《圆柱体积》教学反思
身为一名人民教师,课堂教学是我们的任务之一,写教学反思可以快速提升我们的教学能力,那么写教学反思需要注意哪些问题呢?下面是小编为大家收集的《圆柱体积》教学反思,希望能够帮助到大家。
《圆柱体积》教学反思1
圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在圆的体积公式推导过程中,给予学生足够的时间和空间,激发学生的探究的欲望,培养学生的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应及时捕捉,让它开得绚丽多彩,从而让学生的个性能得到充分的'培养。让学生老师这样才能寓教于乐,从而达到了事半功倍的效果。在教此内容时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、展示知识的发生过程,让学生在参与中学习。
现代教育认为课堂教学首先不是知识的传递过程,而是学生的发展过程;首先不是教师的教授过程,而是学生的学习过程;首先不是教师教会的过程,而是学生学会的过程。展开部分,首先让学生大胆猜想,圆柱体的体积可能等于什么?大部分学生猜测圆柱体的体积可能等于底面积×高。在验证圆柱的体积是否与圆柱的底面积和高有关的过程中,我让两名学生到台上演示,学生兴致很高,都想到台上进行操作,被选出进行演示的学生非常认真地进行操作,而其他学生也是非常认真的进行观察。因此推导得出圆柱体积公式时,学生感到非常好懂,也学得很轻松。
二、在讨论交流中学习。
通过实验验证之后,让学生看课件后,小小组进行了如下讨论:
(1)拼成的近似长方体体积与原来的圆柱体积有什么关系?
(2)拼成的近似长方体的底面积与原来的圆柱底面积有什么关系?
(3)拼成的近似长方体的高与原来的圆柱高有什么关系?这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强
团队协作意识。在这一环节中,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:学生亲身体验的感受不够,因为圆柱体积演示器只有一套,所以,只能是个别学生进行操作,大部分学生只能远距离观察。有些学生因看得不清楚而观察、思考得不正确。如果条件允许,演示器多一些,能让学生人人都进行操作,我想学生的参与率、学生动手能力、学生的观察与思考、教学效果都会更好。
《圆柱体积》教学反思2
《圆柱的体积》一课是在学生已经学习了“圆的面积计算”和“长方体、正方体的体积”及圆柱的相关知识的基础上教学的。
教学时我注重引导学生经历“类比猜想 验证说明”的探索过程。由于圆柱和长方体都是直柱体,长方体的体积是底面积×高,因而我引导学生猜想圆柱的体积是否也可以用底面积×高来计算。接着引导学生想办法证明自己的猜想,也就是验证说明。重视学生已有的经验,是新课改教学的重要理念,因而我引导学生回忆以前学习的“把未知的问题转化为已知的问题”的.方法,即“怎样把圆柱转化成已知的形体”的问题。大部分学生都能想到把“圆柱转化成长方体”,接着就“怎样将圆柱转化成长方体”这个问题,让他们观察、研究、讨论。学生受到以前“圆的面积”推导过程的启发,都知道应把圆柱平均分成若干份切开,拼成近似的长方体。由于学生没有学具,因此我用教具演示整个过程,然后引导学生思考:长方体底面的长相当于圆柱底面的什么?(周长的一半即π r)长方体底面的宽相当于圆柱底面的什么?(圆的半径r)再根据长方体的面积公式推导出圆柱体积公式V=π r2 × h或V=S×h。这样让学生亲身经历知识的形成过程,为学生的主动探索与发现提供了空间。
我觉得本课比较成功的一点是学生除了掌握本课的知识点外,还懂得了“类比猜想 验证说明”的数学思想方法,可以说是既授之于“鱼”,又授之于“渔”。
《圆柱体积》教学反思3
圆柱的体积教学反思
在这节课学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的.长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体,展示切拼过程.学生虽然没有亲身经历,但也一目了然.,学习效果还可以。
圆柱的体积练习课教学反思
本节的练习,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识经验解决新的问题,在新旧知识的联系上,使学生想象合理、联系有方。
《圆柱体积》教学反思4
