解一元二次方程教学反思

时间:2024-05-15 13:37:30 教学反思 我要投稿
  • 相关推荐

解一元二次方程教学反思

  身为一位优秀的老师,我们的任务之一就是教学,借助教学反思我们可以学习到很多讲课技巧,那么教学反思应该怎么写才合适呢?下面是小编为大家整理的解一元二次方程教学反思,欢迎大家分享。

解一元二次方程教学反思

解一元二次方程教学反思1

  1、配方法是数学教学的重要内容和数学学习的主要思想方法。在传统的教学课型中,基本上是以教师讲解为主,学生练习为辅的教学方式进行,学生的思维发展受到了一定的限制。在我的教学设计中,打破了这一传统教学方式,在教材的处理上,既要注意到新教材、新理念的实施,又要考虑到传统教学优势的传承,使自主探究、合作交流的学习方式与数学知识的牢固掌握、灵活应用有机结合。

  2、新教材从“我们一起走进数学,让数学走进生活”的新视角来领略数学的风采和魅力,突出数学的实际运用。所以,在教学设计中,力求将解方程的技能训练与实际问题的解决融为一体,在解决实际问题的过程中提高学生的解题能力。为此,在知识引入阶段,创设了一个实际问题的情境,通过解决这一实际问题,既让学生感受到生活处处有数学,又能使学生利用已有的平方根的知识解决问题,体会到成功的喜悦。通过引导学生观察方程的'特点,归纳出形如:(x+m)2=n(n≥0)的形式的方程,可以利用直接开平方来解。

  3、为了突破本节的教学难点:发现和理解配方的方法,在教学中主要以启发学生进行探究的形式展开,目的是想通过学生对方程解法的探索,能够体会和联想到完全平方公式,从而对配方法的完全理解。所以在知识的探索阶段,设计了几个既有联系又逐步递进的方程:x2+4x+4=25,x2+12x- 15=0,x2+px+q=0,本课的重点放在探究这几个方程的解法上,让学生从特殊方程的配方法进而转化到一般化的一元二次方程的配方,归纳出配方法的基本方法,这也体现了数学教学中从特殊到一般,从具体到抽象的思维过程。在教学中,开展自主探究,合作交流的学习方式,通过学生的主动探究,掌握和理解配方法。

解一元二次方程教学反思2

  不足的是:1、对于字母系数的方程,因为比较抽象,学生在用配方法解比较陌生,需要过多的时间,使得本节课未能完全按计划完成任务。

  2、学生在用公式法解题时主要存在如下问题: (1)a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号 。

  (2)当b的`值是负数时,在代入公式时,往往漏掉公式中b前面的“-”号。

  (3)部分学生在实际运用中,没有先计算b

  a,b,c的相应的数值代入公式求根。

  其实在做题过程中提醒学生先确认a,b,c的相应的数值准确后,再检验一下判别式,这是很关键的两步,不要过于着急待入求值,在教学中,这一点还是需要进一步强调的。在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果

  回想本课的教学,虽然存在一些问题,但整节课的实施过程还算顺利,学生对本课的知识掌握程度还不错,基本上达到本课的教学目的。

解一元二次方程教学反思3

  通过本节课的教学发现也存在着一些问题:其一,完全平方式写错。把两数差的平方写成了两数和得平方。其二,非负数的平方根求错,或二次根式未化成最简二次根式。其三,一项未变号。其四,少数同学配方时左边加了一次项系数一半的平方,但右边忘记加。针对上面各种情况教师利用课余时间对存在问题的`学生逐个讲解。

  教师方面也存在着要加强的地方:

  1、教师普通话有待提高;

  2、讲授有时语速过快,声音较大;

  3、有的知识重复次数太多;

  4、学生自己动手练习时间偏少。

解一元二次方程教学反思4

  闪光之处:

  以回顾上节所学的配方法解一元二次方程的步骤,自然而然的引入如何利用配方法解一元二次方程一般式,从而产生一元二次方程根的几种情况,并在不同情况下求出相应的根。学生很容易投入到新课的探究中来,课堂整体非常流畅,绝大部分学生接受效果非常好!

