八年级数学下册的教学反思

时间:2024-05-28 10:30:52 教学反思 我要投稿

八年级数学下册的教学反思

  作为一位到岗不久的教师,我们要在课堂教学中快速成长,通过教学反思可以快速积累我们的教学经验,那么优秀的教学反思是什么样的呢?下面是小编整理的八年级数学下册的教学反思,欢迎大家分享。

八年级数学下册的教学反思

八年级数学下册的教学反思1

  对于课题学习选择方案的教学,我形成了如下的教学反思:

  一、成功之处:

  1、本节课一开始的创设问题情景,以学生的生活实际设计问题恰当的引入本节课的内容,可以激发学生的求知欲。

  2、在教学设计中,基本发挥了学生的主观能动性,以学生为主体,调动学生去主动探究做的还可以!通过小组讨论,师生中间的合作与交流,解决了本节课的重点与难点,让每个学生都能从同伴的交流中获益,同时也培养了学生的合作意识,提高了学生的动手、动口能力和归纳能力。

  3、书上的例题只有一题“用那种灯省钱”,缺少方案选择问题的恰当设元和规范书写的训练。为此教学时增加补充引例:活动1和活动2,分别以上网收费问题,购买毛笔和书法练习本的不同方案做铺垫,它们更贴近学生的生活实际,也更容易理解和掌握。能更好的体会本节课的教学重、难点。

  4、始终坚持“问题引领学生的思维”,发展学生的思维。设计不同梯度的问题,让水平不同的学生均可以感受学习数学的的`实用性,符合《课标》学习有用的数学的要求。

  5、在学生的探究中出现故障时,能够有耐心一步一步的引导,并能做到回归教学的重、难点,让学生自主描述,找出根源最终学生可以独立自主的解决问题。

  二、不足之处:

  1、在解决学生困惑时,学生们的交流、合作应加以完善,注意掌握尺度做到收紧有度。并且对学生的课堂表现不满意时,情绪有一次失控,对学生的学习不利,今后一定要杜绝。

  2、课堂内容设计过多,不利于学生体会本节课的重、难点,即重点不够突出!

  3、在课堂的教学中,学生回答的偏少,教师讲述的过多

  4、课时提前了3节课,学生没有学习一次函数与一元一次方程,一次函数与一元一次不等式,一次函数与二元一次方程组。而直接探究课题学习选择方案为时过早,学生没有知识准备,所以理解上有难度。

八年级数学下册的教学反思2

  新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中,将知识的获取与能力的培养置身于学生形式各异的探索经历中,关注学生探索过程中的情感体验,并发展实践能力及创新意识,为学生的终身学习及可持续发展奠定坚实的基础。

  首先讲解勾股定理的重要性,让学生明白勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础。它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+ b2= c2)堪称数形结合的典范,在理论上占有重要地位,从而激发学生的求知欲。

  一、精心编制数学教学目标知识与技能:1.让学生在经历探索定理的过程中,理解并掌握勾股定理的'内容;2.掌握勾股定理的证明及介绍相关史料;3.学生能对勾股定理进行简单计算。

  过程与方法:在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,发展合情推理能力,并体会数形结合和特殊到一般的思想方法。

  情感态度与价值观:体会数学文化的价值,通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,激发学生发奋学习。