教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。
1、挖掘训练空白,及时补白教材。
编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的'结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。
2、找出知识联系,大胆重组教材。
数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。
《圆柱体积》教学反思5
《圆柱的体积》一课是在学生已经学习了《圆的面积》计算和《长方体的体积》及《圆柱的表面积》等相关的知识的基础上教学的。同时又为学生今后进一步学习其他立体图形的有关知识做好充分准备的一堂课。结合本课的教学实际情况,谈几点反思:
一、利用多媒体创设情境,促进了学生思维发展。
传统教学只关注教给学生多少知识,教师把学生当成知识的“容器”。在这种被迫无奈的条件下,学生的学习只是被动的接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里我利用多媒体创设了丰富的教学情境,上课开始提出“如果我们要想知道这块橡皮泥的体积或这个圆柱体里水的体积,该怎么办?”学生提出“把橡皮泥捏成长方体的形状,把圆柱里的水再倒入一个长方体的盒子里,就可以求出来水的体积了”。这样不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,引导学生经历圆柱体积的推导过程,并适时用多媒体进行动态演示,学生在兴趣盎然中经历了自主探索、独立思考、分析整理、合作交流等过程,发现了数学问题的存在,经历了知识产生的过程,理解和掌握了一定的`数学思想和方法,获得了数学活动经验,掌握了数学基本知识。在练习的环节我用多媒体提出计算鸡蛋体积的思维练习,调动的学生的兴趣,从而促进了学生的思维发展
二、学生通过探究活动,经历了基本科学方法和过程。
“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神。”这是课改的明确要求。这里学生亲身经历提出问题、分析判断、动手实践、观察记录、收集整理、得出结论的过程,就是科学研究的过程,在这其中学生获得了直接的实践经验,尝试、经历了基本科学方法和过程。数学课堂教学中应将教师的验证性操作变成学生的探究性上活动,使学生在探究性活动中掌握知识,发展能力。
三、体验了丰富的学习人生。
创设了丰富的情境和氛围让学生去经历、体验、领悟,在知识发生、发展的过程中,学生的学习兴趣、热情、动机、学习态度和责任,搜集信息和处理信息的能力,合作交流能力以及对个人价值、人类价值、科学价值等的认识都得到了发展。同时学生精神世界的发展从数学学习中获得了多方面的滋养,在对数学知识的认识、感受、体验、改变、创造的过程中,不断丰富和完善了自己的生命世界,体验了丰富的学习人生,满足了生命的成长需要。
此外,本课也存在不足之处:如有的后进生参与活动的意识不强,还有待在以后教学中改进和提高。
《圆柱体积》教学反思6
在上圆柱体积公式前,我精心备课,准备好教具,课堂上把教给学生,让他们四人一小组,去合作演示,充分讨论探索,我在教室里引导学生总结归纳;圆柱体能拼成近似的长方体,长方体的底面积等于圆柱体的底面积,长方体的高就是圆柱的高。因此,长方体的体积就是圆柱的体积,从而推导出V=sh.学生在课堂中合作十分融洽,我自己也觉得这堂课设计得非常不错,按照备课的程序,接下来就是加深学生对公式的运用、巩固。突然,一双小手高高举起“老师,我有不同方法计算圆柱的体积”我一愣,备课时根本没有考虑到用其它方法;我灵机一动,对,让他说出自己的方法,这位同学用V=ch/2r,即圆柱侧面积的.一半乘以底面半径,我当时没有下结论,把这个“球”踢给学生,让他们一起探讨这种说法是否正确;不久学生都异口同声的肯定了。这种新颖的创新思维,课堂上响起了热烈的掌声。
这堂课后,我的心久久不能平静,学生独特见解、探索,使我看到学生的创新潜力是巨大的,重在教师的开发、引导。“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力。”在教学中,孩子们的创新意识常常体现在一些奇思妙想中,有的也许细稚,有的也许太“出格,”但这些却是学生创新精思维的闪现,必须珍惜,这样才能培养出具有创新精神的时代新人。在今后的教学中把充足的探究时间与空间交给学生,改变以教师为主体的传统观念,以学生为主体,教师为主导,让学生成为课堂的真正主人。
