二次函数的教学反思

时间:2024-05-21 11:23:01 教学反思 我要投稿

二次函数的教学反思

  作为一位刚到岗的教师,我们都希望有一流的课堂教学能力,教学反思能很好的记录下我们的课堂经验,教学反思应该怎么写才好呢?下面是小编帮大家整理的二次函数的教学反思,希望能够帮助到大家。

二次函数的教学反思

二次函数的教学反思1

  这节课是在学完正、反比例、一次函数,认识了一元二次方程之后的二次函数的第一节课,从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。

  但是如果光从这些知识点上来讲这节课,其实很简单,学生在原有知识的储备基础上很容易迁移和接受这些知识,那么这节课还有什么好设计的呢?

  重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!

  整节课的流程可以这样概括:学生感兴趣的简单实际问题——引出学过的一次函数——复习学过的所有函数形式——设问:有没有新的函数形式呢?——探索新的问题——形成关系式——是函数吗?——是学过的函数吗?——探索出新的函数形式——概括新函数形式的特点——将特点公式化——形成二次函数定义——有练习巩固定义特点——返回实际问题讨论实际问题对自变量的限制——提出新的问题,深入讨论——课堂的`小结,这样设计一气呵成,感觉上无拖沓生硬之处,最关键的是我认为这符合学生的基本认知规律,是容易让学生理解和接受的。

  对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。

  对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。

  对于最后讨论题的设计和提出,是我在进行了整个一章的单元备课后发现,我们其实对二次函数的最值问题是不讲的,但是不讲并不代表一点都不会涉及到,其中用到的思想方法还是相当重要的,在图象的观察中也具有了重要的地位,再加上这个问题在进行了前面的实际问题的解答之后是呼之欲出的:多种树——想提高产量——多种几棵好呢?,所以我设计了这个探索性的问题:假如你是果园的主人,你准备多种几棵?注意这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题的提出是整节课的一个高潮和精华,是学生学完二次函数定义之后,综合利用函数的基本知识,代数式的知识和一元二次方程的知识进行的思考,因而他们的想法和说法,不论对错,不论全面还是有所偏颇,其中都涉及到了重要的数学思想方法,而这些恰恰是非常重要的。事实证明学生的思维真的是非常活跃的,你要你给了足够的空间,他们总能从各方各面进行思考和解释,我也从中看到了他们智慧的火花,这是很令人欣慰的。

二次函数的教学反思2

  就要期末考试了。我们今天复习了二次函数,立足于二次函数在初中数学函数教学中的地位,根据学生对二次函数的学习及掌握的情况,从梳理知识点出发采用以习题带知识点的形式,我精心准备了《二次函数》的第一节复习课,教学重点为二次函数的图象性质及应用。最初,“抛物线的开口方向、对称轴、顶点坐标、增减性”这一相关性质复习设计中安排了3个训练题目,其中第(2)小题侧重在抛物线的对称性与增减性,集体备课后我在复习侧重方向上作了调整:加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练,另外还预想借图象识别2a与b的关系将是本节课的一个难点。本节通过建立函数体系回忆了二次函数的定义,其图象与性质及与一次、反比例函数图象的综合应用,相继进行,但此环节中“2a与b的关系”学生没有提到,迫于突破此难点,我让学生观察课例图象,并进一步引导观察对称轴的具体位置后,仅有十几个学生准确理解、掌握,于是我进一步的分析“2a与b的关系”由对称轴的具体位置决定,并说明由a>0与b>0能推导出2a+b>0的`方法仅适于此题,但效果不尽人意,仍有一部分学生应用此法解决相关问题。如此导致处理二、2、(2)题时间紧张,使得重点不凸现。将第(3)题留为课后作业,来了个将错就错,为下一节课复习“二次函数与二元一次方程”的关系巧作铺垫。

  通过本节课的备课与教学,我受益匪浅,感受颇多:

  1.每一个学生都有一定的知识体验和生活积累,每个学生都会有各自的思维方式和解决问题的策略.这一堂课我让学生成为数学学习的主人,自己充当数学学习的组织者,取得了意想不到的效果,学生不但能用一般式,顶点式解决问题,还能深层挖掘,巧妙地用两根式解决问题,可见学生的潜力无穷。

