分数乘整数教学反思(通用22篇)
在快速变化和不断变革的今天,我们的工作之一就是课堂教学,所谓反思就是能够迅速从一个场景和事态中抽身出来,看自己在前一个场景和事态中自己的表现。那么问题来了,反思应该怎么写?以下是小编精心整理的分数乘整数教学反思,欢迎阅读,希望大家能够喜欢。
分数乘整数教学反思 1
一、引导自主探索,了解分数与整数相乘的意义。
1、导入新课时,引导学生涂色表示3个米,目的是让学生认识到求3个米可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。
2、通过交流与讨论,引导学生主动联系已有的知识经验进行分析、归纳和类推,进一步发展学生合情推理能力,体验探索学习的乐趣。
二、加强过程体验,体会过程约分比结果约分更简便。
在解决例1的第(2)题时,我在处理算法多样化与算法优化时设计了88×8/11=?的'练习,让学生用两种方法计算,加强过程体验,学生通过亲身体验后,体会到过程约分比结果约分更简便且不易错,形成一种内在需求,优化算法。
存在不足:
本课算理强调还不够,特别是练一练第1题,在学生独立完成后,我在组织交流时不够充分,只交流了学生的计算方法和结果,忽视了学生是如何涂出4个3/16的,后来我发现学生涂得方法很多,其实通过学生涂色写算式,可以沟通分数乘法和分数加法间的联系,进一步体会分数与整数相乘的意义,体会“求几个几分之几相加的和”可以用乘法计算的算理,我没有很好地把握教材这一练习设计的意图,没有敏锐地把握教学资源,很好地巩固算理。
分数乘整数教学反思 2
把这次公开课选为《分数乘整数》这一内容,是因为上学年听了冬梅老师讲了若干遍《分数乘分数》,并一举在市名列前茅。我选了《分数乘分数》的前一信息窗,内容相对来说比较简单。对此类课的教学思路有了一定的了解,感觉有信心上好这节课。
课堂上,我是按照事先设计好的方案一步一步地进行着。结果第一环节提出数学问题,根据已有的经验列出算式就出了问题,我提出:“‘求做一个风筝一共需要多少米布条?’其实就是求什么?”。一下子把孩子问在那里了。周折了一小会儿才开始列式计算了。紧接着第二个环节列式计算,并理解分数乘整数算式的意义还好。很顺利地进行到第三个环节学习计算方法。大部分学生都用分母不变,只把分子与整数相乘的方法计算的。我不失时机地启发学生思考:为什么只把分子与整数相乘呢?比比看谁的理由最充分。这时学生们都陷入了思考,带着“为什么”去探索。在课堂上迫不及待。积极主动地进行讨论,在理清算理的基础上通过课件演示总结出法则。这一环节我自己还比较满意。到了第四环节,通过法则指导计算,并学会简便方法约分时,又出问题了,学生不理解为什么约分后的分子相乘分数的大小还不变,一直在那里纠结,足足耽误了将近十分钟的练习时间。
通过评课,同行们给我找明了问题的.关键:
1、教师在第一环节的提问绕圈子了,不要问学生“要求这个问题就是求什么?”直接让学生列式解答即可。在列式的基础上让学生自己发现6个相加可以写成×6的形式,从而明白分数乘整数的意义。
2、在探究算法的过程中,应当与算理相融合,一位同学探究说出算理和算法以后,应该结合课件再多找几个学生强化一下,这样落实面才会更广一些。
3、当学生提出对于约分环节的不理解时,教师不要急于解释,可让其在练习的基础上验证一下,或告知其下课后继续研究,一定不要把时间浪费在与个别学生纠结一些价值不大的问题。教师要有主观能控力。
4、分数的书写顺序要注意标准。
听了大家伙的建议,自己感觉很有道理,不再去邻班讲一次真对不住朋友们提出的这些大好建议。感谢教研组的评课,各路高手就像是一位位神医,帮我查找到这节课的各种病症,只不过要想医治成功还需要“患者”的努力。
分数乘整数教学反思 3
在教学分数乘整数之前,班里已经有不少学生知道了分数乘整数的计算方法。如果按照一般的教学程序进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”从而失去学习的兴趣。于是在教学时,我提出:“为什么结果是9/10?为什么要把分子与整数相乘?”接下来的教学就引导学生带着“为什么”去学习。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行多角度的`思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过在老师给的练习纸上涂色来得到结果;有的学生讲清了为什么将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了结果。
存在的一些问题。
让学生体会先约分比较简单时,出现了些问题。在做完例题第二个问题之后,依然有不少学生依然觉得先计算好,于是我就出示了四道题,其中最后一题数据较大,可以很好的引导学生得出正确的结论。但我现在觉得,如果在例题教学完之后就直接完成那个8/11×99,这样就更加直接了,学生立刻就能体会到先约分的好处了,那么再做其它需要进行约分的题目就方便了。
分数乘整数教学反思 4
一、利用已有知识引导学生实现正迁移。
《分数乘整数》是分数乘法单元的第一课时,本课主要让学生通过自主探索,了解分数与整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法。而分数与整数相乘的意义与整数相乘的意义相同,这节课在引入课题时,葛文娟老师设计了下面的两道习题:
(1)做一朵绸花要30厘米绸带,小丽做3朵这样的绸花,一共用多少厘米绸带?
