圆锥的体积教学反思

时间:2024-05-16 15:48:57 教学反思 我要投稿

圆锥的体积教学反思[优秀15篇]

  作为一名人民老师,课堂教学是重要的工作之一,对学到的教学技巧,我们可以记录在教学反思中,那么你有了解过教学反思吗?以下是小编整理的圆锥的体积教学反思,仅供参考,欢迎大家阅读。

圆锥的体积教学反思[优秀15篇]

圆锥的体积教学反思1

  《圆锥的体积》一课的教学,是在学生掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先生活故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

  一、让学生经历发现、提问、解决问题的全过程

  新课一开始,我就利用教师出示一堆煤,师:将这堆煤倒在地上,会变成什么形状情境导入,教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。在猜想中学生的学习兴趣高涨,更明确了学习的目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

  二、让学生在现实情境中体验和理解数学

  在实验前让学生先猜想,再通过小组合作实验、演示、交流得出结论,亲自去验证自己的猜想是否正确,既调动了学生的实际操作能力,也通过他们的实际操作自己得到结论促进了小组的合作意识。符合数学来源于实践的认知。充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并完成实验结论。推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的认识

  1、情感的发展

  小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的`态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。

  2、思想的发展

  小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。

  三、多层次设计练习题

  练习设计从基本题入手,过渡到情境题,发展到综合解决实际问题,这个过程中训练了学生的解题能力,培养了运用所学知识解决实际问题的能力。

  在教学后感觉到遗憾的是,由于教具准备不足的关系,学生参与以小组合作学习的面小,小组合作分工不太合理,使每个学生不是全身心投入到探究实验中去。这样少部份学生的学习参与积极性不高,有点被动、遗憾进行学习,没有最大限度的发挥每个学生的自主学习的能力。这样的学习虽然是培养了学生的能力,但合作意识还需加强,学生小组合作完成试验的默契还需加强。

圆锥的体积教学反思2

  圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然,也有许多收获。

  新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

  在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

  一、 收获:

  1、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  2、每个学生都经历“猜想估计---设计实验验证---发现算法”的.自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。

  (1) 、一节好的课,在教学时要层次清楚,步步深入,重点突出。

  在教学“圆锥的体积”时,我首先用实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

  (2) 、一节好的课,应注意激发学生的求知欲。

  新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

  (3) 、一节好的课,要有全体学生的积极参与,突出学生的主体作用。

  由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

  二、 不足:

  1、 许多学生在计算过程中常忘记除以3,需要加强训练。

  2、 实验教材数量有限,只能起到演示作用,学生成为被动的观看者,不能实现人人参与操作探究。

  (1)。这些实验设计在教学实践中也暴露出许多不足:这些实验设计都需要借助一定的中介,而根据小学生的认知特点,他们在比较体积关系时首先想到的是进行体积的直接对比,所以实验设计不符合学生思维的真实水平。

  (2)。实验教材具有现成性,学习用具具有一定的实际限制,使学生探索思考的空间较小,不利于学生思维的充分发展。

圆锥的体积教学反思3

  教学“圆锥的体积”一课,重点是体积公式的推导。公式导出后,如何进行计算应用。我让每个学生都经历“猜想估计———设计实验验证———发现算法”的自主探究学习的过程,适当的引导学生根据自己的'设想探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式——v=1/3sh,这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

  1、学生对公式推导过程理解有困难,对圆锥体体积计算公式中“1/3”的理解不深入,虽然学生的学习用具是固定的,但是他们所采用的方式却是不一样的,学生有着各自不同的思维方式。

  2、在计算的过程中,运用公式计算时往往丢失“1/3”,单位名称用错,体积单位用面积单位。

  1。为了避免单位名称的错误,可在课前复习中设计单位换算的填空题,辨析题等。例如:1立方米=——立方分米=——立方厘米,100平方厘米=1立方分米。

  2。在学生利用学具理解公式的推导过程时,应放手让学动手动脑自己解决,但动手之前一定要把任务布置清楚,让孩子们自己发现圆锥与圆柱体各部分之间的关系,从而推导出圆锥的体积公式。

圆锥的体积教学反思4

  通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利用以学生认识发展规律为依托 :发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在“认识—实践—再认识、再实践”中理解运用知识。反思教学过程,主要有以下几点体会:

  一、观察引导

  让学生观察用卷笔刀削铅笔,明白刚才那一截是圆柱体,现在这一截变成了圆锥体。启发学生:削成后的这一部分体积与原体积比较有无变化?学生回答是肯定的,削后体积变小了。变小了以后的圆锥体是原圆柱体的几分之几?也就是说圆锥体体积与圆柱体体积有什么联系?圆锥体体积公式如何推导?带着问题去看书。