  2.本课遵循尊重学生,相信学生,依靠学生的“主体”教学思想,运用助思,助学,助练的启发式教学方法,启动了师生交流的“匣门”,使教学过程真正成为了师生间的双向活动 。

  3.在如何备复习课,准确把握一个单元及一节课的重点及突破难点方面有了很大提高;在巧妙驾驭课堂方面有了很大进步;在如何与他人相处方面有了更好的认识,踏踏实实地做人。

  通过本节课的复习。今后我要:

  1、深入钻研教材是上好数学复习课的必要条件。有句话说的好“教材钻的有多透有多深,教学方法就有多新有多活”。教师在课堂上的游韧有余完全得益于课前深入细致地钻研教材。在研究教材的同时研究学生学习的基础和学习的困难,找最佳突破口,使学生在轻松愉悦的学习氛围下经历学习过程。学生课堂上的轻松愉悦与一次次的成功体验是教师课前花45分钟的几倍甚至几十倍的钻研时间换来的。

  2、精心设计教学环节,组织调控好课堂活动。数学复习课的教学和新授课有着本质的区别,复习的量大,练习的内容多,环节杂乱。因此精心设计教学环节组织好课堂教学活动是一项非常重要的工作。因为学生的注意力不够持久,如果教师在教学中语言生硬直白、缺少情感渲染,学习形式单调而不丰富,就是问、答、写、练,一轮又一轮,学生感觉枯燥无味,也容易疲劳,怎么能对复习内容感兴趣并保持积极呢?久而久之,对学习数学丧失了兴趣和自信心,为后续学习埋下了隐患。课堂上采用多种形式的活动组织教学,激发学生的学习兴趣,以取得更好的学习效果,是非常有必要的。在每一次活动前都要讲清要求,使每个学生听清要求,必要时做出示范。老师没讲清楚学生听不明白就会出现课堂乱哄哄的低效现象,要做到既能放得出又能收得回。教师在课堂上要密切关注各小组同学参与学习的情况,及时表扬先进,树立榜样。

  3、让学生在熟悉的情境中复习数学,理解数学。情境创设要根据课时内容的需要而设计。活动设计要紧紧围绕课时教学内容的重点,而且要确立一条的主线,用这一根线把各个环节串起来,使课堂教学形成一个有机的整体,流畅自然中蕴涵着和谐与统一。

  4、能动手的尽量让学生多动手。有人曾经说过:“听了,一会儿就忘了;看了,就记住了;动手操作了,就理解了。”学生的思维是从动作开始的,切断动作与思维的联系,思维就不能得到发展。手是脑的老师,说过百遍,不如手做一遍。所以让学生在动手的过程中学习知识是必要的,是高效的。而多数老师在课堂上觉得这样让学生动手去做太耽误时间,不如我自己演示来的快。这是非常错误的教学思想。

  5、加强教学研究,促进教师间的经验交流和相互协作,达到共同提高的目的。利用集体备课、教研组活动、课题实验组活动等校本培训形式搭建共同交流共同发展的平台。对每一课时教学内容可利用课前几分钟,大家在一起说一说自己的教学设想,有新颖活泼紧扣教学内容而又容易操作的形式,取长补短相互借

  总之,在实践中获得灵感,在交流中撞出智慧,在反思中调整思路,在坚持中取得进步。

二次函数的教学反思3

  上完课后失败感比较强。失败感也比平平淡淡的价值大,下面总结一下有何失误。

  本节教学内容是《一次函数与一元二次方程(组)》,“一个二元一次方程对应一个一次函数,一般地一个二元一次方程组对应两个一次函数,因而也对应两条直线。如果一个二元一次方程组有唯一的解,那么这个解就是方程组对应的两条直线的交点的坐标。本节的图象解依据了这个道理。”因此本节需要迅速画出图象,利用图象解决问题。而我的失误也主要发生在画图象上,在喧闹声刚刚平息后在九班开始了这节课。课堂需要的课件无法用内网传递,我只得让学生自己先看书,借机我跑到一楼用软盘把课件拷过来。或许这节课的例题更适合学生独立学习,我对学生疑难处加以点拨,这样学生的主动性会调动起来,昨天看的文章了说注重学生的想法,体会。给学生以充分思考的时间。不过我担心 学生的基础参差不齐,还是以我讲授为主,讲后学生进行训练。在讲的过程中犯了一个画图错误,2X-Y=1化成了 Y=2X+1,并用几何画板作出了图象。这种低级错误竟然我没有看出来,后来学生给我指出来了,有的学生看到老师出错了,低着头嘀嘀咕咕,我对着电脑是否重新画呢,时间不多了然后转入了例3的讲解。

