倍数和因数教学反思

时间:2023-06-16 06:55:44 教学反思 我要投稿

倍数和因数教学反思

  身为一名到岗不久的老师,我们要有一流的课堂教学能力,借助教学反思我们可以快速提升自己的教学能力,教学反思应该怎么写呢?下面是小编精心整理的倍数和因数教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

倍数和因数教学反思

倍数和因数教学反思1

  我发现"倍数和因数"这一单元大部分学生基础知识及基本概念掌握较好,倍数与因数的应用相当部分学生应用也比较灵活。从学生的答卷情况来看存存在问题也不少,纵观本单元的教学,从中得到的反思:

  1、创设了学生熟悉的生活情境

  不论是新课的讲授还是知识的实际应用,都是从学生已有的生活经验出发,激发了学生主动学习与参与的兴趣,引导学生感悟到,生活中处处有数学,数学中的倍数、因数就在身边,从生活中学习数学、应用数学问题。

  2、采用了小组合作学习的模式

  在新课的教学中,让学生通过观察,发现现实生活中的数以及有关倍数、因数的特征及应用以后,在学生独立尝试解决问题的基础上进行小组讨论:如何合理将分类,2、3、5的倍数的特征,如何找因数,找质数等等,这些都有以小组讨论作为探索新知的起点,在小组合作学习中,给学生搭建自主的活动空间和交流的平台。

  3、充分体现了以学生为主体的指导思想

  在课堂上,努力营造轻松、愉快的学习环境,引导学生积极参与学习过程。重视让每个学生都在小组内发表自己的想法,每个知识点的建立、新知识的'形成尽量让学生从已有知中识讨论、寻求,同时也倾听同伴的观点,相互学习。体现以“以人发展为本”的新理念,尊重学生,信任学生,敢于放手让学生自己去学习。整个教学过程学生从已有的知识经验的实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,从中让让学生体验了解决问题的喜悦或失败的情感。

  4、重视新知识的应用

  每学习一个新的知识点及时让学生运用所学的知识解决实际问题,使学生感到数学就在生活中,并且运用新知识灵活解决问题。

  5、不足之处

  (1)、在教学中还有一小部分学生未积极参与到学习中来,如何让全体学生都参与到数学研究中来,仍有待于进一步的加强。

  (2)、本单元的测验卷的应用部分要求学生说明解题的理由的比较多,而学生也失分比较严重,说明学生在这方面知识较薄弱,今后的教学中要加强突破这一环节。

  (3)、也出现了很多教学的困惑.如在教学中明知一小部分学生在某些知识点存在缺陷,但很难抽时间弥补及跟进。

倍数和因数教学反思2

  《倍数和因数》,由于之前没上过这册内容,在看完教材后就和同组的老师说,这个内容好像挺简单的。不过上完这节课后这个想法却烟消云散,根本没有想象的那么容易上,而且在课堂中存在了很多在预设中没有想到的问题,下面对自己的课堂做一些反思:

  1、在第一个环节认识倍数和因数的意义中,首先让学生用12个同样大小的小正方形摆成一个长方形,并用乘法算式来表示你是怎么摆的,有几种不同的摆法?通过让学生动手操作实践,体现了以学生为本,而且能唤醒学生已有的知识经验,抽象为具体讨论的数学问题。在抽象出三个不同的乘法算式后,我以第一个乘法算式4×3=12为例,介绍倍数和因数的关系,本来以为说:“4和3是12的因数,12是4和3的倍数”应该是很简单的两句话,学生应该会说,可是当请学生来自己选择一个乘法算式来说一说时,好几个学生却被卡住了,还有的说成了4是12的倍数。

  针对学生出现的问题,我觉得可能是自己在介绍时运用的不到位,一个是比较小,后面的同学都没能看清楚;另一方面我预想的比较简单,所以说了一遍后也没请学生再复述一遍。在说到“谁是谁的倍数,谁是谁的因数”时应该在中相继出示这两句话,这样的话让学生看着说印象会更深刻,相信学生说的也会比较好。

  2、第二个环节是探求找一个数的倍数的方法,从上一个环节我最后出示的除法算式中引入:我们知道了18是3的倍数,那3的倍数是不是只有18呢?通过疑问来激发学生找出3的倍数有哪些?学生很快能找到,但是并没有找全,于是再问,那又什么办法把3的倍数找全呢?学生自然想到去乘1,乘2,乘3……,也就按顺序找到了3的倍数。在分别找到了2和5的倍数后我问学生:观察上面这几个例子,你有什么发现?请了好几个学生都没能找到,最后还是老师告诉了学生倍数最小是?最大呢?