  二、优化数学教学内容的呈现方式(一)创设问题情境,引导学生思考,激发学习兴趣。

  1.2002年国际数学家大会在北京举行的意义。

  2.电脑显示:ICM20xx会标。

  3. 会标设计与赵爽弦图。

  4. 赵爽弦图与《周髀算经》中的“商高问题”。

  (二)通过学生动手操作,观察分析,实践猜想,合作交流,人人参与活动,体验并感悟“图形”和“数量”之间的相互联系。

  1.观察网格上的图形:分别以直角三角形的三边向外作正方形,三个正方形的面积关系。再利用几何画板演示,引导学生去观察,大胆的猜测。

  2.引导学生将正方形的面积与三角形的边长联系起来,让学生进行分析、归纳,鼓励学生用用语言表达自己的发现。采取“个人思考——小组活动——全班交流”的形式。

  3.让学生自己任画一个直角三角形,再次验证自己的发现,在此基础上得到直角三角形三边的关系。

  4.电脑演示:锐角三角形、钝角三角形三边的平方关系,从而进一步认识直角三角形三边的关系。

  5.通过几个练习,了解直角三角形三边关系的作用。

  (三)继续动手操作实践,思考探究,拼图验证猜想。

  1.学生动手用准备好的四个直角三角形拼弦图。

  2.利用弦图来验证勾股定理。采取“个人思考——小组活动——全班交流”的形式。

  (四)拓展延伸,发挥作为千古第一定理的文化价值。

  1.简单介绍勾股定理的文化价值。

  2.阅读:勾股定理成为地球人与“外星人”联系的“使者”。

  3.电脑演示:欣赏勾股树。

  4.推荐进一步课外学习的网址。

  5.与课头的“ICM20xx”在中国举行的意义首尾呼应,进一步激发学生追求远大目标,奋发学习。

  本节课开始我利用了导语中的在北京召开的20xx年国际数学家大会的会标,其图案为“弦图”,激发学生的兴趣。同时出示勾股定理的图形,让学生猜想直角三角形三边之间的关系。然后利用正方形网格验证猜想的正确性,还利用教具在黑板上拼图,启发学生用面积法得出a2+ b2= c2在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师利用多种证法让学生参与勾股定理的探索过程,让学生自己感觉并最后体会到勾股定理的结论,使得这课的重难点轻易地突破,大大提高教学效率,培养了学生的解决问题的能力和创新能力。

八年级数学下册的教学反思3

  承接上一章的内容,课本的设计意图是利用图形平移和旋转的特征来得出平行四边形的性质。我在设计本节课时就遵循着这个原则,先让学生看图片,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作和教师演示旋转得到其他性质。因为本章课标明确要求学生能够严格说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程。

  由于时间的关系,再加上,总认为学生已经有了小学知识的铺垫,就舍去了让学生动手实验操作探究的部分,而教师的演示又迟了一步,这就忽略了学生知识形成的'过程!使得这堂课总觉得缺少些东西。

  小结部分也做得较匆忙,应由学生自己归纳本节课的内容,把性质按边、角归纳,再加上几何符号的叙述那就更完整了。从练习看,部分学生的几何语言表述不够严谨,书写格式较混乱。

  通过对本节课的回顾,我觉得下次上本课内容时应重点突出以下几个方面:

  一、新课讲解过程,要让学生通过观察、拼一拼、折一折、量一量等方法去探究、去亲身感受知识的形成和发展过程。

  二、在练习的过程中注意方法指导,“转化”思想的渗透。比如:当学生利用连结对角线来解决实际问题后,老师应该强调,我们在解决四边形问题时常用的方法是:“转化”成三角形问题。

  三、对于学生的练习情况要多用多媒体来展示,使说和写有利地结合起来,培养学生论证推理的能力!

八年级数学下册的教学反思4

  下面是我在教学中的几点体会:

  一、教学中的发现

  (1)分式的运算错的较多。分式加减法主要是当分子是多次式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。

  (2)分式方程也是错误重灾区。一是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述:

  1、增根是分式方程的去分母后化成的整式方程的根,但不是原方程的.根;

  2、增根能使最简公分母等于0;二是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;

  (3)列分式方程错误百出。

  针对上述问题,我在课堂复习中从基础知识和题型入手,用类比的方法讲解,特别强调列分式方程解应用题与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。

  二、教学后的反思

  1、本节课一开始的创设问题情景,以学生的生活实际设计问题恰当的引入本节课的内容,可以激发学生的求知欲。

  2、在教学设计中,基本发挥了学生的主观能动性,以学生为主体,调动学生去主动探究做的还可以!通过小组讨论,师生中间的合作与交流,解决了本节课的重点与难点,让每个学生都能从同伴的交流中获益,同时也培养了学生的合作意识,提高了学生的动手、动口能力和归纳能力。

  3、书上的例题只有一题“用那种灯省钱”,缺少方案选择问题的恰当设元和规范书写的训练。为此教学时增加补充引例:活动1和活动2,分别以上网收费问题,购买毛笔和书法练习本的不同方案做铺垫,它们更贴近学生的生活实际,也更容易理解和掌握。能更好的体会本节课的教学重、难点。