《圆柱体积》教学反思7
一、摆脱情境困扰,追求简单高效
圆柱的体积教学是小学几何知识的重头戏,教学这节课时,我首先搜集了网上的大量课例,想寻找一些灵感来装饰这节课的开头——创设怎样的情境才能新颖又能够为整节课的教学服务呢?想了好几套方案最后还是采用创设情景,由圆柱体水杯装水,引出圆柱体,再由圆柱体水的体积引出圆柱体体积的求法。板书“圆柱的`体积”课本是先让学生回忆“长方体,正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,首先应复习一下圆面积计算公式的推导过程,这样有助于学生猜想,接着在回忆了长方体,正方体体积计算方法之后,再接着探究。这样由平面图形到立体图形,过度自然、流畅,便于学生的思维走向正确方向,这时教师的引导才是行之有效的。
二、建立切拼表象,渗透极限思想
学生进行数学探究时,为了让学生充分体会,我把操作的机会给了学生。让学生分组试验探究,接着再结合多媒体演示让学生感受,把圆柱的底面分的份数越多,切开后拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。我使用了—————把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体,展示切拼过程。让学生一目了然。
三、练习层层递进,弱化繁琐计算
为了让学生能熟练地掌握计算圆柱的体积,在设计练习时要多动脑花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出四种类型:
1、已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。
2、已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2 h。
3、已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2 h。
4、已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2 h。
在巩固练习中,只要从这四种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。课堂上的时间有限,课本的标注也有:今后涉及圆柱圆锥的计算可以使用计算器。所以这节课教学时基本没有让学生参与繁琐的计算,学生学的也很轻松。
《圆柱体积》教学反思8
(1)
本节可的教学内容是九年义务教育六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的.方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
(2)
圆柱的体积一课,重点是体积公式的推导。公式导出后,如何进行计算应用。
教学中学生存在的问题是:
1、学生对推导过程理解有困难,不深入;
2、在计算的过程中,单位名称用错,体积单位用面积单位。
3、对于书中所给的立体图形,认识不到位,不能正确分辨直径、半径以及圆柱的高,做题出错。圆柱的高也可以叫做圆柱的长(个别学生不清楚)
突破难点的方法:
1、为了避免单位名称的错误,可在课前复习中设计单位换算的填空题,辨析题等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。
2、在学生利用学具理解公式的推导过程时,应放手让学动手动脑自己解决,但动手之前一定要把任务布置清楚,让孩子们自己发现圆柱与长方体各部分之间的关系,从而推导出圆柱的体积公式。
3、注意引导学生参与到探索知识的发生发展过程中,突破以往数学学习单一、被动的学习方式,关注学生的实践活动和直接经验,“通过自己的活动”获得情感、能力、智力的全面发展。小学阶段,操作活动是数学活动的重要组成部分,也是学生学习活动的重要方式。
《圆柱体积》教学反思9
这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“ 从生活中来到生活中去” 的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。
一、让学生在现实情境中体验和理解数学