  本节公式法主要就是要掌握公式,所以在讲解例题时,特别注重书写格式,要求做每道题时都要把公式书写一遍,用以加强对公式的记忆。实质上,公式熟练以后,完全可以直接将a,b,c的值代入公式,但是对初学者来说,公式还记不熟,而有些学生就会自己编公式,这样就没有达到教学的目的,所以应硬性要求学生每次在解题过程中都把公式写一遍,以加强记忆,避免代入公式出错。从课后作业和试卷中可以看到,在公式记忆上,的确起到了非常好的`效果。

  败笔之处:练习时间短,学生做题速度慢,没能将课后6道计算题都展现出来并讲评改错,只能在课后和后面的习题联系中来补充提高了。

  再教设计:在做练习时,控制好时间,先给学生一点时间独立完成,在整体完成一多半的时候,再找个别同学板书展示自己的解题过程,这样既避免有个别同学偷懒等别人答案的情况,又节省了不必要的时间,不要等大家都做完了再叫学生板书,这样可以节约点时间,最后老师和学生给出评价,利于同学们改错完善自己的过程,争取课堂的有效环节!

  

解一元二次方程教学反思5

  1、教学结构。

  新课程改革的核心目标是全面推进以培养创新精神和实践能力为重点的素质教育,培养21世纪所需的创新人才,这就要求在教学过程中既重视基础知识、基本技能的教育,又要重视创新精神和实践能力以及良好道德情操的培养。因此教学结构采用“以学生为主体—以教师为主导”的教学结构。通过对教学内容、学习活动等的设计,使学生在学习过程中既有很大的自主权,又能保证其学习不会发生质的偏离,能在适当的时候得到教师或伙伴的指导。学生处于这种开放式的学习环境是有程度限制的,这节课的教学过程中虽然在每一个小的学习环节都是采取的学生自主学习的方式。

  但从整来教学的主导性太强,学习一直被老师牵着鼻子走。对一些思维速度的学习是可行的,而对于一些反应速度慢的学生来说跟着吃力,很快就失去学习的积极性。因此教师还要再放一把,给学生更广阔的思维空间。尤其是在环节的衔接过程,由学生思考下一步要做什么。学生是完全能够做到的,因为在复习时已把解决实际问题的一般过程复习了。

  2、学生学习方式和学习效果。

  在教学过程中虽然以学生为主体,以自学为主。但是其积极主动性在某些同学来说还是不高的。对知识的获得的成就感也没有表现得那么明显。对于知识的广度和深度也没有举一反三的效果展示,更何况创新思维的培养。例如应在例题完成时,根据老师提出可以用设速度的方法为例,同学们还有什么方法?这样就起到了点睛的作用,为学生思维的开发提供了一个空间。只是重视了知识的巩固和运用,和解决问题的训练。虽说在总结时进行了思想教育,也没有见其明显的'反馈。培养学生合作的小组学习不免有些形式化。因为在小组协作时都属于自我陈述,无合作解题的意向。

  3、教师的教学方式和教学效果。

  教师在教学过程中处于主导地位应关注学生分析,解决解决能力的培养;应关注学生交流协作表达能力的培养,应关注学生创新意识、能力的培养。从这些方面本节课教学过程中都表现的不足。还应提高在这方面的设计。还应提高驾驭课堂能力。

  教学方法单一。几乎都是教师提问学生回答的形式。使整个课堂的也十分音调。学生的自主学习,探究学习,协作学习效果也不是很好。

  教师的语言,在教学过程中教师的语言的地位是非常重要的,直接影响教学效果的成败。每一次出公开课都是一个锻炼学习的机会,从中能找到自己的一些缺点和不足。如在教学过程中由于语速过快而出现吐字不清的现象,口误出现频率也很高。语言表达能力还需要不断的锻炼。