  一个小小的.笔误,虽然不是知识性的错误,不能反映老师的教学水平低下,但这种粗心造成的错误在学生的记忆中留下不光彩的一页,看到个别学生眼中不屑的表情,我忍了忍心里的怒火,不能在课堂上训斥他们,错是自己酿成的。 以后一定注意课堂的细节,借机课下我要强化对学生的细节教育,不要在做题过程中出现我所犯的低级错误。

  关注细节,完善课堂和各个环节,不留遗憾,提高质量

二次函数的教学反思4

  二次函数是学生学习了正比例函数,一次函数和反比例函数以后进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些简单变量最优化问题的数学模型。和一次函数,反比例函数一样,它也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数,体会函数的思想奠定基础和积累经验。

  本节课的`具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己“推导”出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax+bx+c(a,b,c是常数,a≠0)。最后,通过随堂练习巩固二次函数的概念并解决一些简单的数学问题。

  我个人以为,本节课的成功之处是:

  教学时,通过实例引入二次函数的概念,让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型,通过学习求一些简单的实际问题中二次函数的解析式,大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述,研究变量之间变化规律的意义。让学生终生受用的思考方法,使学生的思维水平有所提高。这样不仅提高了学生独立发现问题、解决问题的能力,避免学习落入程式化的窠臼,而且也让学生体验到了成功的快乐。

二次函数的教学反思5

  怎样教学初中阶段二次函数应用问题

  二次函数问题在整个初中阶段既是重点又是难点,其应用题综合性比较强,知识涉及面广,对学生能力的要求更高,因此成为教学中的重点,也成为学习的一大难点。在升学考试中占有相当大的分值,往往又以中档题或高档题的形式出现,成为中考的压轴题。作为教师在组织教学的过程中,应注意选择合适的教学方法分散其难点。若采用分类教学,学生易于掌握,针对不同的题型进行训练,短期内确实有利于提高学生的学习成绩。但从长远看,这样做容易使学生形成思维定势,不利于思维能力和创新能力的培养。教师可以针对不同的学生分梯度设置不同的题型,放手让学生自主探索,自己去感悟,疑难问题通过小组合作学习来解决,同时教师做适当的点拨,这样可以激发学生学习数学的兴趣,让不同的学生都得到发展。

  我认为初中阶段应从以下几个方面来处理好二次函数的应用问题:

  一、注重与代数式知识的类比教学,触及函数知识。

  现在人教版教材把函数提前到初二进行教学,我认为这是很好的整合。初二的学生对基本概念还是比较难理解,但能够要求学生有意识的去理解函数这一概念,逐步接触函数的知识和建模思想,认识到数学问题来源于生活应用于生活,建模后又高于生活。不管是列代数式还是代数式的求值,只要变换一个字母或量的数值,代数式的值就随之变化,这本身就可以培养学生的函数意识。

  二、注意在方程教学中有意识渗透函数思想。

  方程与函数之间具有很深的联系。在学习方程时要有意识的打破只关注等量关系而忽略分析数量关系的弊端,这是对函数建模提供的最好的契机。教师在组织教学中,特别是应用题教学,不能只让学生寻找等量关系,而不注重学生分析量与量、数与数之间的内在联系能力的培养,从而更加大了学生学习函数的难度。不管是一元方程还是二元方程应用题教学中,应该训练学生分析问题中的量与量关系的能力,让学生树立只要有量就应该也可以用字母去表示它,不要怕量多字母多,量表示好了再通过数量关系逐步缩少字母即可。这样就为后续函数的学习做好了铺垫。

  三、通过数形结合方法体验函数建模思想。

  不管是长度、角度还是面积的有关计算,都应该通过适当变换数据来树立函数思想。图形具有丰富性与直观性,图形变化具有条件性,因此说图形教学相比纯粹数量计算教学更能够体现函数思想。