  二、巧置陷阱

  学生看书后知道圆锥体体积等于等底等高圆柱体积的三分之一。但对“等底、等高”这个条件往往不注意。为了突出“等底、等高”这个条件的重要性,我巧置陷阱,让学生分组操作,(有一组的圆柱和圆锥体的容器不是等底等高的,有一组的圆柱和圆锥体的容器是等底等高的),去验证课本上的知识。学生进行倒水实验:用圆锥体容器盛满水倒入圆柱体容器。过了一会儿,一个小组倒了3次水,还没灌满;而另一小组的同学却大叫:“水溢出来了!”这是什么缘故呢?学生们议论纷纷。

  三、柳暗花明

  这时正是学生思维活动进入高潮时,我拿出等底等高的圆柱体和圆锥体两个容器,用圆锥体量水三次正好灌满圆柱体,引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。而在这样的过程中我放手让学生去想、去做,鼓励学生以多角度去思考问题。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  四、归纳总结

  刚才同学们发现圆锥体体积等于等底、等高圆柱体体积的,现在圆锥体体积公式如何推导?学生很容易得出:

  v圆锥体=sh÷3

  但在教学过程中我发现了几个值得我思考和改正的问题:

  1、在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多。

  2、有些学生在计算过程中常忘记除以3,需要加强练习。

  3、对学生的操作关注不够到位。

  采取的措施:

  1、培养学生养成良好的学习习惯,做题时认真仔细。

  2、上课要用心去感受学生课堂上出现的各种情况,使自己更有激情,把自己更好地融入到课堂教学中去。同时也会把时间更多的放在钻研教材上,把每一节课上得有声有色。

  《圆锥的体积》教学反思

  《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:

  (1)密切数学与现实的联系,富有儿童情趣。

  学生从熟悉的经典历史故事《曹操称象》中,理解了“大象”转化为“石头”的等量代换的.数学方法,渗透转化的方法,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。实验中的米;最后,习题中又回归生活,延伸了课堂。

  (2)致力于改变学生的学习方式。

  在教学过程中,能够在学生已有的知识经验基础和动手操作上,经过学生自主探索与合作交流,解决了与生活经验密切联系,具有挑战性的问题。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,体验到了成功的快乐。

  (3)学习过程中揭示了一般科学的研究方法。

  提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、理想和方法,更发展了学生的反思意识、小组自我评价意识。

  纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出,取得了良好的教学效果。

圆锥的体积教学反思5

  《圆锥的体积》是人教版小学数学六年级下册第三单元的内容之一,它是学生在学习了圆柱的认识,圆柱的表面积,圆柱的体积,圆锥的认识基础之上,学习的。这一堂课,我有幸邀请了三位同伴来听我的课,给我一定的指导,我也从中发现了自己的一些问题。

  这节课中,我注重学生操作的过程,我的设想就是要学生经历这个过程。首先要让学生观察,我手中的学具,圆锥和圆柱有什么共同点?学生发现,它们是等底等高的。接下来,我提出问题,它们谁的体积大?但是关于这个问题,学生的回答,基本上没有答到点子上,有学生说,因为谁的表面积大,所以体积大。本来我预设中,很容易观察发现的体积对比,但是,因为我的提问,它们谁的体积大,为什么,这个为什么,让学生绞尽脑汁去想,去套一些内容。后来我反思,我应该先把圆锥放入圆柱里,让学生直接说出,圆锥的体积,比等底等高的圆柱体积小。或者用试验的方法,把圆锥的水,倒入圆柱,让学生直接得到体积比大小的结论。接下来,先让学生说说方法如何验证圆锥和等底等高圆柱体积之间的关系是什么?根据以前学的圆柱体积,学生得出了三个方法,排水法,实验法,测量体积法。根据一些情况,排水法无法实现。学具是空心的,会漂浮在水面,其次,学具有缝隙,水会渗进去。所以排水法,只是作为学生了解的方法,但并不实践。在试验环节,我没有说清楚具体的操作要求,导致个别学生在操作中,用圆柱的水,倒进圆锥里,这样难以得出正确的结论。大多数学生,听清了我的要求,几杯圆锥的水,可以倒入圆柱。学生很容易就得出了结论。我让学生在黑板上小组演示倒水的过程,同时,也让其他学生一起数杯数,也是加深试验结果。我多让几个学生说一说,圆锥和等底等高圆柱体积之间的关系,用了关联词,因为...所以...我也引导学生,多次强调,这样的关系一定有一个前提,圆锥和圆柱是等底等高的。为了验证这样的体积关系,我抽学生上讲台,利用测量法,来验证。当然,我在最后也强调,试验只是一种手段,得出的结论可能是不精确的`,但是数学家验证了这一点,所以大家可以直接用这条结论。

