植树问题教学反思

时间:2024-05-16 11:31:40 教学反思 我要投稿

植树问题教学反思(经典)

  作为一位刚到岗的教师,教学是我们的任务之一,写教学反思可以很好的把我们的教学记录下来,怎样写教学反思才更能起到其作用呢?下面是小编整理的植树问题教学反思,仅供参考,大家一起来看看吧。

植树问题教学反思(经典)

植树问题教学反思1

  本节课的内容主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。但对这些数学方法的挖掘和处理可谓“仁者见仁,智者见智”。我觉得这一课的数学思想方法主要是“化繁为简”或者说是从简单入手寻找规律,而这种方法在北师大版教材中体现得淋漓尽致,而在人教版教材的编排上可谓“若隐若现”,因此我觉得我们使用人教版教材的课堂,应该充分挖掘教材教给学生这种解决问题的策略。

  课堂教学中我安排了三个层次的探究活动,从实物操作到画线段图到类比推理,有效地突出了解决问题策略的重要性和多样性。学生在课堂上也领略到数学智慧的夺目光彩,增强了学生学习数学的兴趣和信心。通过本课的设计和实践,我更迫切地感受到数学思想和方法在学生学习和生活中的重要性,因此对数学思想和方法在课堂中落实的研究迫在眉睫。这也是当前数学课堂中存在的重要缺失,身为学校教研员更为向广大教师传播数学思想和方法的重要性,并提出渗透数学思想,教给学生数学方法的`有效措施。

  本课中为了突显解决问题策略的多样化和完整性,我把教材中原本安排两课时完成的内容缩成一课时。而且在这一课时我把教学重点放在学生解决问题策略的学习、理解上,因此对于本课的知识点的处理上略显不足。

植树问题教学反思2

  一、教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。

  二、教材目标:

  1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。

  2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。

  3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。

  三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。

  四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的'实际问题。

  五、教学准备:学习单、多媒体课件、小树和小路模型。

  六、 教学过程:

  (一) 问题导入:

  出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?

  教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”

  (二)探究新知:

  1.队列问题:

  出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的关系,再次对应“间隔数+1”

  并出示课题。

  2.植树问题:

  (1)体会“化繁为简”思想:

  问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?

  突出矛盾:数字太大,不易思考,引导学生转换较小的数。

  明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)

  (2)设计三种植树方案:

  引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。

  ①学生活动,教师巡视。

  ②汇报、展示:

  ③小结:组织学生对不同方案进行命名,突出其主要特征。

  教师板书:两端都种、只种一端、两端不种

  (3)探究规律:

  ①求间隔数:

  教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。

  在没有植树的棵数时,探究间隔数与全长、间隔的关系。

  组织学生独立思考,借助学具、线段图等形式探究规律

  a:学生思考并摆学具或画线段或列算式。

  b:汇报:

  ②探究间隔数与棵数的关系:

  开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?

  小组合作完成探究,活动要求:

  1)自己选择适合的间隔长度,四人小组合作完成记录表。

  2)小组选择一种植树方式进行探究。

  3)可以借助摆学具、画线段、数手指或列算式的方式。

  a:学生小组活动,教师巡视。

  b:学生汇报发现规律,教师板书。

  c:升华:

  三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。

  d:应用:

  老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?

  (三)巩固提升:

  1.选一选:

  下面每一题相当植树问题的哪一种情况?

  (1)音乐中的“五线谱”( )

  (2)衣服上的纽扣( )

  (3)成语“一刀两断”()

  (4)自鸣钟九点报时的钟声( )

  A.两端都种 ; B.只种一端; C.两端不种。

  2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:

  (1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )

  (2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )

  4.学校一条大路的一边共插了20面彩旗。

  (1)如果使两面彩旗中间放一盆花,一共要放多少盆花?

  (2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?

  (四)课堂总结:

  师:今天我们学习了什么?你有什么收获?