  函数思想的建立,应用题解题方式的定型绝不是一蹴而就的.,它需要慢慢的渗透与慢慢体验的过程。从这个意义上说,二次函数应用题的教学不需要分类。二次函数的学习是把以前学习的内容进行适当加深或以崭新的视角重新审视,因此二次函数应用题的解决,需要师生在教与学中有意识的树立函数思想。正是二次函数的这种综合性,要求教师在组织教学中把这一难点消化在平日教学中,而不是简单的把二次函数应用题进行分类来加重学生的负担。

二次函数的教学反思6

  今天开始复习二次函数,以往在讲练习课的时候,学生总感觉自己已经懂了,上课的效率很差.现在如果还是和原来那样复习,效率肯定不会好.以往采取的方式就是布置给学生大量的作业,然后再进行适当的讲评.可是总觉的那种方式也不理想,一方面浪费时间,另一方面学生也不可能高质量完成.今天复习的时候给自己定了一个复习计划.

  对于二次函数总体复习的时间定为三个课时,在课前先布置一张练习卷,批改后找到学生错误的地方,进行分析,为第一节课作好准备.从学生完成的情况来看,二次函数基本的知识点掌握的还不错,但是大部分学生简答不够认真,只有最后的结果,没有具体的过程.对于二次函数的综合运用还存在一定问题.同时还有求函数解析式,对于顶点式,和一般式也有一定的问题.利用二次函数解决实际问题中求最大或者最小值的题目,书写的格式还是需要强调.

  一、本章知识点的主要内容有:

  1.二次函数的概念.考查的'方式是判断函数是否是二次函数,需要注意的是分母里有二次的函数,可以化掉二次项的函数,以及二次项系数为零的函数.

  2.求二次函数的解析式.用待定系数法求,设有三种形式,一般形式,分解式,配方式.另外还有根据实际问题求解析式.

  特别是一些辩证性很强的题目,比如售价为某一个值时销售量为具体的某一个值,当售价提高后,销售量减少.为了获得最大的利润,应该怎样定价格.这种是典型的二次函数解决实际问题的类型.同样的背景在八年级的时候也有出现,通过一元二次方程解决.

  3.二次函数图像的信息题.根据图像来回答问题,求交点坐标,顶点坐标,构成三角形的面积等.同时要能判断增减性,在什么情况下函数值大于零,在什么情况下函数值小于零.

  4.抛物线的平移.抛物线的形状和大小由二次项的系数决定,一次项系数和常数项主要是确定位置.所以抛物线的平移的前提条件是二次项的系数不变,规律是”左上加,右下减”.

  5.根据图像来判断一些代数式的符号.主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和-1时的函数值来确定.

  二、成功之处:

  教学内容、教学环节、教学方法都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,在课堂的实施上,由于采用激励的方法调动学生的积极性和主动性,所以整节课非常流畅,效果不错,目标的达成度较高,可以说本人、学生都较满意。

  三、精彩之处:

  (一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-1,-6),并且该图象过点p(2,3),求这个二次函数的表达式中,设计了两个问题:1.通过已知顶点A的坐标(-1,-6),你从中还能获取什么信息?2.在不改变已知条件的前提下,你能选用“一般式”吗?

  设计意图是:

  1.由顶点(-1,-6),可知对称轴是直线x=-1,函数的最大(小)值是-6.从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”.

  2.挖掘顶点坐标的内涵:(1)由抛物线的轴对称性,可求出点p(2,3)关于对称轴x=-1对称点p’的坐标是(-4,3);(2)用点A、点p和对称轴;(3)用点A、点p和顶点的纵坐标等.

  3.得出结论:凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯.

  (二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的能力。内容及问题串如下: 四、遗憾之处:在课题引入后,由于对学生估计不足,复习一学生独立完成,这本没有错,但是,学生还习惯有老师引着做的方法,因此在处理完复习一后用时间相对较多,对于后面的教学造成小的影响,特别是对于复习三的处理时不够充分,造成一点遗憾。

  四、反思之处:

  反思一,集体的智慧是无穷的,一定继续发扬团结协作的好作风;

  反思二,教材的内涵是无尽的,一定要挖掘到一定的深广度;

  反思三,教师的经验是宝贵的,一定要开诚不公的交流;

  反思四,工作的责任心是必要的,一定要无私奉献;

  反思五,教师的工作是高尚的,来不的半点虚假。

  总之,教师的教学技艺和水平在每天的工作中慢慢的提高,愿老师们学会反思,它是我们提高的催化剂,更是学生需要的助力器。

二次函数的教学反思7

  教学目标的设定:

  一、 教学知识点:

  (1)、 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  (2)、 理解二次函数与 x 轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.