  美中不足就是习题没有时间去练习。学生都有最佳遗忘曲线,如果没有练习题,学生的知识没有在最佳的时间去巩固去检测,对于真正理解知识,巩固知识是不利的。我设计的习题,都是书上的,还是缺乏一点趣味性、层次性。

  总之,这节课,不是很完美,有很多遗憾。以后的几何课中,我还是会多让学生历经操作的过程,学生在操作中观察、归纳、验证、总结。操作前,一定要讲清楚操作要求,还要预设更多可能会出现的

  情况,时间的把控要再精确一点,自己的教学语言,还更规范一些,多用一些激励语,以后的教学设计,尽量多考虑如何体现趣味性这个问题。

圆锥的体积教学反思6

  本节课在学习圆柱的体积的基础上,再学习圆锥的体积,学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然也有许多收获。

  一、收获

  1、是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;

  2、是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的`主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  3、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  4、每个学生都经历“猜想---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。

  二、不足:

  1、许多学生在计算过程中常忘记除以3,需要加强练习。

  2、许多学生在计算中出现错误,计算能力不过关,口算也不过关,导致计算失败。

  3、在学生进行倒沙实验时,应该事先让学生准备好充分的学具,比如,准备一个圆柱,然后做一个和圆柱等底等高的圆锥,在做一个等底不等高的圆锥或者等高不等底的,这样学生就比较明显的看出与圆柱等底等高的圆锥的体积是圆柱体积的三分之一。

  4、一节好课在教学时要层次清楚,步步深入,重点突出。应注意激发学生的求知欲。要有全体学生的积极参与,突出学生的主体作用。我在这几个方面都还要加强。

圆锥的体积教学反思7

  在本节课中,通过用排水法测量外形类似于圆锥的体积(比如铅锤)不但麻烦,而且有时还不能用(比如测量麦堆的体积),体会此方法具有一定的局限性而引入新课。从面上的相似性知道圆锥的体积可能与圆柱的有关,然后经历大胆猜测、实验验证、分析实验结果,从而得出体积公式的过程。再利用适当的练习巩固公式而达到本节课的教学目的。本节课总体感觉很顺畅,学生思维活跃。在课堂上利用实物演示,较好地引导学生思考,总结出等底等高的圆柱与圆锥之间的关系,突出了重点,突破了难点。

  《数学课程标准》明确指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的`问题,增强应用数学的意识。”本课的设计充分体现了这一理念。课中让学生动手分别用圆锥和圆柱盛沙,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。同时,课堂教学注重让学生自主学习,合作探究,充分发挥了学生的学习主动性,也培养了学生的创新能力。

  虽然本节课达到了教学目的,取得了不错的教学效果,但也存在一些不足,由于受条件限制,学具准备不够充分;课堂语言还不够简练;在学生汇报时,没有抓住生成;没有认真研究不等底不等高的体积关系等。在以后的教学过程中一定会注意这些问题,使自己不断地进步。

圆锥的体积教学反思8

  圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积计算的基础上教学的,是小学几何初步知识教学的重要内容。本课的设计主要做到了以下几点:

  1.大胆猜测,培养猜测意识。假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,在教学设计中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,让学生大胆猜想它们的体积可能会有什么样的关系,这样设计不仅仅能够培养学生的猜测意识,更重要的`是能够充分调动所有学生的积极性,激起大家的探究愿望。

  2.操作验证,培养科学的实验观。数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式。教学设计中,注重引导学生通过自主探究实验得出结论,让学生明确圆锥的体积是与这个圆锥等底等高的圆柱体积Sh的三分之一,从而总结出圆锥体积的计算公式V=三分之一Sh。

圆锥的体积教学反思9

  课前我安排学生收集、整理生活中应用圆锥的实例和信息资料。教学时我首先列举生活中大量的圆锥实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出几何形体的基础上引入。再引导学生对照模型和图形,互说圆锥的`特征,加深对圆锥的认识。感受几何知识在生活中的应用,同时提高学生运用数学为生活服务的意识和能力。