  针对最后请学生找一找发现倍数的共同特点这一问题,我觉得我在设计时问题提得太大,太笼统。学生听到问题后可能无从下手,不知道该找什么。可以问:刚才找了2,3,5的倍数,观察这几个数的倍数,他们有什么共同特点?这样学生就会比较有针对性地去寻找结果。

  3、第三个环节是探求找一个数因数的方法,找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找一个数的因数,对于刚刚对倍数因数有个感性认识的学生来说有是一定困难的,而这个环节我处理的'也不到位,学生对找一个数因数的方法掌握的不够好。

  我一开始设计请学生自主找36的因数,在巡视时发现有一部分学生没有头绪,无从下手,时间倒是花去了不少。所以我觉得是否可以先从12下手,因为前面一开始已经找过12的因数了,如果这里能用12做一下铺垫,可能找36的因数时就会好一些。

  在学生自主探索完36的因数有哪些后,交流不同学生的结果,有一位出现了1,36;2,18;3,12;4,9;6,6我就问你是怎么找到的?学生说是用除法找到的,于是就用36分别去除1,2,3……得到了36的因数。其实这里除了用除法来找之外,还可以用乘的方法来找,而乘的方法似乎对于学生来说在找得时候还更简单一点。更重要的是我觉得一对对的找对于找全一个数的因数是一个很重要的方法,而我却把这个方法忽略了,所以学生对于找一个数的因数的方法不够深刻,在练习中也发现做的不理想。

  4、第四个环节是巩固练习,我设计了2个小游戏。一个是看谁反应快,符合要求的请学生起立,这个游戏学生参与面广,学生也感兴趣,还从中发现了找谁的学号是几的因数,1每次都会起立,就更好的巩固了一个数的因数最小是1。但是也有个别学生反应比较慢。第二个小游戏是猜一猜老师的手机号码是多少?但是由于前面时间用的比较多,所以没来得及做。

  原本认为简单的课却一点都不简单,每个细小环节的把握都要求我去仔细的钻研教材,设计好每一步,这样才能上好一节课。

倍数和因数教学反思3

  XXXX小学 XXXXX

  教学内容:教材例1、例2

  教学目标

  1.知识与技能:让学生初步理解因数和倍数的概念,掌握找因数和倍数的方法。学会用列举法找一个数的因数和倍数。

  2.过程与方法:借助直观图,先引导学生观察后列出乘法算式,最后结合乘法算式来理解因数与倍数的概念。

  3.情感、态度与价值观:理解因数和倍数的意义能及两者之间相互依存的关系。

  教学重点:理解因数和倍数的概念。

  教学难点:掌握求一个数的因数和倍数的方法。

  教学方法:启发式教学法、指导自主学习法。

  教学准备:多媒体。

  教学过程:

  一、新课导入:

  1.出示教材第5页例1。

  12÷2=6 9÷5=1.830÷6=5 2÷3=0.6

  26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7

  (1)观察: 引导观察例1中的算式,你发现了什么?(都是除法算式)

  (2)分类:你能把上面的除法算式分类吗?

  学生分类后,教师组织学生交流,引导学生根据是否整除分为以下两类

  第一类 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二类 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25

  2.引入课题。这节课我们就来学习有关数的整除的相关知识。(板书课题:因数和倍数)

  二、探索新知:

  (一)、明确因数与倍数的意义。(教学例1)

  1. 教师引导。教师指出:在整数除法中,如果商是整数而没有余数,我们

  就说被除数是除数和商的倍数,除数和商是被除数的因数。例如:12÷2=6,我们说12是2和6的倍数,2和6是12的因数。

  2. 学生尝试。

  教师让学生说一说第一类的每个算式中,谁是谁的因数?谁是谁的倍数?先同桌互相说一说,再组织全班交流。

  3. 深化认识。师:通过刚才的说一说活动,你发现了什么?

  引导学生体会:因数和倍数虽是两个不同的概念,但又是相互依存的,二者不能单独存在。我们不能说谁是因数,谁是倍数,而应该说谁是谁的因数,谁是谁的倍数。例如,30÷6=5,30是6和5的倍数,6和5是30的因数。教师强调,并让学生注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括O)。

  4. 即时练习。指导学生完成教材第5页“做一做”。

  小结:如果a÷b =c(a,b,c均是不为0的自然数),那么a就是b和c的倍数,b和c是a的因数。因数和倍数是相互依存的。

  (二)、探索找一个数因数的方法。(教学例2)

  1. 出示例2:18的因数有哪几个?