  (3)、 理解一元二次方程的根就是二次函数与y =h 交点的横坐标.

  二、 能力训练要求:

  (1)、经历探索二次函数与一元二次方程的关系的过程,培养学生的.探 索能力和创新精神。

  (2)、通过观察二次函数与x 轴交 点的个数,讨论 一元二次方程的根的情况,进一步培养学生的数形结合思想.

  (3)、通过学生共同观察和讨论,培养合作交流意识.

  三、 情感与价值观要求

  (1)、 经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

  (2)、 具有初步的创新精神和实践能力.

  教学重点:(1).体会方程与函数之间的联系.

  (2).理解何 时方程有两个不等的实根、两个相等的实根和没有实根.

  (3).理解一元二次方程的根就是二次函数与y =h 交点的横坐标.

  教学难点(1)、探索方程与函数之间的联系的过程.

  (2)、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系. 解决重难点的方法1、 设问题情境,引入新课

  我们已学过一元一次方程kx+b=0 (k≠0)和一次函数y =kx+b (k≠0)的关系,你还记得吗?

  它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转

  化成了一元一次方 程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解.

  现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索这个问题.

二次函数的教学反思8

  教材分析:

  本节课在二次函数y=ax2和y=ax2+c的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自性质。旨在全面掌握所有二次函数的图象和性质的变化情况。同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c。符合学生的认知规律,体会建立二次函数对称轴和顶点坐标公式的必要性。

  教学片段:

  本节课我是这样设计引入的。

  [师] y=3x2的图象有何特点?

  [生]很快能说出函数图象以及相关的性质。

  [师]y=3x2+5的图象有何特点? y=3x2+5和y=3x2的图象有何关系?

  此处的安排是为了让学生明确加上5会使函数图象向上平移5个单位,为本节教学y=a(x-h)2和y=a(x-h)2+k的位置关系埋下伏笔。当然在前一节课已经让学生明确了y=ax2和y=ax2+c的位置关系。并告诉学生口诀上加下减,位变形不变。

  [师]y=3x2-6x+5的图象与y=3x2有何关系?

  [生]猜想:向上平移5个单位,向左右平移6个单位。

  [师]到底向左还是向右?或者是否就是我们所想的这样先向上平移5个单位,向左右平移6个单位?我们这节课就来研究二次函数y=ax2+bx+c的图象(板书课题)

  教师和学生一起对y=3x2-6x+5进行配方化为y=3(x-1)2+2的形式。

  此处的处理感觉很不自然,但是从y=3x2-6x+5再引出新课这一作法又让我不舍得放弃,希望行家提出好的过渡方法。

  [师]研究y=3(x-1)2+2的图象比较复杂,你准备先研究什么函数的图象?

  [生]可以先研究y=3(x-1)2的图象。

  前面复习过y=ax2和y=ax2+c的位置关系,而且经过课题学习学生已经学会了把复杂问题通过先简单化的这一学习方式。

  让学生完成课本P46的表格。

  在校对答案时我是这样处理的。先让校对3x2的值,然后再填写3(x-1)2的值,但并不是全部校对,在回答到x=-1时,y=12时,停顿。让学生不急着给出下面的答案,先让学生思考从表格中发现了什么,学生很快的发现第三排的值刚好是把第二排的值向右平移一个单位。由此猜想当x=0时,y=3。然后引导学生验算。发现刚好相等。继续完成表格的第三排的函数值,发现都有相同的特点。

  此处的设计是要让学生学会观察,从表格里发现函数图象的平移。

  [师]根据表格所提供的坐标,大家去猜想y=3(x-1)2与y=3x2的图象有何关系?