  培养学生的分析和解决问题能力,虽然不是一朝一夕的事情,但是必须重视每一次机会。特别提出的是王亮这名同学。这是一个比较特殊的学生,他的计算能力非常之强,速度非常之快,全班第一。记忆力也如此。而分析能力和解决问题能力就反过来了。举个例子,三角形的两个直角边是9厘米,三角形的面积是10平方厘米。如果设其中一个为X,那么另一个直角边可以表示为什么?这样的分析题都不能完成。他这种情况主要是没有掌握分析方法。因此每到一些简单的分析题时都要求他独立完成。在这节课上又出现了所问非所答的情况问“跳水运动员跳到最高点时的速度是多少?”而他回答的却是平均速度。显然他平时不认真分析老师说的话或应用题的题意。只有从平时,从基础抓起。不放过一次机会。

  还有一点值得提出的是教学过程中一定及时纠正学生的错误。在这堂中有多处学生的错误没有得到老师的纠正。如:在计算过程中,最大数加上最小数的和除以2或可以说(最大数+最小数)/2。学生没有加括号,也没有说“的和”都是错误的,要及时加以纠正。

  4、应注意的几个问题

  1)教学目标的完成。

  基本完成了基本知识和基本技能的学习目标,也对学生进行了情感教育,但是创新思维的培养没有体现出来。从始至终,学生都是有理有据的回答老师的提问。在总结分析时,教师只提到了有多种做法,学生可能是一头雾水。很可惜的失去了一次对学生创新思维培养的机会。

  2)教学环节的灵活性。

  教学的主动权牢牢的抓在教师的手里。更要重视教学环节的灵活性。这样才有可能抓住学生的思维的火花,深入探究。推动学生思考的深度和广度,培养学生的创新能力。

  3)个别化学生的全面发展。

  教学中一定从学生的实际出发,学生特征涉及到智力因素和非智力因素。根据不同的情况在一节课学完之后,每一个同学都有其不同的收获。这一点做得很不好,很明显只有三个学生能积极的主动学习,不断解答老师的提问,而另三个同学虽然有特殊原因,但在教学过程中

解一元二次方程教学反思6

  利用求根公式解一元二次方程的一般步骤:

  1、找出a,b,c的相应的数值

  2、验判别式是否大于等于0

  3、当判别式的数值符合条件,可以利用公式求根。

  在讲解过程中,我让学生直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多:

  1、a,b,c的符号问题出错,在方程中学生往往在找某个项的.系数时总是丢掉前面的符号

  2、求根公式本身就很难,形式复杂,代入数值后出错很多、其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入。在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果。

解一元二次方程教学反思7

  一、复习目标

  1、了解一元二次方程的基本概念,理解一元二次方程解法的基本思路及其与一元二次方程的联系,体会两者之间相互比较和转化的思想方法。

  2、理解配方法的意义,会用配方法、公式法、因式分解法解简单的数字系数的一元二次方程。

  二、复习的重点和难点

  1、重点:一元二次方程的基本概念及其解法。

  2、难点:熟练用配方法、公式法、因式分解法解简单的数字系数的一元二次方程。

  三、教学思路

  (一)课前小测

  1、解方程:(1)2x2=3x

  (2)(x-5)2=0

  2、填空: (1)x2+10x+()=(x+)2

  (2)x2-12x+()=(x-)2

  3、因式分解:(1)x2-4x+3

  (2)x2-5x+6

  (二)、一元二次方程的有关概念

  (1)一元二次方程:只含有一个未知数,并且未知数的'最高次数是二次的整式方程,叫一元二次方程。

  注意:一元二次方程应满足的三个条件:

  ①整式方程;

  ②只含有一个未知数;

  ③未知数的最高次数为2,且该系数不能为0。

  (2)一元二次方程的一般形式:ax2+bx+c=0(a≠0)