  (1) 学生独立思考。

  师:根据因数和倍数的意义,想一想18除以哪些整数的结果是整数。

  18÷1=18,l和18是18的因数;18÷2=9, 2和9是18的因数;18÷3=6, 3和6是18的因数。引导学生把18的因数按从小到大的顺序排列,每两个因数之间用逗号隔开,全部写完后用句号结束,即18的因数有:1,2,3,6,9 ,18。

  (2)小组合作交流。交流时教师要让学生说明找的方法,引导学生认识:只要想18除以哪些整数的结果是整数,并且要从1开始,一对一对地找,避免遗漏。如果学生还有其他想法,只要合理,教师都应给予肯定。

  (3)采用集合图的方法。

  教师指出也可用右面的集合图来表示18的全部因数。明确:用图示法表示18的因数时,先画一个椭圆,在椭圆的上面写上“18的因数”,再把18的因数按从小到大的顺序有规律地写在椭圆里,每两个因数之间也用逗号隔开,全部写完后不加句号。

  (4)练习。让学生找出30的因数和36的因数,并组织交流。

  30的因数有1,2,3,5,6,10,15,30。

  36的因数有1,2,3,4,6,9,12,18,36。

  三、巩固练习

  指导学生完成教材“练习二”第1、6题。学生独立完成全部练习后教师组织学生进行集体证正。

  四、课堂小结

  师:通过本节课的学习,你有什么收获?

  板书设计:

  因数和倍数

  12÷2=6 12是2和6的倍数

  2和6是12的因数 18的因数有1,2,3,6,9,18。

  一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

  作业:教材第7页“练习二”第2(1)题。

  第二单元:因数和倍数

  第二课时:因数与倍数(2)

  教学内容:教材P6例3及练习二第2(1)、3~8题。

  教学目标:

  知识与技能:通过学习,使学生能自主探究,找出求一个数的倍数的方法。 过程与方法:结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。

  情感、态度与价值观:初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。

  教学重点:掌握求一个数的倍数的方法。

  教学难点:理解因数和倍数两者之间的关系。

  教学方法:启发式教学法、指导自主学习法。

  教学准备:多媒体。

  教学过程:

  一、复习导入

  10,28,42的因数有哪些?你是用什么方法找出这些数的因数个数的?一个数的因数中,最大的是几?最小的是几?

  二、探索新

  1.探索找倍数的方法。(教学例3)

  出示例3:2的倍数有哪些?

  师:你会找2的.倍数吗?给你们1分钟的时间,看谁写得又对、又快、又多!准备好了吗?开始!

  师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。

  师:大家都是用的什么方法呢?

  生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。

  生2:我也是用乘法,用2去乘1、乘2……

  师:哪些同学也是用乘法做的?

  师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?

  生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。

  师:很好!如果给你更长的时间,你能把2的倍数全部写出来吗?

  师:为什么?(因为2的倍数有无数个)

  师:怎么办?(用省略号)

  师:通过交流,你有什么发现?

  引导学生初步体会2的倍数的个数是无限的。

  追问:你能用集合图表示2的倍数吗?

  学生填完后,教师组织学生进行核对。

  (4)即时练习。让学生找出3的倍数和5的倍数,并组织交流。学生举例时可能会产生错误,教师要引导学生根据错例进行适时剖析。

  4.反思提炼。师:从前面找因数和倍数的过程中,你有什么发现?

  先让学生在小组内交流,再组织全班集体交流,通过全班交流,引导学生认识以下三点:

  (1)一个数的最小因数是1,最大因数是它本身。

  (2)一个数的最小倍数是它本身,没有最大倍数。

  (3)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

  三、巩固提升

  1.指导学生完成教材第7~8页“练习二”第4、5、6、7题。

  学生独立完成全部练习后教师组织学生进行集体证正。

  集体订正时,教师着重引导学生认识以下几点:

  (1)第4题“15的因数有哪些?”和“15是哪些数的倍数”答案是一样的。

  (2)第5题中的第(2)小题是错的,因为一个数的倍数的个数是无限的,第(4)小题也是错的,因为在研究因数和倍数时,我们所说的数指的是自然数,不含小数。

  (3)思考题:两数如果都是7(或9)倍数,它们的和也一定是7(或9)的倍数,即如果两数都是n的倍数,它的和也是n的倍数。

  2.利用求倍数的方法解决生活中的实际问题

  出示:妈妈买来几个西瓜,2个2个地数,正好数完,5个5个地数,也正好数完。这些西瓜最少有多少个?

  理解题意,分析解答。

  教师提示“2个2个地数,正好数完,说明西瓜的个数是2的倍数,5个5

倍数和因数教学反思4

  《因数和倍数》是人教版小学数学五年级下册第二单元的起始课,也是一节重要的数学概念课,所涉及的知识点较多,内容较为抽象,对于学生来说是比较难掌握的内容,在这样的前提下,如何能充分发挥学生的主体作用,让他们自主探索,自己感悟概念的内涵,并灵活地运用“先学后教”的模式,达到课堂的高效,在课堂中我做了以下的尝试。

  一、领会意图,做到用教材教。

  我觉得作为一名教师,重要的是领会教材的编写意图,灵活的运用教材,让每个细节都能发挥它应有的作用。如教材是利用了一个简单的实物图(2行飞机,每行6架;3行飞机,每行4架)引出了要研究的两个乘法算式“2×6=12,3×4=12”直接给出了“谁是谁的因数,谁是谁的倍数”的概念。这样做目的有二:一是渗透了从乘法算式中找因数倍数的方法,二是利用数与数之间的关系明确的看到因数倍数这种相互依存的关系。

  但这样做仍不够开放,我是这样做的:课始并没有出示主题图,直接提出问题:“如果有12架飞机,你可以怎样去排列?”学生除了能想到图中的两种排法还能得到第三种,这样做是用开放的问题做为诱因,使学生得到“2×6=12、3×4=12、1×12=12”三个算式,而这些算式不仅能够清晰地体现因数倍数间的关系,更是后面“如何求一个数的因数”的方法的渗透和引导。看来灵活的运用教材,深放领会意图,才能使教学更为轻松、高效!