  在本课中,我无论从问题的引入,圆锥概念的定义,高的寻找及测量方法的探索,我都给予学生充足的时间进行尝试、研究和讨论,让学生以不同的方式进行合作、交流,这样的过程,不仅提供了学生自主学习的机会,也提高了学生自主参与学习的意识和信心,大家积极发言,争先操作,参与率很高。

  我积极地创造机会让学生自己去学习或者去探究问题。通过看一看,摸一摸,比一比,指一指,说一说,猜一猜等问题情境,让学生亲身感受数学,在找中学,在测中学,在思中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学,动起来,活起来,让学生在做中学,使数学课堂焕发出生命活力。

圆锥的体积教学反思10

  圆锥的体积是圆柱体积的延伸,所以再学生了解圆柱体积计算公式以后,我有意识地让学生来解决圆锥的体积,有的同学说圆锥的体积公式是V=sh,也有的`同学说不是V=sh,而是V=sh÷3,当我问及为什么是V=sh÷3时,这位同学说,是书上是这样说的。我知道这位同学在老师讲新课之前,他已提前预习了。接着我把提前准备好的两个学具摆在学生面前,找人上来操作,让学生从实际操作中验证圆锥的体积公式到底是V=sh,还是V=sh÷3。因为数学由于语言的严谨性,我说“圆锥的体积是圆柱体积的1/3”这句话是否正确。有不少同学通过刚才的试验,绝大多数同学都说这句话是对的。然而也有极少数同学认为这句话不够严谨,还应该加上“当圆锥与圆柱等底、等高时,圆锥的体积才是圆柱体积的1/3.”通过辨析,我让学生不仅明白了圆锥体积公式的推导过程,还让学生明白圆锥体积公式与圆柱体积公式之间的内在联系。

  一节好的数学课不是老师教出来的,而是学生通过试验总结、归纳、体验,通过活动“做”出来的。

圆锥的体积教学反思11

  《圆锥的体积练习课》教学反思正如探究圆柱体积计算方法的教学过程一样,学生不再是实验演示的被动观看者,而是参与操作的主动探者,是学习的主人。

  在整个教学过程中,学生获得的不仅是鲜活的数学知识,同时也获得了更多探究学习的科学方法,探究成功的喜悦以及探究失败后的深刻反思。在这样的学习中,学生会逐步变得会思考,逐渐发现自身的价值。同时,在操作与实践的过程中,我让一些学习有困难的学生参与其中,使他们感受到学习数学的快乐,并使他们懂得可以通过玩学习到数学知识。

  这是本节课在教学组织上的'优点所在。对于教学内容的设计,我通过提问引入圆锥的体积,生动而形象地揭示了本节课的课题。对于学生易混淆的知识点,我通过实物展示、语言强调、练习等方式,让学生掌握只有当圆柱和圆锥等底、等高时,圆柱的体积才是圆锥的3倍这一知识点。

  对于圆锥的形成过程,我也设计了一个习题让学生自行思考和感受,并通过比较计算结果发现沿一个直角三角形不同直角边快速转动后所得到的圆锥的区别与联系,使学生在对比中进一步理解并掌握知识。

圆锥的体积教学反思12

  课前我安排学生收集、整理生活中应用圆锥的实例和信息资料。教学时我首先列举生活中大量的圆锥实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出几何形体的基础上引入。再引导学生对照模型和图形,互说圆锥的特征,加深对圆锥的认识。感受几何知识在生活中的应用,同时提高学生运用数学为生活服务的意识和能力。

  在本课中,我无论从问题的引入,圆锥概念的定义,高的寻找及测量方法的探索,我都给予学生充足的`时间进行尝试、研究和讨论,让学生以不同的方式进行合作、交流,这样的过程,不仅提供了学生自主学习的机会,也提高了学生自主参与学习的意识和信心,大家积极发言,争先操作,参与率很高。

  我积极地创造机会让学生自己去学习或者去探究问题.通过“看一看”,“摸一摸”,“比一比”,“指一指”,“说一说”,“猜一猜”等问题情境,让学生亲身感受数学,在“找”中学,在

  “测”中学,在“思”中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学“动”起来、 “活”起来,让学生在

  “做”中学,使数学课堂焕发出生命活力。

圆锥的体积教学反思13

  在教学“圆锥的体积”这一课时,我没有用传统的讲解演示法去组织教学,而是采用探究性学习的方法组织学生的学习活动。围绕怎样能让学生积极参与探究活动的问题,我思索了好一阵子,曾作过这样的设计:圆锥的体积大小与什么有关?当学生回答与圆锥的底面积和高有关时,教师接着问:已知圆锥的底面积和高怎样计算圆锥的体积?这时,估计有学生很快说出计算公式,因为有学生已看过书,这是班级学生的实际情况,此时教师该怎么办?不让这些学生回答,这是对他们的不尊重,可能会打消他们学习的积极性,如果让他们回答,势必会影响班上绝大多数学生探索的积极性,因为他们原本是不知道这个结论的,现在结论已给出,又何必苦苦进行探索?