(2)做一朵绸花要0.3米绸带,小红做3朵这样的绸花,一共用多少米绸带?
通过让学生列式并追问为什么都用乘法计算,激活学生已有的对整数乘法意义的认识。然后再通过改题呈现例1:做一朵绸花要米绸带,小芳做3朵这样的绸花,一共用几分之几米绸带?学生顺理成章地列出了例1的乘法算式,通过我追问这题为什么也用乘法计算?学生自然地将整数乘法的意义迁移到分数乘整数的意义中,实现了知识的正迁移。
二、尊重学生的“数学现实”,加强算法的探究。
在学习本课之前,其实已经有许多学生大概知道了分数乘整数的计算方法,但对于为什么要这样算就不清楚了。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时×3的算法时,小葛老师问:你知道怎么乘吗,你认为整数3与分数的什么相乘呢?重点让学生明白为什么要这样乘。抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母不变”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的'角度解决疑问。
二、实现教学的个性化,发展学生的思维。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,葛老师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。
分数乘整数教学反思 5
自我反思有助于改造和提升教师的教学经验,经验+反思=成长,只有经过反思,使原始的经验不断地处于被审视、被修正、被强化、被否定等思维加工中,去粗存精,去伪存真,这样经验才会得到提炼、得到升华,从而成为一种开放性的系统和理性的力量,唯其如此,经验才能成为促进教师专业成长的有力杠杆。阅读这篇数学教学反思之《分数乘整数计算法则》,和小编来感受它的魅力吧!
在教学“分数乘整数计算法则”时,我从一道计算题入手,让学生联系生活实际,创设问题情境,较好地体现了学生学习的主体性,沟通了数学与生活实际的联系,使学生认识到“数学”是生活中的数学,是有用的数学。同时这道计算题还沟通了与新的知识的联系,引出了分数乘整数的意义,并能让学生凭借这个知识点,探索出分数乘整数的计算法则。在教学分数乘整数的计算法则时,我还注重了放手让学生去探索,注重了学生的合作交流,通过讨论发现知识的.奥秘,通过交流拓宽全体学生的知识面。由此我深深地体会到,教师不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。我们教师在课堂上只是学生的引路人,是导师
这则数学教学反思之《分数乘整数计算法则》希望能给你的学习生活增添益处。
分数乘整数教学反思 6
反思本节课,无论是教学目标的定位,还是教学过程的组织,都反映出一种新的教学理念。我认为主要有以下几个方面:
一、关注学生的学习状态
新课程标准指出:“要关注学生数学学习的水平,更要关注他们在教学活动中所表现出来的情感和态度。”为此,教师在教学中为了让学生能真正主动地、投入地参与到探究过程中来,就应该设法让其在一开始就产生探究的内在需要,这是非常关键的。因此,这就需要老师既兼顾知识本身的特点,又兼顾学生的认知和学生已有的水平,寻找合适的切入口,让学生感受到眼前问题的挑战性和可探索性,从而产生“我也来研究研究这个问题”的`兴趣。这节课一开始,我就让学生经历折纸操作——合作交流——寻找计算方法这一过程,使学生发现并掌握分数单位乘分数单位的计算方法。由于在这个过程中讨论的素材都来源于学生,他们讨论自己的学习材料,热情特别高涨,兴趣特别浓厚,都想通过自己的努力,寻找出“我的发现”,而对自己寻找出的法则印象特别深,同时又产生了继续探索、验证两个一般分数相乘的计算方法的欲望。
二、关注结论,更关注过程
传统教学是教师利用复合投影片等手段,让学生理解“分数乘分数”的算理,再利用其计算法则进行大量练习,以实现“熟能生巧”。“新课程标准”指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”这一新的理念说明:数学教学活动将是学生经历的 一个数学化的过程,是学生自己建构数学知识的活动。因此,教学本课时力图让学生亲自经历学习过程,即让学生在动手操作——探究算法-举例验证——交流评价——法则整理等一系列活动中经历“分数乘分数”计算法则的形成过程。这里实现了让学生自己去做、去悟、去经历、去体验、去创造,同时也考虑了学生解题策略的自主选择,顾及了合作意识的培养,我深信这比单纯掌握计算方法再熟练生巧更有意义。
三、 科学的学习方法的渗透
新课程标准指出:“帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,获得广泛的数学活动经验。”所以教师在引导学生经过不断思考获得规律的过程中,着眼点不能知识规律的本身,更重要的是一种“发现”的体验。在这种体验中感受数学的思维方法,体会科学的学习方法。本课从教学的整体设计上是由“特殊”去引发学生的猜想,再来举例验证,然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出“分数乘分数”只要“分子不变,分母相乘”或“分子相乘,分母相乘”即可的计算方法,再由学生自己用折纸、化小数、分数的意义等方法来验证这种计算方法,发现了“分数乘分数,分子不变,分母相乘”特殊性,以及“分数乘分数,分子相乘,分母相乘”的普遍性。这其间渗透了科学的学习方法和实事求是的科学精神。
四、 困惑之处
如何关注全体?本课第一阶段研究“几分之几乘几分之几”时,由于学生是在自己操作的基础上去发现规律的,所以全体学生兴趣高涨,都积极主动地参与到了探究的过程。而到第二阶段去验证交流“几分之几乘几分之几”中,除了用折纸法验证交流外,其余的环节几乎都被几名“优等生”“占领”,虽然教师多次这样引导:“谁能听懂他的意思?你能再解释一下吗?”,“用他的方法去试试看。”但部分学生还是不能参与其中,成了“伴学者”。所以,如何面对学生的差异,促使学生人人都能在原有的基础上得到不同的发展,是课堂教学中值得探索的一个课题。