  [生]猜想:把y=3x2图象向右平移一个单位就可以得到y=3(x-1)2的函数图象。

  [师]请大家根据表格所提供的坐标描点、连线,完成y=3(x-1)2的函数图象。看与我们的猜想是否一样。

  通过学生的描点、连线、并观察发现确实符合自己的猜想。经历这样的'研究过程学生能形成较为深刻的印象。

  教师进行对比教学。继续研究了y=3(x+1)2与y=3x2的图象位置关系。进而研究他们的图象的性质,然后再研究了y=3(x-1)2+2与y=3x2和y=3(x-1)2三者的联系和区别。总结出口诀上左加下右减,位变形不变便于学生记忆。

  反思:

  函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识。在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外。更重要的是让学生参与到函数图象和性质的探索中去。要利用一切可以利用的材料来帮助学生理解所学的知识。本节中通过表格上函数值的变化让学生猜想函数图象的位置变化,给学生留下较深刻的印象。然后加以口诀的形式,学生普遍能较好的掌握图象的平移规律。

二次函数的教学反思9

  课后查看了数学课程标准中对二次函数的要求:

  1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

  2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

  3、会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。

  4、会利用二次函数的图象求一元二次方程的近似解。

  发现并没有提到用顶点式来求二次函数的解析式,而且在后面的`几节课的教学中也没有要求用顶点式来求二次函数的解析式。但是我认为新课标所提出的要求应该是对学生的最低要求,它并不反对教师结合学生的实际对教材的重新处理。并且从教学的反馈来看,加上了这3个练习学生能较好的理解本课的教学目标,同时也能对前面所学的二次函数顶点的知识加深印象。适应学生的最近发展区。何乐而不为。

二次函数的教学反思10

  二次函数是初中阶段研究的一个具体、重要的函数,在历年来中考题中都占有较大的分值。二次函数不仅和学生前面学习的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想有着重要的作用。而二次函数的概念是后面学习二次函数的基础,在整个教材体系中起着承上启下的作用。

  本节课的内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决实际问题。为此,先让学生复习了函数及一次函数的相关内容,然后设计具体的问题情境让学生自己推导出一个二次函数,并观察、总结它与一次函数的不同,在此基础上逐步归纳出二次函数的一般表达式,最后通过习题巩固二次函数的概念并解决一些简单的数学问题。

  我个人认为,本节课的成功之处是:一是在教学设计上“步步为营”,学生的思维能力“层层提高”。在教学设计上,根据内容的需要,我合理设计具有针对性的问题,借助学生已有的.知识展开教学,通过解决问题,充分激发学生的求知欲,调动学生学习的积极性和主动性。

  二是在学习的过程中,不仅注重对学生知识的教授,更注重教给学生学习和思考的方法,提高学生独立发现问题、解决问题的能力,让学生时时体验到成功的快乐。

  三是在整个教学过程中,注重不同层次学生的发展,不同的学生的个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到吃不饱现象,因此在后面的练习设计中,也有针对性的习题,对这部分学生提高也是很有帮助的。

  不足之处表现在:

  1、由于学生对一次函数的遗忘,因此复习占用的太多的时间,导致课后练习没完成。

  2、学生自学环节,要求不够细致,学生学的不够深入只是看了教材,而未挖掘出教材以外的东西。

  3、由于时间紧张小结的不够完整。

  总之,本节课的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。

二次函数的教学反思11

  这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。

  整个教学过程主要分为三部分:

  第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。我的设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让学生复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。

  第二部分是学习探究,探求活动前先让一名学生读了学习目标,让大家带着目标去探究。探究活动一是让学生在坐标纸上画出二次函数y=ax2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导大家要明确取点注意的事项,比如代表性、易操作性。这样学生在下一个环节就能游刃有余。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生按照学案的要求自主探讨当a>0时函数y=ax2的性质。探究活动二是独立画出函数y=ax2的图象,然后是自主探讨当a<0时函数y=ax2的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。应该说探究活动二在活动一的基础上让学生锻炼了自我学习的能力,学生们完成的很好。探索活动三是小组合作活动。观察自己画出的两个图象,它们代表函数 y=ax2的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。这个环节能充分发挥小组合作的优势,让学生在谈论中体会分类思想。小组讨论完毕后我让学生展示他们的成果,大部分学生跃跃欲试,他们讨论的很全面,出乎我的预料。这里面还有个知识点我是用几何画板演示的,就是通过改变a的值让学生们观察图象的开口方向和开口宽度。几何画板在此起到了突破难点的作用,让我真正体会到了掌握几何画板对自己的教学是多么的有利。第三部分是课堂检测。最后五分钟时我让学生们独立完成课堂检测部分题目。课堂检测共出了四个小题(基础题)一个应用题(选做题),下课铃声响了,大部分的同学还没有完成选做题,所以我就让同桌交换试卷,公布前四个基础题的答案。从当堂的反馈来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的`要求。