在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生听到教师提的问题多在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
在本节课提示课题后,我先引导学生独立思考要解决圆柱的`体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。的思想。
三、练习时,要形式多样,层层递进
例题“ 练一练” 中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型:
1 .已知圆柱底面积(s )和高(h ),计算圆柱体积可以应用这一公式:V=sh
2 .已知圆柱底面半径(r )和高(h ),计算圆柱体积可以应用这一公式:V=πr?h 。
3 .已知圆柱底面直径(d )和高(h ),计算圆柱体积可以应用这一公式:V=π(d/2)?h 。
4 .已知圆柱底面周长(c )和高(h ),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)?h 。
5 .已知圆柱侧面积(s 侧)和高(h ),计算圆柱体积可以应用这一公式:V=π(s 侧÷h÷π÷2)?h 。
在巩固练习中,只要从这五种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。
《圆柱体积》教学反思10
本节课是在学习了圆柱的体积公式后进行的解决问题。这要求学生对圆柱的体积公式掌握的比较扎实,并要求理论与实际生活相结合。让学生通过经历发现和提出问题、分析和解决问题的完整过程,掌握问题解决的策略。使学生在解决问题的过程中体会转化、推理和变中有不变的.数学思想。
在教学中教学我采用操作和演示、讲解和尝试练习相结合的方法,是新课与练习有机地融为一体,做到讲与练相结合。整节课我采用启发式教学。从导入新授到独立解答问题,环节清晰,教学目的明确。通过提问引导学生自主研究问题找到重难点,突破重难点。通过2个瓶子的倒置,把不规则的物体转化成规则物体,再来求它们的体积。在进行转化时,让学生明白倒置前空气的体积在倒置后属于哪一部分。倒置前水的体积在倒置后属于哪一部分。不管在倒置前还是倒置后,什么不变,什么变了?要求瓶子的体积实际是求什么?在课堂中学生积极参与,积极思考,小组合作学习。在学习中学习探究氛围高,体现高年级学科特点,并且灵活运用生命化课堂的四自模式、新技术,运用熟练,课堂中使用恰当有效。但在教学时提出的问题应该更简洁明了。在课堂上如何更好地关注中等偏下的学生,我时常为此感到纠结。
刚刚尝试建构高效的课堂教学范式,难免有困惑和疑问,今后我还要一如继往地与集体备课成员沟通、交流,共同探讨教改新路,让课堂教学更高效、更优质。
《圆柱体积》教学反思11
对《圆柱的体积》一节,备课阶段,我跟冯老师讨论过,3.19下午,又全程聆听了三位教师的同课异构,领略了他们不同个性的教学风格。在我看来,尽管是同课异构,尽管是个性课堂,一些基本的原则还是要遵守的。例如,深入地理解教材,例如,尽可能地保持数学的逻辑严密性,等等。
对于这节教材的理解,最严重的分歧可能来自圆柱的体积公式。教材为什么给出的是“V=Sh”而不是“V=πrh”。我想,这里的原因大概有两个:一是要统一(柱体的)体积公式,减轻学生的记忆负担。事实上,V=Sh也确实更能体现柱体体积的本质,不同柱体体积的不同公式,只是进一步描述了它们的不同的.S罢了。另一个原因,是为方便学生对公式推导过程的理解。当圆柱被分割为有限个曲面三棱柱并拼为准长方体时,半径r只是接近而并没有等于长方体的宽,只有这个分割被无限化(取极限)时,圆柱的半径才能与长方体的宽相等。因此,与其让学生去费解地或不求甚解地观察“长方体的宽与圆柱的半径的关系”,还不如只观察两者的底面积S。在我看来,这样地处理,是新教材较旧教材高明之处,而有的教师之所以走回老路,恐怕是对新教材理解不到位的缘故。