  二、模式运用,做到灵活自然。

  模式是一种思想或是引子,面对不同的课型,我们应该大胆尝试,不断的积累经验,使模式不再是僵化的,机械的。只要是能促进学生能力形成的东西,我们不能因为要运用模式而把它们淡化,反之,应该想方设法,在不知不觉中体现出来。

  如本课中例1是“求18的因数有哪些”,例2是“求2的倍数有哪些”教材的`设计已经能够体现学生自主探索知识的轨迹,那我们何不通过一句简短的过渡语让学生进入到下面的学习中呢?而没有必要非要设计出两个“自学指导”让学生按步就搬地往下走,而且让学生对比着去感受一个数“因数和倍数”的求法的不同,比先学例1再学例2的方式更容易让学生发现不同,得到方法,加深对知识的理解,同时也更加体现了学生的自主性,这才是模式的真正目的所在。内涵比形式更重要,发现比引导更有效!

倍数和因数教学反思5

  复习课是课堂教学的一种重要课型,一个阶段教学之后,各种考试之前都必须进行复习。复习在整个学习活动中是个十分重要的环节,对夯实学生的基础、培养和提高学生运用知识、解决问题的能力起着举足轻重的作用。在复习过程中,学生不像学新课那么感兴趣,容易产生厌倦情绪,出现复习效率低下的现象。因此,复习课要引导学生自己动手整理知识结构,把所学知识系统化、条理化,达到对所学知识牢固掌握,灵活应用的目的。

  下面是我在复习五年级上册第九单元《倍数与因数》时,两次不同的主要教学过程及本人对这两次课的印象和反思。

  第一次教学是这样的:我先请学生回忆这个单元学习了哪些内容;接着让全体学生背诵了倍数、因数、偶数、奇数、合数、素数等概念和是2、3、5的倍数的特征;最后,出示了很多类型的习题,如找倍数与因数的,判断素数与合数的,根据2、3、5的倍数特征填数的……。

  整节课教师忙得不亦乐呼,幻灯片换了一张又一张,看起来似乎什么内容都复习了;学生就像赶集一样,做了这一题又忙哪一题,但收获甚微。

  这次是苏教版教材的第一轮使用,我这个从事多年人教版教学的老教师虽在新课改培训中加大了新课程理念的学习,但因多年产生的教学习惯而很难有所真正的改变,是基于传统的数学课堂教学,认为单元复习就是由教师带领学生把知识点再全部扫描一下,多设计一些习题,让学生反复操练,只有让学生当上了熟练工,才能应付考试。而这种炒冷饭的复习课,忽视了重点、难点,学生茫然地被教师牵着鼻子走,学习没有了主动性,教学效果当然不乐观。

  第二次教学时,我在复习课前先让学生反思自己本单元的哪些知识掌握得比较好、哪些知识还掌握得不好并整理成书面材料。在批阅了学生整理的书面材料后,发现比较集中的问题是:写一个数的因数写不全,判断一个数是否同时是2、3、5的倍数时有困难,对于一些特殊的素数、合数与奇数、偶数的特征掌握不好。因此,复习时,我先请每个学生任意写一个两位数,写完后观察这个数有什么特点,并结合这一单元学到的概念说一说。然后出示了一道开放题:“谁能根据11、15、21、37、45、48、57、60、83、90这些数提与本单元的知识有关的问题?’学生思维活跃。有的提:“请判断哪些是素数,哪些是合数,哪些是奇数,哪些是偶数?”有的提:“请写出这些数中每个合数的全部因数。”有的'提:“这10个数中,哪些数同时是2和3的倍数?哪些数同时有因数3和5?哪些数既是2的倍数又有因数5?哪些数同时是2、3、5的倍数?”每次学生提出问题后,教师都及时组织学生完成练习。接着,教师在黑板上写下48□,让学生继续思考:要使48□既有因数2,又是3的倍数,□里应该填多少?有学生说0、2、4、6、8都可以。有学生马上反驳说,2、4、8都不可以,只能填0或者6。教师追问原因,相机复习被3整除的数的特征,接着出示问题:”如果要使□48既是2的倍数,又是3的倍数,□里应该填多少?”学生讨论完后,教师再引导学生思考:“观察、比较48□和□48,同样要填一个数字,使它既是2的倍数,又是3的倍数,为什么答案不同?”有了前面的对比练习,学生终于明白在口填数的诀窍所在:既要考虑整除的特征,又要观察数字所处的位置。这时,教师强调要灵活运用所学的知识解决问题。最后,教师要求每个学生拿出错题集,先自己复习,然后以同桌两人为一组,出题考对方,教师巡视指导。

