每节课积累,课后及时反思,以此来锻炼自己在课堂上遇见预设之外的生成能够更好地应对,更好地去引导学生。培养学生的小组合作意识,给学生创设自主探索空间的同时,也促进学生与学生之间的交流,让学生经过观察、比较与思考,发现知识间的内在联系。将课堂教学真正落实在师生互动、生生互动、共同建构、共同发展的过程中。每一次被听课,都是每一次的进步,非常感谢孙主任、朱主任、我师父及其他老师前来听课,并给予具有指导性的建议帮助我进步。我会在教育教学工作中继续探索,不断进步,不断领悟教学这门艺术。

分数与除法教学反思9

  分数除法应用题是在学生已经学习了运用分数乘法解决一些实际问题的基础上进行教学的。分数除法应用题是本册教学中的难点,要突破这个难点,让学生透彻理解这类应用题,就要抓住乘、除法之间的内在联系,通过运用转化、对比等方法,使学生了解这类分数应用题的特征,再借助线段图分析题中的数量关系,找出解题规律。

  这节课我首先复习了以前的知识,找出题中的单位“1”以及写出含x的代数式,这两道复习题为接下来的学习做了很好的铺垫,有利于接下来的教学,但在第二题中,缺少了线段图,赵老师给我提议可以给出线段图,让学生根据线段图列式,也可以让学生自己去画出线段图。线段图是学生必须要会画会理解的重点内容,在这一问题上,我有欠考虑。

  展示出例题:某学校开设了课外兴趣小组,其中有美术小组和航模小组,并且美术小组有25人,美术小组的人数比航模小组多,航模小组有多少人?

  一、我让学生大声读题并思考三个比较简单的问题,学生都表现得不错,但这里只有读题、理解题目要求及关系,并没有提出更高的有挑战的要求,是课前低估了学生的能力,把学生当成了没有良好阅读题目的习惯、解决问题的能力有限的学困生。

  二、是根据题意画出线段图,在课前准备课的时候,我就思考是否让学生自己试着画出线段图,但考虑到本班学生的特殊性,放弃了这个想法,最后还是由我带着学生画出线段图。这样缺乏了学生的自主探索,没有让学生体会到画线段图的重要性。

  三、让学生根据线段图列出等量关系式,这个知识点也是本班学生的一个难点,经过我再三的引导学生准确无误的说出了等量关系式。

  四、根据本题的等量关系式,用方程的方法解答,分析题意得出单位“1”未知,并且要求的就是单位“1”,设未知的单位“1”为x,列出方程。将方程列出来之后,我让学生自己在草稿纸上演算解方程,请一个学生在黑板上做,经过我的观察巡视,大部分学生能够准确地解出方程。

  五、我改变题意,变成了一个数比另一个数少几分之几的稍复杂的应用题,有了前面一道题的引导,学生能够较快的列出方程并能求出正确的解。这两种类型题结束之后,我展示了这两种类型题的线段图,让学生知道什么时候用“+”什么时候用“-”,然后提炼出此类题的'解题方法。这个环节进行得较快,没有让学生进行细致的分析,只是浅尝辄止,这样学生可能没有清晰的理解此类题的方法。在提炼出方法的时候,应该要列出序号,这样更有条理性,学生能够看得更加的明白。

  六、最后展示两道同类型的应用题,让学生及时巩固本节课的学习内容。

  从本节课的教学反馈来看,学生对应用题的掌握情况不错,能够独立完成类型题,但在看线段和画线段图时不是很熟练,这是接下来我要补充教学的内容。

分数与除法教学反思10

  在讲分数的产生时,曾提到计算时往往不能正好得到整数的结果,常用分数来表示,这实际上已经初步涉及分数与除法的关系。教学分数的意义时,讲到把一个物体或一些物体组成的一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确的点出来,现在学生知道了分数的意义,再来学习分数与除法的关系,使学生初步知道两个整数相除,只要除数不为0,不论被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。

  成功之处:

  1.读懂教材编写意图,准确把握每个例题的安排。在例1的教学中是根据整数除法的意义列出算式,根据分数的'意义计算结果,使除法计算与分数联系起来。在例2教学中,列式比较容易,但是计算结果相对有些难度,但是对于部分孩子来说,可以得出计算结果,但是为什么学生说不清楚,因此通过学生的动手操作,实际分一分,学生知道了其中的结果,能根据分的结果说出所表示的意义。

  2.留给学生充分时间,让学生能够通过不同的方法在合作交流中探索出计算的结果。在操作中出现了以下三种方法:

  (1)先把每个圆剪成4个四分之一块,再把12个四分之一平均分给4个人,每个人得到3个四分之一块,也就是分得四分之三块。

  (2)把三个圆摞在一起,平均分成四份剪开,得到四分之三块。

  (3)先把2个圆摞在一起,平均分成2份,剪成4个二分之一块,分给四个人,每人得到二分之一块,再把1个圆平均分成4份,每人得到四分之一块,最后把二分之一和四分之一合起来,就是每人分得四分之三块。

  (4)1块月饼平均分给4个人,每人分得四分之一块,3块月饼平均分给4个人,每人分得3个四分之一块,是四分之三块。

  不足之处:

  对于除法算式的两层含义,个别学生还是有些混淆。

  再教设计:

  让学生正确区分分率和实际数量的区别,以便更好的理解分数的意义。

分数与除法教学反思11

  分数与除法的关系是在学生学习了分数的意义后进行教学的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。

  这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以,分数与除法的关系在整个教材中起着承上启下的重要作用。如果单纯地从形式上去教学分数与除法间的关系,学生能学得很扎实,但这样一来计算3÷4=3/4的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:

  1.通过实际操作感悟新知识

  在教学中,我设计了这样的教学情境,把一张饼平均分给四个小朋友,每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。接着出示要把3张饼平均分给4个小朋友,每个小朋友分得多少?四人一小组想办法把3张圆形纸片平均分给4个小朋友。并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义,即每人分得1张饼的四分之三,也可以说是3张饼的四分之一,通过这一过程,学生充分理解了3÷4=3/4的算理。

  2、使学生清楚为什么要用分数来表示除法算式的结果

  在学生理解了分数与除法的关系之后,我有意识的设计了这样几道练习题。1÷3= 8÷9= 2÷6= 让学生把计算结果写在练习本上,比比看谁先算完。结果有的学生一两秒钟就举起了手,而有的学生费了很长时间才写出了计算结果。汇报之后,引导学生思考:1÷3=0.333……与1÷3=1/3 8÷9= 0.88……与8÷9= 8/9有什么区别?学生最直接的回答是:用循环小数表示商计算太麻烦,没有用分数表示快捷、简便。这时告诉学生,以后计算两个整数 相除的商,除不尽时或商里有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

  3、借机引申,为后续学习做好铺垫

  第一次向学生介绍分率与数量的区别。如①“把一张饼平均分成4份,每份分得这张饼的几分之几?每份分得多少张饼?”② "把2米长的绳子平均分成7段,每段长是这根绳子的几分之几? 每段长多少米 "③"把4千克盐平均分成5份,每份重量是盐的总数的几分之几 /每份重多少千克?先让学生明白这三道题第一问求的都是“分率”,分率没有单位,都是把总数看做单位“1”,把单位1平均分成若干份,求其中的一份是总数的几分之一,都是用单位“1”除以平均分的份数得到,如前三道题的分率分别是1÷4=1/4 1÷7=1/7 1÷5=1/5。而第二问都是求每份数量是多少,每份数量是有单位的,都是用总数量除以平均分的份数得到,得数一定带单位名称。前三道题第二问的.算法分别是1÷4=1/4(张) 2÷7=2/7 (米)4÷5=4/5(千克)

  此处学生理解了分率和每份数量之后,为后面学习分数、百分数应用题做了良好的铺垫作用。

  4、让学生自主建构新知识

  当学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,引导学生把数字换成它们的名称:被除数÷除数=被除数/除数。这时候,再让学生在练习本上用字母a、b表示除法与分数的关系。多数学生写下:a÷b=a/b,老师拿一名稍差学生的板书出来,故意表扬这位同学。正表扬却突然转身给这名学生作业后面一个大叉号。正当同学们都诧异的时候?问为什么错了?这时几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,追问:“为什么b不能等于0?”。我继续用课堂中的例题把1张饼平均分给4个人,每人分得这块蛋糕的1/4为例,让学生说说这个分数中的‘4’表示什么?”“如果把‘4’换成‘0’呢?”学生恍然大悟:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。在用字母表示分数与除法的关系时----“a÷b=a/b(b≠0)”学生经常会忘记,这里的b不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,所以在分数中分母不能为0的道理。这里并不直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义让学生充分理解分数中的分母表示平均分的份数,所以分母不能为“0”的道理。

  本节课的不足之处:虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有引导学生总结出来。除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。