对于这节课的异构,分歧最大的地方可能是对探索或计算的侧重,以及是否需要、是否可以有多种探索方法。从教材的表述看,这节课的新授完全围绕着公式的提出(猜想)、推导(验证)展开,其第一课时的教学重点无疑应当放在公式的探索上。至于探索的途径或方法,我认为,主要有两个:一是转化,把圆柱体转化为长方体,二是验算,假设猜想的公式是正确的,利用它算出结果并设法检验。例如,可以将圆柱形固体放到较大的液体量具中,通过比较圆柱体积的猜想值与液体体积的增长量,证明体积计算的正确性。也可以将圆柱体形状的橡皮泥捏成长方体形状,如果能够在变形的过程中保持高的不变,则可以直接证明所猜想公式的正确性,否则,就要通过计算来作出间接的证明。如何理解教材中“堆硬币”的意图?我以为,这段教材的用意在于“提出猜想”而非验证猜想。之所以这样认为,原因有二,一是教材的表述,它说的是:“从‘堆硬币’来看,用‘底面积乘高’可以计算出圆柱的体积。”而不是说圆柱的体积就是底面积乘高’。二是如果作为验证方法,在逻辑上就犯了循环论证的错误,因为硬币本身实际上也是圆柱,它的体积是否等于底面积乘高,本身就是要待验证的。冯老师在教学中将其处理为“无数个圆叠加成为圆柱”,则使得它在逻辑上不再循环(虽然,这里的“积分过程”包含的极限思想要比“化圆为方”更难为小学生所理解。)。我认为,由于“堆硬币”的目的在于换一个角度提出猜想,教学中当学生能够提出猜想时,“叠圆成柱”的过程就显得不那么非要不可了。而通过多媒体课件演示圆柱的“化圆为方”的过程却是完全必要的。教师与学生一道经历了把十六等分的曲面三棱柱拼成“准长方体”之后,可以引导学生观察这个长方体的“近似性”,并启发他们想象当等分的数量增大到三十二、六十四、----的情况,在其想象之后,再用课件演示极限化的过程,大多数学生应当是可以真正理解的。
《圆柱体积》教学反思12
由于我课前认真研读教材,把握教学的重点和难点,精心设制教学过程和教学活动,上课时我做到胸有成竹。通过这节课的教学我感到自身的教学水平和驾驭课堂的能力得到了提升,从同事评课反映,我认为这节课的教学是比较成功的。这节课教学方法主要体现在我采用新课程的教学理念,合理安排教学环节,激发学生的思维,组织学生参与操作,通过观察、交流,感悟知识间的联系,从而获取新知。我深知教学无止境,没有最好只有更好,我要从成功中找不足。
一、交流预习作业。
在预习作业里我在备课时就设制了两个知识点,让学生课前完成,一个知识点是对旧知的回顾,要求学生写出长方体和正方体的体积计算公式,另一个知识点是要求学生预习教材回答两个问题,两个问题是与这节课教学密切相关的内容,在教材上都是能找到答案的。在对预习作业交流时我发现学生能比较顺利和准确的回答,这为新课的教学活动不仅起了良好的开端,更重要的是为学生在课堂上再进一步地、更深入地探索新知削弱了阻力,减轻了负担。
二、交流猜想和探索如何验证。
我利用课件把等底等高的长方体、正方体和圆柱体图形和问题呈现出来,让学生观察图形思考问题并组织讨论。在对如何验证让学生作为重点交流。意图是先让学生明确两点。第一点圆可以转化成长方形,圆柱可以转化长方体;第二点把圆柱的底面经过圆心16等份 ,切开后可以拼成一个近似的长方体。由于学生课前做了充分的预习和课堂开始阶段预习作业的交流,学生对如何验证的思维已经初步形成。让学生再次交流和汇报,我发现学生都了解和掌握。此时我指名学生到讲台前利用教具说出操作方法,并进行操作,让全班同学观察操作过程。通过学生的操作、观察,学生得到体验和感悟,发现圆柱可以转化成一个近似的长方体。
三、课件展示、构建新知。
让学生观看课件:课件2是把刚才实际操作的过程再次演示和呈现,课件3和课件4是把圆柱的底面平均分成32份、64份切开后拼成的长方体。我抓住时机问学生:如果把圆柱的底面平均分的份数越多,切开后拼成的物体的形状就有什么变化?学生明确回答拼成的物体越来越接近长方体。接着我把圆柱体和转化后的长方体图象同时显示出来,要求学生说出长方体的底面积和高与圆柱的底面积和高有什么关系,学生能清楚地表达出来。为了拓展学生的知识面,我此时还提出了转化后的长方体底面的长和宽分别与圆柱体的底面周长和半径有什么关系,这在教材和参考教案都没有的知识点。学生的思维得到激发,学生勇于回答,学生回答错了,我既没有批评学生,也没有急不可耐给出答案,而是让学生再想,后来还是有学生能正确回答出来了。我想如果不给学生思考的时机直接给出答案,这样与学生发现问题的答案所产生的效果就截然不同了。
推导圆柱的体积计算公式的`过程分为猜想、操作、发现、结论四个阶段,学生经历这些教学活动,体验和感悟了转化的作用和价值,弄懂得了圆柱的体积计算公式的来龙去脉。
四、分层练习,发散思维。
在获得圆柱的体积计算公式的成果之后,为了培养学生解题的灵活性,拓展知识,培养学生发散思维的能力,注意分层练习,我安排了三道练习题。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积。在练习时我不断巡视关注学生练习情况,对出现的错误解答方法我不回避,在展示学生练习时既展示成功的也展示错误的。学生练习出现错误是正常现象,在讨论和评讲练习时是很好的资源,要充分的利用。