  生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。

  教学反思

  通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。

植树问题教学反思3

  本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

  一、动手操作、合作交流、探究规律:

  本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。

  二、练习的设计独特、新颖、有梯度:

  本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。

  由于练习的解答采取竞赛的`方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

  三、充分体现学生的主体作用及教师的主导作用:

  本节课,我通过引导学生动手操作(模拟植树)——交流讨论(植树方案)——得出结论(三种植树问题的解决方法)——应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

植树问题教学反思4

  “数学广角”的教学目标的主要是让学生体验知识的形成过程和感悟数学思想方法,义务教育教科书第七单元数学广角——植树问题,主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,借助线段图等手段让学生从中发现规律,抽取出其中的数学模型,然后再用发现规律来解决生活中的简单实际问题。具体到本单元时,教师应从实际问题入手,引导学生在解决问题的分析、思考过程中逐步发现隐含于不同的情形的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。

  在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线如圆形。即使是关于最基本的一条线段上的植树问题,也可以有不同的情形。如两端都要栽,一端栽另一端不栽,两端都不栽。而在封闭曲线上的植树问题可以转化为在一条线段上的植树问题中的“一端栽另一端不栽”的情况。在本节课的教学中,我针对数学广角的特殊要求,把重点放在在了两端都栽的问题上,让学生通过经历两端都栽的问题掌握研究的方法,指导发现问题的结论,从而为植树问题的后续研究做好铺垫。

  本课我在教学设计上突出了少就是多,慢就是快的原则。导入时让学生通过观察自己的手发现其中的秘密,认识间隔和棵数之间简单的关系,通过课件介绍生活中与间隔有关的问题就是植树问题。然后借助图表、线段等方法,渗透把复杂问题简单化的`原则,进行小数据研究发现其中的规律。在学生借助图表、线段及自己的思考过程进行全班交流,使两端都栽的植树问题规律特别明显,充分理解了两端都栽的问题明确棵数=间隔数+1。而后经过各种各样的梯度训练,让学生经历敲钟、电线杆、车站等各种与两端都栽的植树问题有关的其他问题,然后提升到间隔数、总长、间距等之间的复杂关系解决上,建立完整的解决问题的体系。

  本节课中不足的问题有:设计中的重点部分是让学生在亲历知识形成的过程中,独立思考交流,总结方法。我在让学生交流的时间上给的不够,学生没有达到充分的内化知识,不能很好的展示其中的关系,在梯度训练中的变式练习就明显感到有的孩子吃力了。在学生的学习过程中如何把握好时间,把话语权交给学生,适时智慧引导,才能够让学生乐于参与有方法,不断拓宽长知识。

  本节课我重视了课堂中的设计想把简单做扎实,我觉得只有基础扎实了,才会有更高更远的风景。

植树问题教学反思5

  植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

  我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。

  一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。

  反思整个教学过程,我认为这节课有以下几点做得比较好:

  一、创设浅显易懂的生活原型,让数学走近生活。

  创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。

  在处理教材时我把例题改为条件开放的植树问题,不规定间距,同时改小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。 在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。

  二、注重学生的自主探索,体验探究之乐。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的.方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:你能找出什么规律?启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

  三、利用学生资源,加强生生合作

  学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。

  四、关注植树问题模型的拓展和应用

  植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:

  (1) 直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。

  (2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如教室里的座位的事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以图片的形式让孩子们了解生活中与植树问题相似的现象,最后还把刘翔2004年雅典奥运会上精彩夺冠的场景再次重现,并出示110米栏的图,从中找到间隔,同时,渗透爱国主义教育。

  这节课充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。

植树问题教学反思6

  《植树问题》是人教版义务教育教科书五年级数学上册第七单元数学广角的内容。这一内容主要涉及到的知识点有:两头植、两头都不植、封闭情况下的植树问题(一头植和一头不植)这三种情况。w我选取的是第一课时两端种植,怎样才能让学生即能学会,还要学的轻松呢,我反复研读教材,两端其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想。模型思想,同时使学生感悟到应用数学模型解题所带来的便利。我这节课重点教学两端都栽的植树问题,主要目标是向学生渗透复杂问题从简单入手,奇妙运用数形结合的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。

  一、通过自主探索的活动,渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。

  整节课设计基于我班学生实际情况,课前创设情境让学生欣赏美丽的风景,同时引导学生明确要学习的内容,紧接着引出例题,探讨植树问题,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解段数+1,建立起深刻、整体的表象,提炼出植树问题解题的方法。可引导通过“以小见大”数形结合来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的设计依据了认知规律:通过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角度应用拓展。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。