  我反复地思考着,预想着学生中可能会出现的种种情况……,于是我决定提问:你能想什么办法自己去发现圆锥体积的计算公式?这一问题的提出,不在公式本身,而在于发现公式的思考方法上,我想,小学生往往只关心结果,不注意思考方法和过程,既使看过书的学生,大多也未曾思考为什么会是这样之类的问题,这问题能将学生的思维聚焦在探究的方法上,而重视对探究方法的思考,正是我们的数学教学应该加强的,问题一提出,学生就置身于问题情景中,兴趣盎然地投入探究活动之中。

  实践证明,整个学习过程,是一个积极探究的过程,学生始终是主动的探索者,从教学效果来看,学生不仅主动地建构计算圆锥体积的新知,而且思考力得到有效的培养。

  课后反思这节课,我想探究性学习决不是让学生盲目的'试误,否则将会出现形似探究,实际上还是讲解灌输的教学。我认为,进行探究性学习的关键是:教师要将自己假设成学生,了解学生思维的实际情况,善于将书本上结论性知识转变成学生乐于探究的问题,从而燃起学生探究的欲望,使学生以饱满的情态积极投入到探索性学习活动中,教师还必须引导学生关注探究的方法,给予探究方法的指导,让学生在探究中学会探究,提高主动获取知识的能力。

圆锥的体积教学反思14

  圆锥的体积是在学生认识了圆柱与圆锥,并掌握圆柱的体积的基础上教学的。本节课我主要分两个层次进行教学,一是推导圆锥体积计算公式,二是运用公式求圆锥的体积。我在教学时,主要运用了探究式的教学方法进行教学,收到了良好的效果,现总结以下几点做法:

  一、大胆猜测,培养猜测意识

  假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,再大胆猜想它们的体积可能会有什么样的关系?”这样设计,事实证明不仅仅是能够培养学生的.猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。

  二、操作验证,培养科学的实验观。

  数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式。在教学中,我准备实验的用具,让学生通过动手做实验得出结论:圆锥的体积是与这个圆锥等底等高的圆柱体积的三分之一,圆柱体积是与它等底等高的圆锥体积的3倍。从而总结出圆锥体积的计算公式:V=1/3Sh。

  从本课的练习环节,发现学生对圆锥体积的计算掌握扎实,这说明操作实验在圆锥体积公式的推导中显得非常重要。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己操作实验。培养学生科学实验观。

  让每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到探究数学的乐趣。

圆锥的体积教学反思15

  优点:

  教学“圆锥的体积”一课,重点是体积公式的推导。公式导出后,如何进行计算应用。我让每个学生都经历“猜想估计———设计实验验证———发现算法”的自主探究学习的过程,适当的引导学生根据自己的设想探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式——V=1/3Sh,这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的'实际问题,加深学生印象。

  不足:

  1、学生对公式推导过程理解有困难,对圆锥体体积计算公式中“1/3”的理解不深入,虽然学生的学习用具是固定的,但是他们所采用的方式却是不一样的,学生有着各自不同的思维方式。

  2、在计算的过程中,运用公式计算时往往丢失“1/3”,单位名称用错,体积单位用面积单位。

  再教设想:

  1.为了避免单位名称的错误,可在课前复习中设计单位换算的填空题,辨析题等。例如:1立方米=——立方分米=——立方厘米,100平方厘米=1立方分米。

  2.在学生利用学具理解公式的推导过程时,应放手让学动手动脑自己解决,但动手之前一定要把任务布置清楚,让孩子们自己发现圆锥与圆柱体各部分之间的关系,从而推导出圆锥的体积公式。

【圆锥的体积教学反思】相关文章:

《圆锥的体积》教学反思04-03

圆锥的体积教学反思09-17

《圆锥的体积》教学反思05-16

《圆锥的体积》教学反思【集合】05-16

《圆锥体积》教学反思04-02

《圆锥体的体积》教学反思04-16

圆锥的体积教学反思(15篇)12-01

圆锥的体积教学反思15篇11-19

圆锥的体积教学反思(精选15篇)12-01

《圆锥的体积》教学反思(实用15篇)05-16