不足之处:
整个课堂教学过程中,师生的有效、良性互动还达不到预期目标,有一部分学生没有具备良好作业习惯,灵活运用知识解决问题的能力还欠缺。
通过这节课,我思量交流预习作业能不能与全课的教学活动整合在一起,在课堂上如何更好地关注中等偏下的学生,我时常为此感到纠结。建构高效的课堂教学范式在我校已经试验一个月了,难免有困惑和疑问,今后我还要一如继往地与集体备课成员沟通、交流,共同探讨教改新路,让课堂教学更高效、更优质。
《圆柱体积》教学反思13
圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同爱们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。
在探究的过程中,我不是安排了一整套指令让学生进行程序操作,获得一点基本技能,而是提供了相关知识背景、实验素材,使用“对我们有帮助吗?”“你有什么发现?”“你是怎么想的?”等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。教学中通过等分、切、拼将圆柱体拼成一个近似的长方体,再运用多媒体显示由圆柱体到近似的长方体的变换过程,让学生观察、比较近似长方体与圆柱的关系,使圆柱体体积的计算公式推导过程完全展示在学生面前。使学生感悟到转化的思想在几何学习中的妙用。从而产生一种自我尝试、主动探究、乐于发现的需要、动机和能力。
三、建立切拼表象,渗透极限思想
学生进行数学探究时,由于条件的.限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。
本节课我采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
《圆柱体积》教学反思14
圆柱的体积计算方法的推导。教学前我就思考,不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示挂图:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:
(1)圆柱的体积等于长方体和正方体的体积。
(2)圆柱的.体积也等于底面积乘高。猜测是否准确呢?
点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用学具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。还有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。首先我对这种方法加以肯定,然后利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。
《圆柱体积》教学反思15
圆柱的体积这一课的主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。
圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的.体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,不过应该注意时间的控制,不能花费太多的时间。
学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想-观察-动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。
在教学中,我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
当然,本节课还存在很多不足之处,在学生们动手操作时,因为想给学生充分的思考和探究的时间,以至于后来的练习时间不够。在今后的教学中我要特别关注学生的学习过程,把握课堂教学时间,对教材进行适当的加工处理,提高课堂教学效率。
【《圆柱体积》教学反思】相关文章:
圆柱的体积教学反思11-17
《圆柱的体积》教学反思10-22
圆柱的体积教学反思09-14
圆柱的体积教学反思(精选)05-16
《圆柱的体积》教学反思05-22
【优秀】《圆柱的体积》教学反思05-23
《圆柱的体积》教学反思[荐]07-09
圆柱的体积教学反思(推荐)07-08
圆柱的体积教学反思范文08-28
圆柱的体积教学反思[通用]05-16