分数与除法教学反思12

  本节课是在学生已经建立起除法意义的平均分和把一个物体或多个物体看作单位“1”进行平均分概念的基本上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。 在这节课的教学中,做得比较好的方面是:1.教师能站在一个比较高的角度恰当地选择了教学的切入点,教师从解决简单的问题入手,把6块饼平均分给2人,每人分得几块?把1块饼平均分给2人,每人分得几块?把1个蛋糕平均分给3个人,每人分得多少个?在此基础上引导学生观察3个算式和3个得数,学生很快得出一个结论,两数相除,商可以是整数、小数和分数。在这教师还注意制作课件,说明一块饼的1/3也就是1/3张饼,为促进学生主动沟通知识间的内在联系作了一个很好的思路引领。2.在解决把3块月饼平均分给4个人,每人分的几块?这一重难点问题时,让学生借助学具动手分一分,并让学生充分展示和交流分的过程和分得的结果,充分展示了学生思维过程,加深了学生对知识的理解。

  3、注意引发学生的数学思考,促进学生主动沟通了知识间的内在联系,注重数学思维深刻性的培养。在课堂上让学生经历了操作、发现、迁移、归纳,使学生水到渠成的发现、归纳分数与除法的关系,在课堂上实现了师生的交往互动。 我觉得有以下几方面值得我去思考:

  一、在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的.意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分一分,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、关于“分母不能为0”这个环节,教学中如果能放缓脚步,通过分析一个分数的实际意义,引导学生理解分数中的分母表示平均分的分数,或是启发学生发现在除法中除数不能为0,除数相当于分数中的分母,所以分母不能为0。这样的处理使学生借助已有的知识解决新的问题,效果会更好。

分数与除法教学反思13

  这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。

  这节课的内容还是比较简单的。如果单纯的`教学它们的关系:一个分数的分子相当于除法中的被除数,分母相当于除数。学生一定学得很扎实,但是这样一来3÷4=的算理往往被忽视。因此我把重点放在例题2,3÷4=()(块)的探究上。

  在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法。

  生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。

  生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。

  让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了3÷4=的算理。

  在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。

分数与除法教学反思14

  根据教材总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:

  从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:

  一、是多出这类练习题进行训练;

  二、是分析这类题时教给学生一个模式,这个模式是:读题——找出已知条件和问题——找出已知条件中与问题相同或相关的句子——找出单位“1”的数量——分析题中相等的数量关系——根据数量关系列算式解答.

  比如“一件衣服现在降价2/5”,这句话把( )看作单位“1”的量,数量关系式是:

  ( )×2/5=( )。

  好几位学生都填错了,有的填的`是“现价”,有的填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“1”了——“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的见识还嫌少。

  再结合例题加以说明.

  (1)有一条鲸全长是21米,头部占二十一分之五,求头部的长度。

  (2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?

  帮助学生复习回忆有关解决这一类问题的基本方法。

  “一找”找出关键句。

  第(1)题的关键句是:头部占二十一分之五,

  第(2)题的关键句是:是其中的十六分之五,

  “二列”

  帮助学生根据关键句分析了解其中的具体含义并且列出等量关系式。

  第(1)题中的等量关系式是:鲸的全长×二十一分之五=头部的长度

  第(2)题中的等量关系式是:全部米的重量×十六分之五=吃掉米的重量

  “三算”

  帮助学生根据等量关系式列出算式并完成计算。

  第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。

  第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为未知数X.

  总的来说“分数乘除法解决问题”有6种基本形式:①求一个数的几分之几是多少②求比一个数多几分之几的数是多少③求比一个数少几分之几的数是多少④已知一个数的几分之几是多少,求这个数⑤已知比一个数多几分之几的数是多少,求这个数 ⑥已知比一个数少几分之几的数是多少,求这个数.

分数与除法教学反思15

  “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自己的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

  1。以解决问题入手,感受分数的价值。

  从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

  2。分数意义的拓展与除法之间关系的理解同步。

  当用分数表示整数除法的`商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点:

  1。提供丰富的素材,经历“数学化”过程。

  分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。

  2。问题寓于方法,内容承载思想。

  数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。

  就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。

【分数与除法教学反思】相关文章:

《分数与除法》教学反思03-14

《分数除法》教学反思05-24

分数除法的教学反思06-17

分数除法教学反思06-08

分数除法的教学反思(经典)12-10

《分数除法》教学反思03-13

分数除法教学反思04-05

《分数的除法》教学反思03-13

分数与除法教学反思01-20

分数除法的教学反思01-22