  二、关注植树问题模型的拓展和应用,反映数学与生活的密切联系。

  “植树问题”通常是指沿着一定的路线,这条路线的总长度被“树”平均分成若干间隔,由于路线不同、植树要求不同,路线被分成的间隔数和植树棵数之间的关系就不同。现时生活中类似的问题还有很多,如安装路灯、设立公交车站等等。让学生从中悟出植树问题的模型它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。在学生已经自主地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的情况呢?通过学生的举例,让他们进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。整节课,大多数学生的思维表现的很活跃。

  三、本节课的不足:

  1、把学生对于段数+1应做更多的探究,部分学生并没有理解这个知识点,只会运用,应再多加讨论,让学生明白其中的原因。

  2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。

  教学是一门遗憾的艺术,虽然这节课我很尽心尽力,但也留下了很多遗憾,新的教法的一种大胆的尝试过程,总在摸索中不断完善。在准备这节课时我参考了很多资料,学习了很多方法,为的是让这节课的遗憾能少一些。我把握每一个细节,问题及时解决,站在学生的角度去思考问题,使得数学学习的思想方法得到深度的渗透。

  “植树问题”是新课程标准实验教材四年级下册的内容,本课安排“植树问题”的目的在于向学生渗透复杂问题从简单入手的思想。

  教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

  我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。反思整个教学过程,我认为这节课有以下几点做得比较好:

  首先,设计流畅简单易懂。

  整节课设计基于我班学生实际情况,课前创设情境使学生明确要学习的内容,紧接着引出例题探讨植树问题,同时改小数据,这样有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的设计依据了认知规律:通过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角应用拓展植树问题的认识。整节课条理清晰、层次分明、浅显易懂,始终围绕重点内容进行难点的突破。 其次,注重实践体验探究。

  教学中,我创设了情境,向学生提供多次体验的机会,注重借助图形帮助学生理解建构知识。在教学过程中,我时刻对数形结合意识的渗透。在学生自主探索的过程中采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

  再次,联系生活拓展思维。

  有意义的.学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有意义。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能达到继续建构学习的水平。所以,这节课我多次向学生提供体验的机会,而且创设能够激发学生共鸣的情境。从手指、公交车、操场、礼炮等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲望。 这节课虽扎扎实实,但问题也存在着。

  一、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,发散思维。

  二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

  植树问题是非常生活化问题。其中包含两端都栽;只栽一端和两端都不栽,以及封闭图形的栽树。然而由此衍生出的锯木头,敲钟,上楼梯,以及汽车站点,公交车发车班次等问题是非常有趣的。

  在教学中,我尽可能引导学生,用图示法,看手法,以及站队法等直观方法帮助理解,以促使孩子们学会分析问题的方法。同时在引导学生读题的过程中,对问题进行逐字逐句的分析,让孩子们理解总长,间距,间隔数等名词。同时在直观操作中理解,总长除以间距等于间隔数。通过站队,让孩子们清楚的看到,站队的人数总比间隔数多一,这属于两端都栽。同时通过画图,看手指和指间隔进一步理清间隔,间距,棵树之间的关系。 对于封闭图形,我采用同学拉圆圈的形式,通过数人数和间隔数,发现规律。

  同时对于多边形栽树,端点都栽的问题,我让孩子们六人一组合作,可以站队,也可以画图来学习。孩子们学习兴趣极高,通过归纳汇报,收到了不错的效果。

  然而,还有一部分孩子,学习数学建模的方法有待进一步培养。一部分孩子不动脑,总是以旁观者的角色,等靠要,不主动学习,不自己分析,学习停留在背的模式,使得教学效果参差不齐。会学的学精,后进的只知皮毛。题目稍加变化,便无从下手。 针对以上问题,在今后的教学中,还应化大气力培养孩子们自觉学习,勤于思考的习惯,让他们找到正确的学习方法,只有这样,学习才不会僵化。

植树问题教学反思7

  《植树问题》是北京市义务教育课程改革实验教材第八册第三单元实际问题中的内容。这一内容主要涉及到的知识点有:敞开情况下的两头植、两头都不植、封闭情况下的植树问题(一头植和一头不植)这三种情况。这些内容是奥数中出现的内容,对于四年级的学生来说理解起来有一定的困难,怎样才能让学生即能学会,还要学的'轻松呢,我反复研读教材,分析学生。《课标》中提出:“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“探求给定事物中隐含的规律或变化趋势。” “植树问题”通常是指沿着一定的路线,这条路线的总长度被树平均分成若干间隔,由于路线不同、植树要求不同,路线被分成的间隔数和植树棵数之间的关系就不同。现时生活中类似的问题还有很多,如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。