  4、始终坚持“问题引领学生的思维”,发展学生的思维。设计不同梯度的问题,让水平不同的学生均可以感受学习数学的的实用性,符合《课标》学习有用的数学的要求。

  5、在学生的探究中出现故障时,能够有耐心一步一步的引导,并能做到回归教学的重、难点,让学生自主描述,找出根源最终学生可以独立自主的解决问题。

八年级数学下册的教学反思5

  在《三角形中位线》的教学中,我设计的教学目标有以下三点:1.了解三角形的中位线的概念;2.了解三角形的中位线的性质;3.探索三角形的中位线的性质的一些简单应用。本节的教学重点和难点有以下两点:1.本节教学的重点是三角形的中位线定理;2.三角形的中位线定理的证明有较高的难度,是本节教学的难点。

  在课堂导入中,我以创设问题情景的形式,激起学生探索的欲望,激发学习的兴趣。问题是:探索如何测量一个池塘边上的AB两点之间的宽度?办法是只要在池塘外取一点C,取CA的中点D,在取CB的.中点E,此时只需求DE的长度,就可知AB的长度。这是为什么呢?此时教材体现的是学习有用的数学。对于导入中设计的这个问题,班级里即使是基础非常差的学生也被吸引到思考的队伍中。带着强烈的学习动机,学生们进行合作学习,内容如下:剪一刀,将一张三角形纸片剪成一张三角形和一张梯形纸片,

  (1)如果要求剪得的两张纸片能拼成平行四边形,剪痕的位置有什么要求?

  (2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形作怎样的图形变换?这样安排的目的一是能出现三角形中位线,引出本节学习的课题;二是为证明三角形中位线的定理埋下伏笔,也是有助于用运动的思想来思考数学问题。此时教学体现的是人人都能获得必需的数学。三角形的中位线的性质定理的简单应用,学生们也都能掌握,这个定理在实际生活中的应用是非常广泛的,这一安排体现了标准中的一、二。但是三角形中位线的证明并不是很多学生能想到的,教师的分析不管如何精彩,辅助线的添法不管如何巧妙,学生能否在证明中提高能力,这是个长久的过程,所以此时教学体现的是不同的人在数学上有不同的发展。

八年级数学下册的教学反思6

  一、教材分析

  四边形是人们日常生活中应用较广的一种几何图形,尤其是平行四边形用途更多,因此本节内容与实际联系比较紧密。平行四边形的性质是在学生小学阶段认识了平行四边形以及七年级三角形一章中学习了一般多边形及内角和的基础上进行的,既是对学生在进入初中以来所学几何知识的综合运用,又是以后学习平面几何的基础。

  对于平行四边形,按照图形概念的从属关系,平行四边形首先是四边形,具有四边形的一般性质,又是两组对边分别平行的特殊四边形,是四边形中的一类特殊图形,有它特殊的性质,同时它又包括矩形、菱形、正方形,具有它们的共性,最为重要的是探索平行四边形的性质时,常用三角形的知识来解决问题,是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.把四边形的问题转化为三角形的问题,把末知转化为已知,是学生能力提高的关键,所以学好平行四边形的性质对学生提高学习几何的兴趣起着至关重要的作用。

  另外本节课是在学生掌握了平移知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用.

  由此可见本节课的重点是:平行四边形的概念、性质及简单应用。

  1.学习目标:

  知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.

  数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.

  解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.

  情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.

  2.学习重点、难点:

  重点:理解并掌握平行四边形的概念及其性质.

  难点:运用平移、旋转的图形变换思想探究平行四边形的性质.

  二、教学反思

  上完这节课,从学生上课情况、作业等多方面发现,本节课所取得的教学效果是值得肯定的,但也有需要改进的地方.为此,本人针对本节课的教学,从内容设计、新课标理念、教法等几个方面作了如下的反思:

  1、流畅的`教学设计、精心的内容编排、巧妙的时间运用是上好一节新课标理念下的新授课的大前提.