  课堂上不时有学生间的争论,有学生举手请教老师、有同学之间的互助,每个学生学的都很积极主动,全然没有复习课的单调枯燥之感。

  这次的复习是基于学生对知识的理解水平,本着尊重学生的原则,以学生为主体,先学后教,抓住重点、难点,设计有层次的习题,举一反三,调动学生的学习积极性,不求习题的多样繁杂,但求激活每个学生的思维,引导学生在自学中学会发现、在倾听中学会理解、在讨论中学会思辨。

倍数和因数教学反思6

  一、仍然是将预习前置。

  二、动手操作,想象延伸。

  让学生动手操作,提高感知效果,帮助学生形成丰富的表象,是促进形象思维发展的有利途径。例题教学中让学生动手铺,铺后想,想后算,算后思。

  用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。

  学生分组操作,用除法算式把不同的摆法写出来。

  提问:通过刚才的活动,你们发现了什么?

  以直观的操作活动,在具体的问题情境中体会公倍数和公因数与生活的联系,让学生经历公倍数和公因数概念的形成过程,加深对抽象概念的理解。

  思考:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。

  三、在教学中严格要求学生先用“列举法”教学“求两数公倍数与公因数”;在学生相对较熟练的时候尝试让学生直接说出公倍数与公因数;在此基础上适当介绍后面的阅读知识,但不要求学生使用。

  四、在教学了用“列举法”“求两数公倍数与公因数”的知识之后,适当提高训练难度,将求“最小公倍数”与“最大公因数”合并训练。通过联系“最大公因数”、“最小公倍数”的知识,引导学生发现求两个数的最小公倍数和最大公因数的扩倍法等其它的方法。要求学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢,掌握较好。通过练习引导学生感悟、概括出了一些特殊情况:(1)两个数是倍数关系的',这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。

倍数和因数教学反思7

  一、教材与知识点的对比与区别。

  1、对比新版教材知识设置与传统教材的区别。有关数论的这部分知识是传统教学内容但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别1新课标教材不再提“整除”的概念也不再是从除法算式的观察中引入本单元的学习而是反其道而行之通过乘法算式来导入新知。2“约数”一词被“因数”所取代。这样的变化原因何在教师必须要认真研读教材深入了解编者意图才能够正确、灵活驾驭教材。因此我通过学习教参了解到以下信息学生的原有知识基础是在已经能够区分整除与余数除法对整除的含义有比较清楚的认识不出现整除的定义并不会对学生理解其他概念产生任何影响。因此本教材中删去了“整除”的数学化定义。

  2、相似概念的对比。1彼“因数”非此“因数”。在同一个乘法算式中两者都是指乘号两边的整数但前者是相对于“积”而言的与“乘数”同义可以是小数。而后者是相对于“倍数”而言的与以前所说的“约数”同义说“X是X的因数”时两者都只能是整数。2“倍数”与“倍”的区别。“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时运用的方法与“求一个数的几倍是多少”是相同的只是这里的“几倍”都是指整数倍。

  二、教法的运用实践

  1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围因此对于学生和第一接触的印象是没有什么可以探究和探索的要求而且给学生一个直观的.感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内与小数无关与分数无关与负数无关虽没学但有小部分学生了解。同时强调——非0——因为0乘任何数得00除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法让学生清晰明确。因此用直接导入法先复习自然数的概念再写出乘法算式3×4=12说明在这个算式中3和4是12的因数12是3和4的倍数。

  2、在进行延续性教学中可以让学生探究怎么样找一个数的因数和倍数在板书要讲究一个格式与对称性这样在对学生发现倍数与因数个数的有限与无限的对比再就是发现一个数的因数的最小因数是1最大因数是其本身。

  【篇三:因数和倍数2教学反思】

  因数和倍数是五年级下册第二单元的教学内容,由于知识较为抽象,学生不易理解,因此我在教学时做到了以下几点:

  (1)密切联系生活中的数学,帮助学生理解概念间的关系。

  今天在教学前,我让学生学说话,就是培养学生对语言的概括能力和对事物间关系的理解能力。于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,又帮助学生理解了倍数因数之间的相互依存关系,从而使学生更深一步的认识倍数与因数的`关系,

  (2)改动呈现倍数和因数概念的方式。我改变了例题,用杯子翻动的次数与杯口朝上的次数之间的关系,列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。

  (3)根据学生的实际情况,教学找一个数的因数的方法,虽然学生不能有序地找出来,但是基本能全部找到,再此基础上让体会有序找一个数因数的办法学生容易接受,这样的设计由易到难,由浅入深,我觉得能起到巩固新知,发展思维的效果。