  基于以上思考,我把目标制定为:知识与技能:利用线段图理解两段要植和两端不植两种情况下棵树、间隔数和总长之间的关系。过程与方法:1、通过合作探究、动手实践发现这两种情况植树问题的规律。2、让学生经历探索、猜测、试验、交流、归纳运用的过程获得解决问题的策略。情感态度价值观:让学生感受数学知识在日常生活中的广泛应用,尝试用数学的方法解决实际生活中的简单问题;培养学生的应用意识和解决实际问题的能力。

植树问题教学反思8

  “植树问题”教材将植树问题分为几个层次:两端都种、两端不种、只种一端及封闭图形。

  我设计了以下几个环节。

  一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。

  反思整个教学过程,我认为这节课有以下几点做得比较好:

  一、创设浅显易懂的生活原型,让数学走近生活。

  课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的`学习兴趣。

  二、注重学生的自主探索,体验探究之乐。

  生活情景图引入后出示实例图示,引导学生在观察、点数形象图形后进行填表,发现两端植树时棵树与间隔数之间的关系。当学生对实物图有了清晰的认识后,教师将形象的图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。在电脑演示中学生直观的体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

  这节课充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。

植树问题教学反思9

  一、教学目标:

  1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。

  2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。

  3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  二、教学重点:理解植树问题棵树与间隔数之间的关系。

  教学难点:会应用植树问题的模型灵活解决一些相关的实际问题。

  三、教具准备:多媒体课件和未完成的`表格。

  四、教学过程:

  课前准备:(多媒体放映牛顿和苹果的故事)

  师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)

  谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?

  (一)、提出问题、引发思考、探究规律。

  1、手引发的思考。

  师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?

  师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。

  2、整体感知、确定研究方向。

  课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?

  展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)

  理解:“间隔”、“间隔数”、“棵数”。

  (二)、小组合作,探究规律

  1、提出问题。

  课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?

  学生的猜测可能有不同的结果:1000;1001;1002)

  2、自主探究。

  棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。

  课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。

  引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?

  让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。

  3、发现规律。

  学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。

  师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?

  课件动态演示:一个间隔对应一棵,这样一直对应下去, 1000个间隔就有1000棵,种完了吗?

  师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。

  4、总结归纳。

  归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。

  5、总结规律。

  师:你们能用一个式子把规律表示出来吗?

  【板书】间隔数+1=棵数 棵数-1=间隔数

  6、联系生活

  在我们生活中存在着很多类似植树问题的现象,你发现了吗?

  让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。

  (三)、点击生活

  ①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结( )

  ②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?

  ③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?

  ④ (求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?

  (四)、拓展延伸。

  (课件出示世界著名数学问题)

  师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?

  早在十六世纪,古希腊等国完成了十六行的排列。(出示图1)

  十八世纪,美国数学大师山姆完成了十八行图谱。(出示图2)

  进入二十世纪,数学爱好者绘制出了二十行图谱,创造了新纪录并保持至今。(出示图3)

  (结语)今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!

植树问题教学反思10

  植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的一个新内容。教学中,首先要让学生区分出植树问题的三种类型。即所谓的“两端都种”“只种一端”(包括封闭图形)与“两端都不种” 的三种情况。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”,要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。

  其次,要教给学生解题的方法。不管什么植树问题,一般都是先求出有几个间隔。可以根据“路的长度÷间隔长度=间隔数”然后再根据植树问题的三种类型(“两端都种”“只种一端”(包括封闭图形)与“两端都不种”)去求出棵树。也可以根数告诉的棵树,用“加一”“不加不减”“减一”求出间隔数,再求出路的总长。

  其三,要让学生学会联系生活。把生活中的问题转化成植树问题。可以让学生找一找生活中的 “植树问题”,很多同学联想到:公路两旁的路灯、公路中的斑马线、楼梯的台阶、栏杆的铁柱等都含有与“植树问题”相同的数量关系。亚奥让他们学会分析是植树问题中的哪种类型。然后可以利用“植树问题”的规律来解决它。课堂中可以结合教学内容,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,达到了理想的课堂教学效果。