  要开展多元化的探究活动,要学生在合作探索中体现和发现新知识,就必须在有限的45分钟时间里尽可能挤出时间和空间,让学生有更多的动手、动口、思考和尝试的机会.因此,整个新授课的教学设计必须很流畅,教学内容与练习的选取必须衔接连贯,不允许有任何时间上的点滴浪费.在教学过程中,本人通过创设情景、引入课题,出示学习目标重难点、自学指导,引导学生探究新知等教学环节.既培养学生的合作意识,又重视学生数学思想方法的学习,合理调整教学内容,使学生的学习目标更加明确,让学生在动中学.培养学生展示的意识。

  2、能否以探究活动的形式,让学生通过自主探索、合作交流去发现和体验新知识是上好一节新课标理念下的新授课的关键.

  数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动.教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动中去.这一节课学生已通过旋转操作的探究方式发现平行四边形是一个中心对称图形,进而探索得出“平行四边形的对边相等,对角相等,邻角互补”等特征,再借助动画演示使同学们对平行四边形有关边和角方面的性质有较深的理解.与此同时,学生也对旋转操作的步骤和要领有了一定的认识,以此为基础,既能体现新课标教学理念,又能提高学生的学习兴趣和实际操作能力,取得较好的学习效果.

  学生的合作探究要取得成效,离不开教师的正确引导和促进.在探究活动中,教师应扮演一个参与者与促进者相结合的角色,加入学生中去,与学生们一起共同去探求和发现新知识,但这个参与者并不能只为参与而参与,他必须在参与者们产生误解或迷惑的时候提供正确的指引,促进参与者们朝着同一的、正确的方向迈进.而在练习过程中,教师此时就要摇身一变,成为一个新课标理念下知识传授者的角色,检查每一位学生的练习质量,对不足者及时辅导,较大问题及时在课堂上反馈,好让全班同学加以注意,提高警惕.

  学生获得新知识后,接下来处理讲学稿例题精讲,开心练习,安排顺序:例1,做一做,试一试,练一练,巩固与提高,拓展与延伸.

  以上就是我对这节课后的一点反思,以及对新课标理念下的新授课教学的一点个人看法.然而,怎样才能进一步完善和改进新课标理念下的新授课教学,这有赖于我们全体数学教学工作者通过不懈的努力,携手作出更深入的研究和探讨,互相交流,共同进步.

八年级数学下册的教学反思7

  在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师再利用电脑演示直角三角形中勾股定理的探索过程。反复演示几遍,让学生自己感觉并最后体会到勾股定理的结论。通过动画演示体会到解决问题的方法是多种多样,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的解决问题的能力和创新能力。学生在这一过程中各显神通,都得到了解决问题的满足感和自豪感。

  在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想象力。

  最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。只是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的`需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。

  数学有与其他学科不同的特点,自然科学常发生新理论代替旧理论的情形,但数学不会如此。数学学习是数学发展史的缩影,是一个累进过程。勾股定理是人类几千年的文化遗产,是经典的定理,拥有科学简洁的数学语言。而数学教学的核心不是知识本身,而是数学的思维方式。认识是个人独特的构造结果,人的思维活动有强烈的个性特征。每个学生都有自己的生活背景、家庭环境,这种特定的文化氛围,导致不同的学生有不同的思维方式和解决问题的策略。学生已有丰富的数学活动经验,特别是运用数学解决问题的策略。学生只有用自己创造与体验的方法来学习数学,才能真正地掌握数学。因而数学教学要展现数学的思维过程,要学生领会和实现数学化,自己去“发现”结果。这一课的学习就主要通过让学生自主地探索知识,从而将其转化为自己的,真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。

八年级数学下册的教学反思8

  利用性质与判定的互逆,学生对四个判定定理的'掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的数学表达和语言能力。

  今后应加强的方面:八年级按照课标不要求书写规范的证明过程,学生的几何证明题仍然是一个弱项,因此有部分学生仍然存在会分析,但是书写不规范,这在今后的教学中需要加强对学生的训练。