  (4)设计有趣游戏活动,扩大学生思维的空间,培养学生发散思维的能力。譬如“找朋友”游戏,答案不唯一,学生思考问题的空间很大,培养了学生的发散思维能力。我手里拿了5、17、38几张数字卡片,让学生判断自己的学号数是哪些数的倍数,是哪些数的因数,如果学生的学号数是老师出示卡片的倍数或因数就可以站起来。最后问能不能想个办法让所有的学生都站起来。出示地卡片应该是几,找的朋友应该是倍数还是因数?学生面对问题积极思考,享受了数学思维的快乐。

倍数和因数教学反思8

  这节课我在教学中充分体现以学生为主体,为学生的探究发现带给足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

  一、尊重教材,引导学生实现从形象向抽象的飞跃。

  教材中首先引导学生理解数与数之间的关系,进而用乘法算式把不一样的列法表示出来,再根据乘法算式教学倍数和因数的好处。这部分资料学生初次接触,对于学生来说是比较难掌握的资料。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、决定,需要一个长期的消化理解的过程。

  这节课我在教学中充分体现以学生为主体,为学生的探究发现带给足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,

  二、细化过程,让学生在充分交流中感悟理解倍数和因数的好处。

  倍数和因数的好处是本单元的重要知识,其他资料的教学都以此为基础。在学生得出乘法算式后,首先引导学生观察3×4=12这道算式,边指着算式边先介绍“12是3的倍数”,然后启发学生“看着算式你还能想到什么?”很多学生已经领会12也是4的倍数,指名说后,再强化一下让学生连起来说说谁是谁的倍数。之后教学“3是12的因数”,再启发“这时你又能想到什么?”学生很容易联想到“4也是12的因数”,而且学生的学习兴趣浓厚、求知欲强。这时再让学生完整的说一说谁是谁的倍数,谁是谁的因数,已经“水到渠成”。在初步感受倍数和因数的好处是与乘法有联系的,表达的是自然数之间的关系之后,之后练一练让学生根据2×6=12先同桌互相说说哪个数是哪个数的倍数(或因数),在全班交流。最后根据1×12=12先指名说一说哪个数是哪个数的'倍数(或因数),再让学生轻声地说说有点个性的两句。

  整个过程处理细致、层次清晰、有扶有放,生生交流、师生交流充分,反馈及时、兼顾学困生,让学生在迁移中理解倍数和因数的好处。

  三、由点及面,巧架平台,让学生在师生互动中建立完整的数学模型。

  找一个数的倍数或因数,既能巩固倍数和因数的好处,也为研究倍数的特征及好处作准备。探索找一个数的倍数或因数的方法时,重点是帮忙学生建立相应的数学模型。

  探索求一个数因数的方法是本课的难点,例题直接安排找24的因数更是困难。教学中我还是利用3×4=12做铺垫,引导学生先找一找12的因数,初步感知了找因数的方法。然后层层推进,先让学生想一道算式找24的因数,引出根据除法找因数的方法,再让学生按除法通过自主探究找出24的所有因数,之后组织学生比较、讨论、优化提升出找一个数的因数的方法。

  教学4的倍数时,学生在4×4=16的铺垫下,很容易找到一个或几个4的倍数,但是想要“一个不漏且有序的找全,并体会出4的倍数的个数是无限的”却很难。如何引导学生建构完整的倍数的数学模型呢?我遵循学生的认知规律,然后引导学生按从小到大的顺序整理,之后向两头延伸:有比4更小的吗?之后4×2=8,4×3=12,4×4=16,…像这样说下去说得完吗?4的倍数的特点逐步在学生的脑海中得以完善、合理建构。

  这样搭建了有效的平台、构成了师生互动生成的过程,学生经历了无序、不完整逐步由点及面向有序、完整的思维迈进,有效的建构了数学模型。

倍数和因数教学反思9

  【教学内容】

  人教版数学五年级下册P12一14,练习二。

  【教学过程】

  一、操作空间,初步感知。

  1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

  2.学生动手操作,并与同桌交流摆法。

  3.请用算式表达你的摆法。

  汇报:1×12=12,2×6=12,3×4=12。

  【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。

  二、探索空间,理解新知。

  1.理解因数和倍数。

  (1)观察3×4=12,你能从数学的角度说说它们之间的关系吗? 师根据学生的表达完成以下板书: 3是12的因数 12是3的倍数 4是12的因数 12是4的倍数 3和4是12的因数 12是3和4的倍数

  (2)用因数和倍数说说算式1×12=12,2×6=12的关系。

  (3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。

  2.求一个数的因数。

  (1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。 学生汇报。

  师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。

  出示要求:

  ①可独立完成,也可同桌合作。

  ②可借助刚才找出12的所有因数的方法。

  ③写出36的所有因数。

  ④想一想,怎样找才能保证既不重复,又不遗漏。 教师巡视,展示学生几种答案。

  生1:1,2,3,4,9,12,36。

  生2:1,36,2,18,3,12,4,9,6。

  生3:1,4,2,36,9,3,6,12,18。

  (2)比较喜欢哪一种答案?为什么?