  (三)、一元二次方程的解法

  一元二次方程的解法主要有四种,具体解方程时可根据方程的特点灵活地选用。

  (1)直接开平方法

  (2)配方法

  (3)公式法

  (4)因式分解法

  (四)、举例

  1、下列方程中,一元二次方程有()个。

  ①4x2=3x;

  ②(x2

解一元二次方程教学反思8

  通过本节课的教学,我发现:配方法不仅是解一元二次方程的方法之一,而且它还可作为其它许多数学问题的一种研究思想,其发挥的作用和意义十分重要。从学生的学习情况来看,效果普遍良好,且已基本掌握了这种数学方法,从本节课的具体教学过程来分析,我有以下几点体会和认识。

  1、学生对这块知识的理解很好,在讲解时,我通过引例总结了配方法的具体步骤,即:

  ①化二次项系数为1;②移常数项到方程右边;③方程两边同时加上一次项系数一半的平方;④化方程左边为完全平方式;⑤(若方程右边为非负数)利用直接开平方法解得方程的根。如上让学生来掌握配方法,理解起来也很容易,然后再加以练习巩固。

  2、在讲解过程中,我提示学生,配方法是不是可以解决“任何一个”一元二次方程呢?若不能,如何来确定它的“适用范围”?多数学生迅速开动脑筋并发现“配方法”能简便解决一部分“特殊方程”,而例如x2+2x=0,4x2+4x+1=0,2y2-3y+1=0这些方程用“配方法”的话就相当麻烦,不如用“求根公式”或“因式分解”来解简单,由此,我抓住这个契机向学生引申:解决一个问题的途径可能有多种思路,但为了提高学习效率,我们尽量选择一个简便易行的方案,这也是解决数学问题的一种必备思想。(这种说法也提示学生注意解一元二次方程每种方法的特点和适用环境)。

  3、当然在这一块知识的教学过程中,学生也出现了个别错误,表现在:①二次项系数没有化为1就盲目配方;②不能给方程“两边”同时配方;③配方之后,右边是0,结果方程根书写成x=的形式(应为x1=x2=);④所给方程的`未知字母有时不是x,而是y、z、a、m等,但个别粗心甚至细心的同学在结果写方程根时字母都变成了x,对于以上错误,我在最后的知识小结中,又重点强调了配方法的一般步骤,并说明其中关键的一步是第③步,必须依据等式的基本性质给方程两边同时加常数。

  4、对于基础较差的少数学生我只要求认真理解并巩固“配方法”;对于基础较好的同学根据他们的课堂反应,我还在知识拓宽方面加以提示:因为完全平方式的值定是非负数,故若在说明某一多项式是否为非负数时,可采用配方法来证,这样对有些善于钻研思考的同学来说,在有关配方法的应用和探究方面,为之起到“抛砖引玉”的作用,也为后期部分知识的教学作了一定的铺垫。

  5、在我本节课的教学当中,也有如下不妥之处:①对不同层次的学生要求程度不适当;②在提示和启发上有些过度;③为学生提供的思考问题时间较少,导致部分学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。

解一元二次方程教学反思9

  在日常生活中,许多问题都可以通过建立一元二次方程这个模型进行求解,然后回到实践问题中进行解释和检验,从而体会数学建模的思想方法,解决这类问题的关键是弄清实际问题中所包含的数量关系。

  本节内容教材提供了与生活密切相关,且有一定思考和探究性的问题,所以在教学中我让学生综合已有的知识,经过自主探索和合作交流尝试解决,提高学生的思维品质和进行探究学习的能力。主要有以下几个成功之处:

  1、让学生自主交流方法,充分展示学生不同层次的思维,互相学习,互相促进,从而创建平等、轻松的学习氛围。

  在出示了例7后,我提示学生解决此类问题可以自己画出草图,分析题目中的等量关系,学生根据题意很快可以画出图形,然后,我让他们找出题目中可以写等量关系的条件,根据条件写出文字的等量关系。在这个环节有的学生遇到了困难,于是,我就让他们互相讨论,通过讨论,大部分学生可以写出等量关系,我再让会的学生说出理由。在这个教学过程中,学生互相学习,互相促进,轻松地学会了知识。

  2、让学生自主归纳,总结方法,尊重学生的个性选择,学生的集体智慧更符合学生自己的口味,比教师说教更易于被学生接受。

  例7的.解答还有一种更简单的方法,我让学生观察图形,在图形上做文章,还是让他们自主探索,讨论,很快有一部分学生想到了把图形中的道路平移到一边的方法,这样就把种植面积集中起来,方程就好列了。这时,我就让学生上来讲述方法。学生用自己的语言讲述,这样其他人接受起来更快一些。并且,学生还总结此类问题的解决方法——将图形平移,在以下练习的几道题中都能得心应手的解答了。由此可见,通过自己思考学到的知识能够灵活应用,且掌握的好。

  在这节课的教学中也存在一些不足之处,教材中在例题之前设计了一个应用,在解决这个问题上耽误了时间,延误了下面的教学,导致设计的练习题没有做完,所以在下次教学时,这个应用问题只让学生列出方程即可,不必在解答上花费时间。另外,练习设计过于单一,只涉及到了例题这种类型的练习,变式练习题少,所以,在下次教学时,要设计两道不同题型的题目。

  由这节课的教学我领悟到,数学学习是学生自己建构数学知识的活动,学生应该主动探索知识的建构者,而不是模仿者,教学应促进学生主体的主动建构,离开了学生积极主动的学习,教师讲得再好,也会经常出现“教师讲完了,学生仍不会”的现象。所以,在以后的教学中,我要更有意识的多给学生自主探索、合作交流的机会,更加激发学生的学习积极性,使学生在他们的最近发展区发展。

解一元二次方程教学反思10

  在学习了一元二次方程的四种基本解法后,由于在实际运用中十字相乘法解方程运用确实很广,而且用处之大不可忽视。在解题过程中实际用起来带来很大的方便,也能提高解题效率,所以加上些节课。

  在介绍十字相乘法时,先从一元二次方程一般式引入,使学生分清二次项系数、一次项系数、常数项,再进行十字相乘。在对系数的处理上,学生搭配较简单的数时很快,但对系数较大的十字分解还缺乏经验。所以介绍了小学学过的短除法,对常数项进行因式分解,再合理尝试十字交叉相乘。学生经过理解后,感觉十分好用,且在经过多个方程的十字相乘后,学生积累了一定的经验对符号的处理上能找到巧妙方法,通过先考虑合系数的绝对值,再确定符号所处位置。

  最后出现的问题在交叉相乘以后对分解式的书写,部分学生习惯前面的交叉相乘从而导致了书写分解式时也交叉书写造成错误。正确的'应是横向书写,所以要多强调、多指导、多个别指出学生的错误。问题二出现在“历史”遗留问题上:一元一次方程的解法中的最后一个步骤。所以还要用课外时间对这部份知识以前掌握不是很好的学生加以辅导。

解一元二次方程教学反思11

  配方法不仅是解一元二次方程的方法之一既是对前面知识的复习也是其它许多数学问题的一种数学思想方法,其发挥的作用和意义十分重要。原以为学生不容易掌握。谁知从学生的学习情况来看,效果普遍良好。从本节课的具体教学过程来分析,我有以下几点体会。

  1、善于引导学生发现规律,注重培养学生的观察分析归纳问题的能力。首先复习完全平方公式及有关计算,让学生进行一些完形填空。然后让学生注意观察总结规律,然后小组总结交流得出结论。即配方法的具体步骤:

  ①当二次项系数为1时将移常数项到方程右边。

  ②方程两边同时加上一次项系数一半的平方。

  ③化方程左边为完全平方式。

  ④(若方程右边为非负数)利用直接开平方法解得方程的根。这样一来学生就很容易掌握了配方法,理解起来也很容易,运用起来也很方便。

  2、习题设计由易到难,符合学生的认知规律。在掌握了二次项系数为一的后。提出问题:当二次项系数不为一时你会用配方法解决吗?不少学生立即答道把系数化为一不就够了吗。于是学生很快总结出 用配方法解一元二次方程的一般步骤:

  ①化二次项系数为1。

  ②移常数项到方程右边。

  ③方程两边同时加上一次项系数一半的平方。

  ④化方程左边为完全平方式。

  ⑤(若方程右边为非负数)利用直接开平方法解得方程的根。

  3、恰到好处的设置悬念,为下节课做铺垫。我问学生配方法是不是可以解决“任何一个”一元二次方程?若不能,如何来确定它的“适用范围”?多数学生迅速开动脑筋并发现“配方法”能简便解决一部分“特殊方程”,而例如x+2x=0,4x+4x+1=0,2y-3y+3=0这些方程用“配方法”的'话就相当麻烦,不如用“求根公式”或“因式分解”来解简单,这些方法后面我们将要进一步学习。由此,我抓住这个契机向学生引申:解决一个问题的途径可能有多种思路,但为了提高学习效率,我们尽量选择一个简便易行的方案,这也是解决数学问题的一种必备思想。

  4、在我本节课的教学当中,也有如下不妥之处:

  ①对不同层次的学生要求程度不适当。

  ②在提示和启发上有些过度。

  ③为学生提供的思考问题时间较少,导致少数学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。

解一元二次方程教学反思12

  学好一元二次方程,重要的是要学会背公式。除了最主要的求根公式你要背熟外,就是要学会总结不同方程解决形式。形如x+2bx+b=0,你要能熟练的将其变为(x+b)=0这样的形式;形如x+(a+b)x+ab=0的形式,你要熟练将其变为(x+a)(x+b)=0;再高阶的,二次项前面也有系数的,你也要学会变形。总之掌握将普通二项式变为两个一项式的乘积是你必须要掌握的。当你变不了的时候,你就要使用求根公式来解决。

  方程类问题都是如此求解的'。二次方程求解方法的核心,是使其转变为一次方程来求解。三次方程这是转变为二次方程与一次方程的乘积求解。越往后越是这样。求解的主旨是降幂。使高次项变为多个低次项的乘积是求解方程的指导思想。可能你只是一个小学生或是初中生,你不一定明白这个道理,但是随着学习的深入,你要去思考。我给出了解决的一般路径,但要熟练的掌握仍旧需要不停的解题做题,通过练习来掌握。一元二次方程并不难,相信以你的聪明与勤奋一定会早日掌握的。

解一元二次方程教学反思13

  通过本节课的教学,使我真正认识到了自己课堂教学的成功与失败。对我今后课堂教学有了一定引领方向有了很大的帮助。下面我就谈谈自己对这节课的反思。

  本节课的重点主要有以下3点:

  1、找出a,b,c的相应的.数值

  2、验判别式是否大于等于0

  3、当判别式的数值符合条件,可以利用公式求根。

  在讲解过程中,我没让学生进行(1)(2)步就直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多。主要问题有:

  1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号。

  2、求根公式本身就很难,形式复杂,代入数值后出错很多。

  3、板书不太理想。板书可以说在课堂教学也起关键作用,它可以帮学生温习本课的内容,而我许多本该板书的内容全部反映在大屏幕上,在继续讲一下个内容时,这些内容也就不会再出现,只给学生瞬间的停留,这样做也欠妥当。

  4、本节课没有激情,学习的积极性调动不起来,对学生的鼓励性语言过少,可以说几乎没有。

  通过以上的反思,在以后的教学中对自己存在的优点我会继续保持,针对不足我将会不断地改进,使自己的课堂教学逐步走上一个新的台阶

解一元二次方程教学反思14

  一、教学目标:

  1、知识与能力:理解配方法,会利用配方法以一元二次式进行配方。通过对比、转化,总结得出配方法的一般过程,提高分析能力。通过对一元二次方程二次项系数是否为1的分类处理,锻炼学生的抽象概括能力。

  2、过程与方法:会用配方法解简单的数学系数的一元二次方程。发现不同方程的转化方式,运用已有知识解决新问题。

  3、情感态度价值观:通过配方法的探究活动,培养学生勇于探索的良好学习习惯。感觉数学的严谨性以及数学结论的确定性。

  二、教学重难点:

  1、重点---会利用配方法熟练解一元二次方程。

  2、难点---对于二次项系数不为1的一元二次方程通过系数化1进行适当变形后再利用配方法求解。

  三、教学过程

  (一)活动1:提出问题

  要使一块长方形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?设计意图:让学生在解决实际问题中学习一元二次方程的解法。

  师生行为:教师引导学生回顾列方程解决实际问题的基本思路,学生讨论分析。

  (二)活动2:温故知新

  1.填上适当的数,使下列各式成立,并总结其中的规律。(1)x+ 6x+ =(x +3 ) (2) x+8x+ =(x+ )(3)x2-12x+ =(x- )2 (4) x2- 5x+ =(x- )2 (5)a2+2ab+ =(a+ )2 (6)a2-2ab+ =(a- )2 2.用直接开平方法解方程:x2+6x+9=2设计意图:第一题为口答题,复习完全平方公式,旨在引出配方法,培养学生探究的兴趣。

  1

  222

  用心

  爱心

  专心(三)活动2:自主学习

  自学课本P31---P32思考下列问题:

  1.仔细观察教材问题2,所列出的方程x2+6x-16=0利用直接开平方法能解吗?2.怎样解方程x2+6x-16=0?看教材框图,能理解框图中的每一步吗?(同学之间可以交流、师生间也可交流。)

  3.讨论:在框图中第二步为什么方程两边加9?加其它数行吗?4.什么叫配方法?配方法的目的是什么?5.配方的关键是什么?交流与点拨:

  重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。

  注意:9=(),而6是方程一次项系数。所以得出配方的关键是方程两边加上一次项系数一半的平方,从而配成完全平方式。

  设计意图:学生通过自学经历思考、讨论、分析的过程,最终形成把一个一元二次方程配成完全平方式形式来解方程的思想

  (四)活动4:例题学习

  例(教材P33例1)解下列方程:(1)x-8x+1=0 (2)2x+1=-3x (3)3x2-6x+4=0教师要选择例题书写解题过程,通过例题的学习让学生仔细体会用配方法解方程的一般步骤。

  交流与点拨:用配方法解一元二次方程的一般步骤:

  (1)将方程化成一般形式并把二次项系数化成1;(方程两边都除以二次项系数)(2)移项,使方程左边只含有二次项和一次项,右边为常数项。(3)配方,方程两边都加上一次项系数一半的平方。(4)原方程变为( mx+n)2=p的形式。

  (5)如果右边是非负数,就可用直接开平方法求取方程的解。设计意图:牢牢把握通过配方将原方程变为(mx+n)2=p的形式方法。

  (五)课堂练习:

  1.教材P34练习1(做在课本上,学生口答)2.教材P34练习2师生行为:对于第二题根据时间可以分两组完成,学生板演,教师点评。设计意图:通过练习加深学生用配方法解一元二次方程的方法。

  四、归纳与小结:

  1.理解配方法解方程的含义。

  2.要熟练配方法的技巧,来解一元二次方程,

  3.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。 4.配方法解一元二次方程的解题思想:“降次”由二次降为一次。