八年级数学下册的教学反思9

  本节课的重点是被开方数相同的二次根式与合并被开方数相同的二次根式。

  这节是最简二次根式与合并同类项的知识,所以,最好在课前复习一下最简二次根式的定义,同类项的定义,合并同类项的法则,为这节课的学习作好铺垫。

  同类二次根式:几个二次根式化成最简二次根式后,如果它们的被开方数相同,那么这几个二次根式叫做同类二次根式。判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化简成最简二次根式,再观察它们的被开方数是否相同。

  其次,同类二次根式必须同时具备两个条件:①根指数是2次;②被开方数相同,与根式的符号和根号外面的因式没有关系。

  如何判断几个二次根式是不是同类二次根式,这些题可从课后练习中选取,但要注意书写规范。示范完成后做课后随堂练习与习题中的判断是不是同类二次根式的题目,做到及时巩固。

  识别同类二次根式是二次根式的`加减法的前提,所以,后面的同类二次根式的加减法就顺理成章了,也是先选一个题目进行板演示范,步骤一定要完整规范,然后就是学生进行模仿性练习,这样处理起来,学生没有困难,整节课节奏紧凑,效果显著。

  学生在练习过程中存在的问题:①合并同类二次根式时,二次根式前面的字母因式不加括号,如,应该是;②二次根式的系数是带分数时,没写成假分数的形式,如,应该是。这些错误要注意引导纠正。

八年级数学下册的教学反思10

  在新课程改革背景下的生物课堂教学中,教学生"学会学习"已成为现代教育的重要特征。预习就是一种行之有效的学习方法,是培养自学能力的有效途径。现代教学论认为,教学的基本任务之一,就在于培养学生的能力,而培养学生独立获取知识的自学能力又是其中的重要内容。然而。预习又是不少同学所忽视的。如何在教学中指导学生掌握预习方法,激发学习动机,提高自学能力而达到教学目的'?下面就谈谈我的一些体会。

  预习的过程就是自学的过程,就是凭自己已有的综合能力独立地发现问题、分析问题、解决问题的过程,就是学生独立理解、识记知识的过程。预习是学习的极为重要的阶段,它的特点是先人一步,它的本质是独立学习。从这个意义上讲,预习就是学习的第一核心。因此,课堂教学应紧紧的抓住了这一点,并且高于这一点。我们在一般教学中的常用的预习就是让学生自己看看课本,或者这节课没事干了让学生预习预习下节课内容。

  学生的时间是有限的,而有这么多的学科需要预习,那么该怎样利用有限的时间进行充分的预习

  1学生要注意各个学科孰轻孰重,注意时间的分配

  2给学生一种预习的思路。可以给学生提示一些知识点。

  3让课代表抄一下这节课的学习目标

  4老师晚自习可以去辅导学生,让学生有一些预习的思路

  5保证充分的时间,时间是预习的保证

  这样,使教师在课堂上讲的时间少了,学生自己学习训练的时间多了,学生获得了主体地位,课堂教学过程大部分是学生自学过程,符合学生认知学习规律。真正实现课堂教学以“自主,合作,探究”为主要学习方式。

八年级数学下册的教学反思11

  平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。在设计《平行四边形的判定》一节内容时我在第一课时主要探讨平行四边形的判定的四种方法,在探讨时按照性质的探讨思路:从边、角、平分线三点来分别探讨,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。第二课时我主要是利用判定来证明平行四边形以及进行计算。

  利用性质与判定的互逆,学生对四个判定的掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的'书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。

  几何证明题一直是学生的一个弱点。初二的学生按照课标不要求些规范的证明过程,但是考试却要求书写严格的过程,由于没有规范的例题示范以及有关习题,所以学生的几何证明题仍然是一个弱项,因此习题课上有部分学生仍然存在会分析,但是书写不规范的情况,这在今后的学习中是一个需要改变和提高部分。

八年级数学下册的教学反思12

  勾股定理整章书的内容很少,就勾股定理和勾股定理的逆定理,这节课是勾股定理的第一课时,本节课主要是和学生一起探究勾股地理的认识。在教学的过程中感觉有几个方面需要转变的。