  用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

  师:有序思考更能准确找出一个数的所有因数。 完成板书:描述式、集合式。

  (3)30的因数有哪些?

  【评析】学生围绕教师出示的'思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。

  3.求一个数的倍数。

  (1)3的倍数有:——,怎样

  有序地找,有多少个?

  找一个数的倍数,用1,2,3,4?分别乘这个数。 (2)练一练:6的倍数有: ,40以内6的倍数有:一o

  【评析】

  由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。

  4.发现规律。

  观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现? 根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。

  【评析】

  通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。 三、归纳空间,内化新知。

  师生共同总结:

  (1)因数和倍数是相互的,不能单独存在。

  (2)找一个数的因数和倍数,应有序思考。

  四、拓展空间,应用新知。

  1、15的因数有:——,15的倍数有:——。

  2.判断。

  (1)6是因数,24是倍数。( )

  (2)3.6÷4=0.9,所以3.6是4的因数。 ( )

  (3)1是1,2,3,4?的因数。 ( )

  (4)一个数的最小倍数是21,这个数的因数有1,5,25。( )

  3、选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

  4、举座位号起立游戏。

  (1)5的倍数。

  (2)48的因数。

  (3)既是9的倍数,又是36的因数。

  (4)怎样说一句话让还坐着的同学全部起立。

  【评析】

  本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。

  【反思】

  本课教学设计重在让学生通过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点: 一、留足空间,让探索有质量。

  留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一,把教材中的飞机图改为拼长方形,让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现提供了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思

  维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:通过观察12,36,30的因数和3,6的倍数,你发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。第四:让学生“选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话”。不拘形式的说话空间,不仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。 二、适度引导,让探索有方向。

  引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。

  在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。

  整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断形成、知识不断建构的过程。

倍数和因数教学反思10

  《倍数和因数》这一章是人教版五年级下册的内容。由于这一单元概念较多,学生要掌握的知识较多,所以掌握起来较难。我上的这节复习课分以下四部分。

  1、先从自然数入手,由自然数的概念让学生总结自然数的个数是无限的,最小的自然数是0,没有最大的自然数。又根据生活实际试着让学生把自然数分成奇数和偶数。点名说出什么数是奇数,什么数是偶数,是根据什么分的,这样有一种水到渠成的.感觉。

  2、由偶数都是2的倍数,复习2的倍数的特征,5的倍数的特征,3的倍数的特征。学生边复习老师边板书,由于大家共同协作,很快找出一个数的最小倍数是它本身,没有最大的倍数。然后总结同时能被2、3整除的数就是6的倍数,引出倍数和因数的意义。让学生随便说一个算式,说明谁是谁的倍数,谁是谁的因数”,学生列举乘法或除法算式,准确表达倍数与因数的关系,加深了学生对倍数与因数相互依存关系的理解和认识。

  3、随便给出一个数找出它的所有因数,得出一个数最小的因数是1,最大的因数是它身。根据因数的个数把自然数分成质数、合数和1。复习什么是质数,什么是合数。最小的质数是几,最小的合数是几。20以内的质数。为什么1既不是质数也不是合数。这是根据什么分类的呢?任意给出一个数判断是质数还是合数,若是合数让学生分解质因数。先说分解质因数的方法,然后点名学生板演,教师巡视。指出错误。

  4、带领学生一起做练习,让学生边做边说思路。这节课比较好的地方是条理清晰、内容全面;练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性、趣味性。

  不足之处是我缺乏个性化的语言评价激活学生的情感,以后需多努力。

倍数和因数教学反思11

  《因数和倍数》这一教学内容是一节概念课。教材在引入因数和倍数的概念时是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。

  能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的':在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧接着提问:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再提问:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。同时在练习中我设计了其中一道题是猜我的电话号码,激发起学生的兴趣,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。

  这节课另一个给我感触最深的是:就是在引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念——适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。

  由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学手段,提高学困生的学习效率。

倍数和因数教学反思12

  1、这堂课的行走过程。学习了五堂同课异构的《倍数和因数》,一直想自己尝试一下这堂课的教学,无奈,四年级的孩子已经学过了,就放在三年级进行教学,预习自己先到一个班级熟悉一下,和六年级的孩子打习惯了交道,现在一下子走进三年级课堂,真的还有诸多的`不习惯,一堂课下来,自己用一个“急”字贯穿课堂,说话方式有待调整,于是,再一次梳理教案,详细备好每一句话。第二次上课,请了三年级的数学老师听课,出现了一个“涩”点,就是:9是倍数,9是因数的判断,但是学生稍作点拨,还是能完全理解的,师生配合,还算顺利,另外有一些小节问题处理得还是不成熟。由于“卡”得不算太“涩”,所以,也没在意。第三次课题组正式上的时候,当出现“9是倍数,9是因数”的判断,学生竟齐声回答:这种说法是正确的。其实,出现这种情况并不是偶然的,现在,再一次理一理,发现,开始的谈话,借鉴了“三个人,有两个儿子,两个爸爸”没有用好它,反而给了学生一个错误的提示,而且“先入为主”,学生进行正迁移,从数学原理来看,没有真正处理好“数形结合”,处理因数个数与摆几种图形的关系,课堂显得思维含量不够,数学价值有些削弱,所以,教案我又作了一定的修改。