  五、布置作业

  教材P42习题22.2第3题

  ---教后反思

  通过本节课的学习,我发现:配方法不仅是解一元二次方程的方法之一,而且它还可作为其它许多数学问题的`一种研究思想,其发挥的作用和意义十分重要。从学生的学习情况来看,效果普遍良好,且已基本掌握了这种数学方法,从本节课的具体教学过程来分析,我有以下几点体会和认识。

  1:学生对这块知识的理解很好,学生自己总结了配方法的具体步骤,即:①化二次项系数为1;②移常数项到方程右边;③方程两边同时配上一次项系数一半的平方;④化方程左边为完全平方式;⑤(若方程右边为非负数)利用直接开平方法解得方程的根。理解起来也很容易,然后再加以练习巩固

  2:教学方法上的几点体会:①需要创造性地使用教材,可以根据学生的实际情况对教材内容进行适当调整。②相信学生要为学生提供充分展示自己的机会本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。 3:当然在这一块知识的教学过程中,学生也出现了个别错误,表现在:①二次项系数没有化为1就盲目配方;②不能给方程“两边”同时配方;③配方之后,右边是0,结果方程根书写成x=﹡的形式(应为x1=x2=﹡);④所给方程的未知字母有时不是x,而是y、z、a、m等,但个别粗心甚至细心的同学在结果写方程根时字母都变成了x。对于以上错误,我在最后的知识小结中,又重点强调了配方法的一般步骤,并说明其中关键的一步是第③步,必须依据等式的基本性质给方程两边同时加常数。

  4、对于基础较差的少数学生我只要求认真理解并巩固“配方法”;对于基础较好的同学根据他们的课堂反应,我还在知识拓宽方面加以提示:因为完全平方式的值定是非负数,故若在说明某一多项式是否为非负数时,可采用配方法来证,这样对有些善于钻研思考的同学来说,在有关配方法的应用和探究方面,为之起到“抛砖引玉”的作用,也为后期部分知识的教学作了一定的铺垫。

  5、在我本节课的教学当中,也有如下不妥之处:①对不同层次的学生要求程度不适当;②在提示和启发上有些过度;③为学生提供的思考问题时间较少,导致部分学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。

解一元二次方程教学反思15

  教材分析

  一元二次方程是九年级数学一个非常重要的内容,是首次出现的高于一次的方程。其解法的策略就是将其“降次”转化为一次方程。通过解比较简单的一元二次方程,引导学生认识直接开平方法解方程,再通过对比一边为完全平方形式的方程,使学生认识配方法的`基本原理并掌握其具体方法,为后面的求根公式做准备。

  学情分析

  1. 教学对象:本班学生58人,这个班的特点是两头力量少,中间力量多,基础知识薄弱。但学习气氛较浓,能调动学生学习数学的积极性和挑战性

  2. 学生的认知分析:学生虽然具备初步的解题思路,但缺乏融会贯通和应用的能力。应适当地创设一些难易、新旧相结合的问题,加强学生对知识的应用。在学习过程中培养学生自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验。

  教学目标

  1、知识与技能:学生会用直接开平方法解方程,x2=p,x2+2mx+m2=p(p≥0)建立一元二次方程模型解决简单的实际问题,循序渐进的让学生掌握直接开平方法的做法,通过对比学会配方法解数字系数的一元二次方程

  2情感目标:渗透转化思想,掌握一些转化技能

  教学重点和难点

  重点:直接开平方法,简单的配方法

  难点:配方,把一元二次方程转化为形如(x-a)2=b的过程

【解一元二次方程教学反思】相关文章:

一元二次方程教学反思04-04

一元二次方程的概念教学反思04-07

一元二次方程的解法教学反思02-23

用公式法解一元二次方程的说课稿通用03-06

实际问题与一元二次方程教学反思04-03

解比例的教学反思02-25

《解一元一次方程去括号》教学反思04-07

解简易方程教学反思04-07

解一元一次方程——去分母教学反思09-16

数学解简易方程教学反思02-08