  本课的优点主要包括:

  1、教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

  2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

  3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点。

  本课的不足之处表现在:

  1、知识的生成过程体现的不够具体。在活动一中,虽然引导学生选点和列表,但是没有在黑板上演示作图的过程,虽然说明白了选点的注意事项但是学生还是被动的接受,他们不一定能理解为什么要选那个点。

  2、作图的过程没必要放到课堂上来。可以事先在前置作业中让学生作图,在课堂上让学生汇报作图中遇到的困难,这样教师再去订正,效果要好很多。有时候就是要让学生经历“错误”的过程,这样他们才会懂。正所谓“我听到的,我会忘记;我见到的,我会记住;我做过的,我会理解

  3、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。

  4、学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

  5、合作学习的有效性不够。其实在演示几何画板的过程中,学生在a>0的情况下能得到a越大开口越小,a<0的情况下a越小开口越大。但是综合起来学生就困难的多了。这个时候不妨让大家小组讨论完成知识的总结。有这样一种说法:你我各一个苹果,交换之后,你我还是一个苹果;你我各有一种思想,交换之后,你我却有了两种思想。这很形象地说出了合作学习的好处。教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

二次函数的教学反思12

  二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式和它的定义域.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义. 在教学中,我主要遇到了这样几个问题:

  1、关于能够进行整理变为整式的式子形式判断不准,主要是我自身对这个概念把握不是很清楚,通过这节课的教学过程,和各位老师的帮助知道,真正达到了教学相长的效果。

  2、在细节方面我还有很多的.不足,比如,在二次函数的表示过程中,应注意强调按自变量的降幂排列进行整理,这类问题在今后的教学中,我会注意这些方面的教学。

  3、在变式训练的过程中要注意思考容量和密度以及效度的关系,注意教学安排的合理性。另外在教学语言的精炼方面我还有待加强。

二次函数的教学反思13

  立足于二次函数在初中数学函数教学中的地位,根据学生对二次函数的学习及掌握的情况,从梳理知识点出发采用以习题带知识点的形式,我精心准备了《二次函数》的第一节复习课,教学重点为二次函数的图象性质及应用。

  最初,“抛物线的开口方向、对称轴、顶点坐标、增减性”这一相关性质复习设计中安排了3个训练题目,其中第(2)小题侧重在抛物线的对称性与增减性,集体备课后我在复习侧重方向上作了调整:加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练,另外还预想借图象识别2a与b的关系将是本节课的一个难点。本节通过建立函数体系回忆了二次函数的定义,其图象与性质及与一次、反比例函数图象的综合应用,相继进行,但此环节中“2a与b的关系”学生没有提到,迫于突破此难点,我让学生观察课例图象,并进一步引导观察对称轴的具体位置后,仅有十几个学生准确理解、掌握,于是我进一步的分析“2a与b的关系”由对称轴的具体位置决定,并说明由a>0与b>0能推导出2a+b>0的方法仅适于此题,但效果不尽人意,仍有一部分学生应用此法解决相关问题。如此导致处理二、2、(2)题时间紧张,使得重点不凸现。将第(3)题留为课后作业,来了个将错就错,为下一节课复习“二次函数与二元一次方程”的关系巧作铺垫。

  通过本节课的备课与教学,我受益匪浅,感受颇多:

  1.每一个学生都有一定的知识体验和生活积累,每个学生都会有各自的思维方式和解决问题的策略.这一堂课我让学生成为数学学习的主人,自己充当数学学习的组织者,取得了意想不到的效果,学生不但能用一般式,顶点式解决问题,还能深层挖掘,巧妙地用两根式解决问题,可见学生的`潜力无穷.