  植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的一个新内容。教学中,首先要让学生区分出植树问题的三种类型。即所谓的“两端都种”“只种一端”(包括封闭图形)与“两端都不种” 的.三种情况。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”,要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。

  其次,要教给学生解题的方法。不管什么植树问题,一般都是先求出有几个间隔。可以根据“路的长度÷间隔长度=间隔数”然后再根据植树问题的三种类型(“两端都种”“只种一端”(包括封闭图形)与“两端都不种”)去求出棵树。也可以根数告诉的棵树,用“加一”“不加不减”“减一”求出间隔数,再求出路的总长。

  其三,要让学生学会联系生活。把生活中的问题转化成植树问题。可以让学生找一找生活中的 “植树问题”,很多同学联想到:公路两旁的路灯、公路中的斑马线、楼梯的台阶、栏杆的铁柱等都含有与“植树问题”相同的数量关系。亚奥让他们学会分析是植树问题中的哪种类型。然后可以利用“植树问题”的规律来解决它。课堂中可以结合教学内容,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,达到了理想的课堂教学效果。

植树问题教学反思11

  我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。这节课我完全受柏继明老师的手与数学思想所影响,今天做一节关于《植树问题》的数学课,我的设计初衷是希望学生可以自始至终都围绕着手来研究这一典型问题,让学生明白点与间隔的关系。学生开始似乎可以依据小手来了解点与间隔的关系。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。

  一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。

  反思整个教学过程,我认为这节课有以下几点做得比较好:一、创设浅显易懂的生活原型,让数学走近生活。

  创设与学生的生活环境和知识背景密切相关的、学生感兴趣的`学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。使学生直观认识并总结出了间隔和植树棵数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。

  二、关注植树问题模型的拓展和应用

  植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:

  (1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。

  (2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如公共汽车站的事件,上楼问题等都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以图片的形式让孩子们了解生活中与植树问题相似的现象,

  不足:

  我依然出现了课堂调控差的问题,学生能够理解我出示的第一个有关植树问题的铺垫问题,我也总结了植树问题的间隔数×间隔长度=全长的公式,因此,在出示例一后,就急于让学生自己独立完成。而学生对于公式中的各部分名称可能还不是很熟悉,因此,公式变形困难,需要教师还要讲解的地方教师反而放手了。

植树问题教学反思12

  通过老师带领同学们去植树这一情境,接着出示ppt课件,让学生补充数学信息。让学生初步认识间隔,感知间隔数与棵数的关系。整节课以一道植树问题为载体,放手让学生自主学习,以三种不同的植树方案引导学生合作探究植树问题。

  在教学中,让学生通过画图来解决,在画图过程中学生就会发现间隔数与棵数的关系。让学生在整理列表中学生们发现规律,验证规律、运用规律等活动,让学生经历数学模型的科学探究过程。在这节课中,然学生以画图为主线,以“数形结合、一一对应”的数学思想方法为暗线,让所有学生参与为载体,展开学习,实现“数学模型的多维构建。

  整节课上的有些前松后紧的感觉。以至于在解决问题中还有几道没有解决完。如果在探究三种栽树方法的'规律时,再大胆的放手让学生自主的去探究,效果可能会更好些。

植树问题教学反思13

  一、学生的原有认知点在哪里?

  植树问题,看是简单的问题,其实“很难”。为什么呢?那就是在以往的教学中,学生是没有接触这样的数学问题的。如:“间隔数”。对于学生来说完全是陌生的。而在老师看来,这些植树问题的相关知识点是现实生活中的,是学生熟悉的事物,其实不然。就象锯木头,“一根木头,锯3次,锯成了几段?”“用手夹乒乓球,每两个手指夹一个,可夹几个?”“班上原来8个女同学表演节目,现在每两个女同学中间站一个男同学,有几个男同学?”等等。像这样的素材是学生熟知的,但问起来,学生就觉得是脑筋急转弯似的,老会错,但这些情景学生喜欢,简单,可操作性强,只要在课前谈话、游戏时稍加点拨,学生就很容易理解“间隔数”了。

  二、老师,你带直尺来了吗?