  一 、转变师生角色,让学生自主学习。由于高效课堂中教学模式需要进行学生自主讨论交流学习,在探究勾股定理的发现时分四人一小组由同学们合作探讨作图,去发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。可仍然证明不了我们的猜想是否正确。之后用拼图的方法再来验证一下。让学生们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明 + = (学生分组讨论。)学生展示拼图方法,课件辅助演示。 新课标下要求教师个人素质越来越高,教师自身要不断及时地学习学科专业知识,接受新信息,对自己及时充电、更新,而且要具有幽默艺术的语言表达能力。既要有领导者的.组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。 “教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?因此,高效课堂上要求老师一定要改变角色,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。

  二、转变教学方式,让学生探索、研究、体会学习过程。 学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于我们这儿的学生起点低、数学基础差、实践能力差,对学生的各种能力培养非常不利的。课堂中要特别关注:

  1、关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;

  2、关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理。

  3、学习的知识性:掌握勾股定理,体会数形结合的思想。

  三、提高教学科技含量,充分利用多媒体。 勾股定理知识属于几何内容,而几何图形可以直观地表示出来,学生认识图形的初级阶段中主要依靠形象思维。对几何图形的认识始于观察、测量、比较等直观实验手段,现代儿童认识几何图形亦如此,可以通过直观实验了解几何图形,发现其中的规律。然而,因为几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,例如有无数种形状不同的三角形。对一种几何概念所包含的一部分具体对象进行直观实验所得到的认识,一定适合其他情况验回答不了的问题。因此,一般地,研究图形的形状、大小和位置。 培养逻辑推理能力,作了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续。教科书的几何部分,要先后经历“说点儿理”“说理”“简单推理”几个层次,有意识地逐步强化关于推理的初步训练,主要做法是在问题的分析中强调求解过程所依据的道理,体现事出有因、言之有据的思维习惯。 由于信息技术的发展与普及,直观实验手段在教学中日益增加,本节课利用我们学校建立了电教教室,通过制作课件对于几何学的学习起到积极作用。

八年级数学下册的教学反思13

  今天上完一次函数的图像这节课,颇有感慨。一次函数的图像在本章起着很重要的作用,因为只有掌握了函数图象的画法,学生才能够画出函数图像,从而从图像中学习一次函数的性质,也为后一节的一次函数与二元一次方程,一次函数与一次不等式打下基础.

  我在设计本节课时,仔细研究了新课标,认为本节的重点是:

  1、通过列表、描点、连线教会学生会画一次函数的图像,并与学生一起总结一次函数的图像,画一次函数图像需要几个点,一次函数的图像有什么特征;

  2、让学生理解图像上的点的坐标与函数表达式之间的关系。教学环节设计分为三步:1、通过复习再次理解函数图像的概念,并通过举例让学生了解,让学生明确函数图像的重要作用。2、通过实例向学生展示如何画一次函数图像,并从中总结出画函数图像的一般步骤.先由学生归纳,后由老师总结出画函数的三个步骤:1、列表,2、描点,3、连线。

  3,让学生练习如何画图,并从中发现学生可能存在的问题,作个别指导,并抽出典型问题进行讲解。

  4,通过课件一步步和学生探讨画一次函数图像的步骤。展示不同函数之间的关系。特别是平行,平移的关系,由课件很直观的展示出来。有助于学生的.理解。

  在教学过程中总会有这有那的一些不尽人意的地方,有时候是语言表达不当或不严密。例如这节课我在组织教学时,就只给学生讲了一次函数的k相同时,函数图像是平行关系,但是我没有引导学生发现怎样得到这些互相平行的直线。我在讲课中没组织好课堂,学生有些沉闷不与老师配合,有极少同学不愿意动手画函数图像,也有一些同学认为太简单,不愿画。如何使语言更加生动从而吸引学生的注意力是以后备课需要仔细研究、推敲的地方。此外,还是没能改掉不好的习惯,我由于讲得太多,课堂练习较少,同学们自主学习的时间还是太少,以后尽可能少讲,由学生自已完成知识的建构。

八年级数学下册的教学反思14

  对于梯形,学生在以前的学习中从未接触过,但大多数孩子都对它有着感性的认识。因此,这节课我结合学生的这种感性认识,设计了“猜图形——找图形——做图形”等几个环节,让学生在这些活动中,强化这种感性认识,同时,通过比较,通过老师的点拨,把这种认识上升到理性认识。如何让学生更主动地参与到这个过程中来,教师如何导才到位,是这节课重点需要注意的。在教学中,我主要结合以下几点来做:

  一、创设良好的情境,激发学生的兴趣。

  整节课由“猜图形”导入,学生在猜的过程中,能体验到一种亲身参与,获得成功的体验。当最后一个梯形出现时,很多学生没能猜出,这样就不自觉地引起了他们的疑问:为什么会猜错?这样就很大程度激发了他们要了解梯形,了解梯形和平行四边形之间的联系的.欲望。

  在做图形之前,我没有让学生直接拿材料做斐。而是设计了一个在学具筐里找梯形的环节,这实际上是让学生对梯形进行一次再认,同时也很自然地引到下一个做图形的环节。

  二、为学生自主学习提供足够的素材。

  书上在做图形的环节,给出了四个范例,学生在预习时肯定都能掌握。如何让他们真正动脑、动手呢?于是除了课本上提供的材料外,我又准备了正方形纸、长方形纸、三角形等,这样,看到与课本上不同的东西,更能激起孩子的探索、创造欲。在课堂上,学生用这些材料确实做出了不同的梯形。更有孩子用三角形做出了梯形,虽然“你是怎样折的”,学生讲得不是很到位,浪费了些时间,但我认为这很真实,这是他们很宝贵的一个自主探索过程,在这个过程中,他们自己就获得了对梯形特征的直接经验。

  课后,我想,如果让学生脱离开老师事先准备好的这些材料,让他们自己动脑想一想,他们是不是会想出更好的办法来呢?

  三、精心设计课堂中的每个问题。

  在“试一试”中,在学生自己独立量完了上底、下底和高之后,我没有简单地让学生说答案,而是请一位学生上来边指边说:上底是……下底是……,这样,既有了量的结果,同时也是对梯形各部分名称的巩固。在汇报第二个直角梯形时,我问:“什么它的高就是它的一条腰?”使学生在以往三角形学习的旧知上,更明确地知道了:如果梯形的一条腰和梯形的底互相垂直,那么这条腰就是梯形的高。不过遗憾的是,我应该再加一句:这是个什么梯形?在汇报到第三个梯形时,我又问:“为什么不再上下两条边之间画高?”学生进一步强化了梯形高的概念,同时也了解到并不是在上面的就叫上底,在下面的就叫下底。

  当然,在设计问题这块上,我做的还很不够,很多问题问的比较随意,并且没有什么明确的目的性与引导性,这点还需在今后的教学中,认真钻研教材,精心设计。

八年级数学下册的教学反思15

  本节课在学生的认知水平和已有的知识经验基础上充分调动学生学习的自主性,让学生通过观察、类比的方式探究解分式方程的思路和方法,为学生提供了充分从事活动的机会,使学生在回顾与思考、合作和讨论的过程中理解和掌握知识与技能,体验感受过程、方法和数学思想,培养情感态度价值观,从而达成教学目标。

  本节课关于分式方程的增根的教学,是通过创设小亮解法的情境,引导学生通过思考探索、阅读理解、动手解题等手段,从而获取知识、形成技能,发展思维,学会学习,而不是由教师去讲解增根的概念和产生原因。

  本节课小结采取了学生提出问题、教师解答问题的形式.这种方法一方面为学生搭建了展示自己的平台,设置了独立思考的想象空间,提供了锻炼表达能力的机会;另一方面也为教师能及时弥补教学中存在的漏洞创设了条件和可能.不过,若时间允许的`话,有些问题可以由学生讨论解决。

  教学环节是否可行,最终是由教学目标是否达成来检验和评价的.所以本节课的某些教学环节对目标的达成是否行之有效,还有待于在今后的教学过程中不断实践和完善。

【八年级数学下册的教学反思】相关文章:

八年级下册数学教学反思05-23

八年级数学下册教学反思04-15

八年级下册数学教学反思04-18

数学下册《乘法分配率》的教学反思02-03

北师大版数学下册教学反思04-04

八年级下册历史教学反思05-24

八年级下册历史教学反思10-21

八年级英语下册教学反思11-07

八年级生物下册教学反思04-09