  2.本课遵循尊重学生,相信学生,依学生的“主体”教学思想,运用助思,助学,助练的启发式教学方法,启动了师生交流的“匣门”,使教学过程真正成为了师生间的双向活动

  3、在如何备复习课,准确把握一个单元及一节课的重点及突破难点方面有了很大提高;在巧妙驾驭课堂方面有了很大进步;在如何与他人相处方面有了更好的认识,踏踏实实地做人。

  总之,在实践中获得灵感,在交流中撞出智慧,在反思中调整思路,在坚持中取得进步。

二次函数的教学反思14

  本节课重点是,结合图象分析二次函数的有关性质,查缺补漏,进一步理解掌握二次函数的基础知识。

  要想灵活应用基础知识解答二次函数问题,关键要让学生掌握解题思路,把握题型,能利用数形结合思想进行分析,与生活实际密切联系,学生对生活中的“二次函数”感知颇浅,针对学生的认知特点,设计时做了如下思考:

  一、按知识发展与学生认知顺序,设计教学流程:首先通过复习本章的知识结构让学生从整体上掌握本章所学习的内容,从而才能在此基础上运用自如,如鱼得水;二、教学过程中注重引导学生对数学思想应用基础知识解答,然后小组进行交流讨论,老师点评,起到很好的效果。这堂课老师教得轻松,学生学得愉快,每个学生都参与到活动中去,投入到学习中来,使学习的过程充满快乐和成功的体验,促使学生自主学习,勤于思考和于探究,形成良好的学习品质。

  数学教学活动是师生积极参与、交往互动、共同发展的过程,从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得数学的`基础知识、基本技能、基本思想和基本活动经验,促使学生主动地学习,不断提高发现提出问题、分析问题和解决问题的能力;

  设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:

  (1)如何使他们愿意学,喜欢学,对数学感兴趣?

  (2)如何让学生体验成功的喜悦,从而增强自信心?

  (3)如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑?

  (4)培养学生合作学习的互助精神和独立解决问题的能力。

二次函数的教学反思15

  二次函数是数与代数中的重点,图形变换是空间与几何中的重要内容,当二者结合在一起时学生不易理解,所以设计了本节课的内容。

  优点:

  1、课件制作有演示图形的变换与呈现的结果,帮助学生更好地理解图形变换的规律和特点,认识问题的本质,突破难点。

  2、练习题的选择以模考、练考、往届中考及中考说明为主,强调了所学知识如何在做题中应用,提高学生的解题能力。

  3、在复习过程中强调了数学思想方法的应用,如整体代入的思想,数形结合的思想,逆向思维的'方式等,提升了学生的数学思维,教学反思《二次函数与图形变换教学反思》。

  4、以表格的形式对本节课的知识进行总结和梳理,使学生对本节课的内容有一个整体的回顾,从认识到数学思考对学习的重要作用。

  缺点:

  1、上课气氛过于沉闷,由于选择的题型较有难度,使不少学生独立思考问题时缺少解题的方法和技巧,耽误了一些时间。

  2、学生对于本节课的内容没有充足的时间进行反思和总结,很多规律由老师代替总结。

  3、由于时间关系,所涉及的内容较多所以留给学生思考和进行展示的机会太少。

  4、讲课的内容可能没有照顾到全体学生,有少部分学生对本节课的知识掌握的不好。

  努力的方向:

  1、进一步研究考试说明,使初三总复习能够更有效进行。

  2、认真钻研各种题型,引导学生总结解题方法以及所运用的数学思想。

  3、备好学生,使课堂气氛更活跃一些。

  专家点评:

  1、用图像研究函数应指明关键地方。

  2、图形变换与a、b、c、h、k、x1、x2相关,每种变换与常数有什么关系应明确指出。

  平移————a、b、c

  旋转————h、k

  对称————x1、x2

  3、明确函数的解析式应能够画出图像草图进行分析。

  4、教案中突现学生为主体。

  5、应在平时的讲课过程中培养学生表述问题的能力,引入学生之间的交流、评价,易于提升课堂气氛。

  6、课堂练习在巡视的过程中,所发现的问题应及时点评。

【二次函数的教学反思】相关文章:

二次函数教学反思04-16

数学二次函数教学反思04-22

《二次函数复习课》教学反思11-05

二次函数应用数学教学反思(通用5篇)12-26

《二次函数》教案02-21

二次函数教案08-17

函数的概念教学反思11-12

二次函数概念说课稿07-06

二次函数教案(荐)11-22