  2、关于“体验教学”主题的思考。体验既是过程,又是结果。通过学生观察老师三种写因数的方法,谈谈自己的体会,在交流、碰撞中,深化自己的认识。通过自己找因数、倍数的体验加深对知识的理解。这是我教学的出发点,实施得怎样,还需要同行的指点。

倍数和因数教学反思13

  本单元涉及到的因数、倍数、质数、合数以及第四单元中出现的最大公因数、最小公倍数都属于初等数论的基本内容。是学生通过四年多数学学习,已经掌握了大量的整数知识,包括整数的认识、整数四则运算的基础上进一步探索整数的性质。

  在教学中,通过教授学生认识“因数和倍数”,并掌握他们的特征:因数和倍数不能单独存在,并通过观察比较几个数的`因数(或倍数),知道几个数公有的因数(或倍数)叫做他们的公因数(或公倍数),且能够在几个数的因数(或倍数还)中找出他们的公因数(或公倍数)。

  接下来学习“2、3、5的倍数的特征”。发现2、5、3倍数的规律和特点。在此之前还要向学生教学什么是“奇数”什么是“偶数”,只有掌握了奇数与偶数,学习“2、5的倍数”的特征就会简单容易得多。而“3的倍数”的特征就是引导学生把各个数位上的数相加,的到的数如果是3的倍数的话,说明这个数就是3的倍数。

  那么,又如何让学生学习掌握质数与合数呢?在教学中,我主要是让学生把1~

  20的因数分别写出来,并按照奇数为一列偶数为一列来让学生进行观察比较,然后归类整理:只有1个因数的有哪些数?有两个因数的有哪些数?有3个以上因数的有哪些数?学生分好之后,教师明确:向这样只有2个因数的数叫做质数,有2个以上因数个数的数叫合数,1既不是质数也不是合数。那么自然数按因数的个数来分就可以分为“1、质数、合数”三大类。

  为了让学生巩固质数与合数,再让学生找出1~100以内的所有质数:先划掉除了2以外所有2的倍数,再划掉3的倍数、划掉5的倍数、最后划掉7的倍数,所剩下的数就是质数,并且让学生数出、记住100以内有25个质数。也可以用同样的方法去判定100以外的数是质数还是合数。

  最后,再学生讲解介绍“分解质因数”,知道用短除法来分解质因数。然后对整个单元所学的知识进行梳理、归类,让学生熟记一些特殊的规律与数字,多做一些练习,加强的后进生的关注和辅导。

倍数和因数教学反思14

  《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

  这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

  (一)操作实践,举例内化,认识倍数和因数

  我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的.乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。

  (二)自主探究,意义建构,找倍数和因数

  整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

  新课程提出了合作学习的学习方式,教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。

  找一个数因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流在让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。

  (三)变式拓展,实践应用——促进智能内化

  练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。

  由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。

倍数和因数教学反思15

  《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。本节课又是这一单元的的教学重点。为让学生很好的感受因数与倍数的意义,能够熟练的找出一个数的因数与倍数,灵活地处理了教材,分为两课时进行。第一课时只让学生认识了因数和倍数的意义及找一个数的因数的方法,效果不错。

  一、设计情境,引起思考。

  改变教材的情境图,用学生有兴趣的情意引入课题:有12个小方块,要求摆成一个长方体,你想怎么摆。引起学生思考,学生想到有3种摆法,每种摆法怎么列式求出一共有多少方块?由于方法的多样性,为不同思维的展现提供了空间。从而理解决因数与倍数的意义。

  二、引导学生探求找因数的方法,使探索有方向。

  如何找一个数的因数是这节课的重点,首先放手让学生找出24的因数,由于个人经验和思维的差异,出现了不同的方法与答案,在探索这些方法和答案的'过程中,学生明白了如何求出一个数的因数的方法,从而掌握了知识点。

  根据学生的学习特点,灵活的应用教材,使之服务于教学,让教学有效的进行,才能达到教学的目的。

【倍数和因数教学反思】相关文章:

《倍数和因数》教学反思03-05

《倍数和因数》教学反思04-11

《因数和倍数》教学反思10-19

因数和倍数教学反思10-11

《倍数和因数》数学教学反思03-02

《因数和倍数》数学教学反思02-09

《因数和倍数》数学教学反思03-05

《因数和倍数》的数学反思03-01

《倍数和因数》案例与反思03-03