  老师在这节课努力创设了探究情景,非常注意学生的`学习过程,通过猜想、验证,使学生经历和体验“复杂问题简单化”的解题策略和方法,建立数学模型,渗透化归思想。但最后的结果也是很重要的。在今天的课堂中,老师还还高估了学生画线段图的能力。加上在第二次探究时给学生过多的要求,诸多因素影响了学生的探究出结果。

植树问题教学反思14

  《植树问题》是人教版新课程标准五年级上册“数学广角”的内容,这一单元主要内容就是植树问题,植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。这样就把植树问题分成了三种情况,即:(1)植树的棵数=间隔数+1;(2)植树的棵数=间隔数;(3)植树的棵数=间隔数-1。

  在这节课我们学习的是第一种情况,在教学中,我不但注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既有趣味性又贴近学生的生活。教材在编写时,都是给出路的长度,求间隔或棵数,但在练习时,很多题都是间隔和棵数,求路的.长度。避免上节课出现问题的同时我还针对上节课出现的问题对学生提出质疑,让生生互评或师生互评,重点表扬大部分学得好的同学使每一个学生获得参与的机会、培养学生探究精神体验成功的感觉,增强学生的自信心和荣誉感,使他们更加热爱数学。

  本节课的主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的方法,以此为基础,根据学生的认知规律,我设计了以下几个环节:

  一、通过课前活动,以春季植树为素材,从让学生初步认识间隔,感知间隔数与棵树的关系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过

  程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。

  因此,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生可以画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。但是我感觉在本节课的教学活动中还有不足的地方:

  其一,上课前准备不充分,那就是我把学生估计过高,我以为只要学生弄懂了棵数和段数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为有一部分学生知道了全长和间距不会求段数,我以为这是学生早已经学过的而且经常用到的,所以没特别的引导,导致了学生无法下手。

  其二,在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。

  其三,条理不够清晰,简直成了教师在唱独角戏,学生参与面不广,没有很好地完成教学任务。

  在今后的教学中我还要全面、深入的了解学生,充分做好多个方面的准备。

植树问题教学反思15

  《植树问题》是人教版小学数学四年级下册的一个内容,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。我发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法。

  上课伊始,出示一段(公益广告植树造林,造副后人)这广告是讲什么的?对学生们进行环境保护教育,让学生意识到植树和生活有紧密的联系,而且植树中还藏着有趣的数学问题,激发学生的求知欲。利用视频中大学生志愿者参加植树活动导入新课,刚才在视频中同学们看到,志愿者参加植树活动,他们要在长1000米的'路一边修建绿化带,每隔5米栽一棵(两端要栽)一共要栽多少棵树苗?

  对于解决这个问题学生感觉有点难。所以我把1000米数据变小。10米20米50米再试试看。并在1号2号3号线上用线段图表示出来,从而化繁为简,步步深入。让学生成为学习的主人,学生经历了猜猜,画画,算算等多种学习形式,自主探究出规律。整个过程培养了学生的动手操作能力,自主探究能力。学生自由选择方案,体现教学方法的开放性,在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型。

  但在练习:学校团体操表演,20个人排成一队,每两个人的间隔是2米,这支队伍长多少米?学生利用规律无法解决时,我提示学生是不是可以用刚才的方法去解决,想一想如果现是2个人总是是多少米?3个人呢?以此类推……

  应用规律去解决问题很便利,那么过了1天或者1个月解题的规律忘记了,又该怎么办呢?这样引出方法比规律更重要。

  在练习巩固环节,让学生运用新获得的数学知识来解决生活中的实际问题,让学生意识到生活中处处有数学,数学源于生活,又用于生活,激发学生的学习热情。最后与学生一起找找生活中的原形,生举例:排队,教室里灯的排列等。

  本课设计的立足点在于学生的发展,把学生探索规律的过程作为课堂的中心点,把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。

  在最后引用生活中日光灯的挂法引出两端不种的植树问题从而为下一节课的教学做好铺垫。

【植树问题教学反思】相关文章:

植树问题教学反思12-25

《植树问题》教学反思02-18

植树问题教学反思11-18

《植树问题》的教学反思03-11

《植树问题》的教学反思05-16

数学《植树问题》教学反思04-21

《植树问题》的教学反思[热门]05-16

植树问题教学反思(精选15篇)06-15

植树问题教学反思15篇06-13