分数乘整数教学反思 7
分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进了一定的复习,再进入分数乘整数的教学。分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知涂图形的过程。
一、关注学生的学习状态
从学生已有的知识经验出发,复习几个相同分数和的`计算方法。从而让学生感知分数乘法的意义-----求几个相同分数和的简便运算。在此基础上学生很容易从加法的角度联想到分数乘整数的方法,这种顺向迁移,对学生的学习作用很大。在学生研究分数乘法的计算方法中,用以前所学的知识来解释和理解分数乘整数的计算方法,学生理解起来也很容易。教师运用新知与旧识的密切联系,让学生在认知的最近发展领域自由学习并有所收获,学生的学习是积极有效的。
二、让学生感受,学生才会感悟
对于学生而言,计算方法没有难度。但是形成先约分后计算的计算习惯确实在教学中的难点。来自学生的困惑:为什么一定要先约分,不约分也可以计算出结果。只有让学生真正感受到约分的优势,以及不约分计算的弊端,学生才会自发的先约分后计算。先设计简单的数据,学生既可以先约分再计算,也可以先计算再约分。因为数据简单,所以无论哪一种学生都可以得到正确答案。再设计7/22×33这道题,学生先计算后数据比较大,看不出公因数没有办法约分。所以学生中出现两种答案。这时两种方法进行比较,感受先约分数据小容易,先计算数据大很难约分。只有经历过这种错误的学生才有深刻的感受------先约分再计算,计算更方便。
三、掌握方法、提高计算能力
在这节课上,重点让学生理解和掌握的分数乘整数的计算方法,但是学生的计算能力的训练体现的不多。如果学生在课堂上的计算能力能够有所提高,这样一节计算课的效果就更好了。
分数乘整数教学反思 8
分数乘整数是“分数乘法”教学的第一课时,是学生理解分数乘法意义的起点。这部分教材是在学生已学的整数乘法的意义和分数加法计算的基础上进行教学的。
在教学中,我充分利用学生已有的知识经验,努力结合现实的问题情境,将计算学习与解决问题有机结合,放手让学生自主探究分数乘法的意义。创设学生喜欢的实际情境,让学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的`意义相同,都是求几个相同加数和的简便运算。
在教学分数和整数相乘的计算法则时,我指导学生从读一读,说一说,练一练,想一想,议一议五个方面入手,例如:教学3/10×5,首先让学生明确,要求3/10×5,也就是求3/10+3/10?3/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是35,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与35/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练7/10×5,然后进行集体交流,看一看能不能在相乘之前的那一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。
总之,本节课我能尽量调动学生的多种感官,改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。
分数乘整数教学反思 9
分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课前,我对这些内容进行了一定的复习,再进入分数乘整数的教学。
分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘的积作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知画、涂图形的过程。因此,在后面计算方法的'得出就水到渠成,比较容易了。再者,对“分数乘整数表示的意义”也有机的渗透,为后面的知识打好铺垫。
一堂课上下来,由于学生对内容比较容易接受,课堂上有了空余时间。学生对算理的理解比较清晰,但还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用。
这一环节还应讲深讲透。学生可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。学习分数乘整数,学生在计算时肯定会遇到先约分后乘还是先乘后约分的问题。如果仅仅是为得到一个正确的结果,那么无论前者,还是后者,都无关紧要,只要不出差错,最后都能得到正确结果。显然,我们还需要学生养成良好的计算习惯,较高的计算速度和计算正确率!那么我们就必须让学生明白到底哪种思路更合理,更有助于自己的后续学习。作为分数乘法的第一节课—分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。在教学分数乘法过程中约分时,我让学生用两种方法进行了比赛,如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要先约分”这一要点。
分数乘整数教学反思 10
“分数乘整数”在练习中,50%的学生喜欢用分数加法的计算方法来做分数乘法。学生利用式题,不但总结出了分数乘整数的计算方法,而且知道了算理(也就是分数乘整数的意义),真正做到了算理与算法相结合。
基于这两者天壤之别,笔者有了深深的感触,上述两个案例让我想到一个相同的问题,就是我们常说的备课之先“备学生”到底备到什么程度?对于学生的知识前测,教师心中有多大的把握?没有对学情准确的侦察”,便绝对不会”打赢”有效教学乃至高效教学这一胜仗。很多教师在备学生的时候,是借用别人的眼光来估计自己的学生,看教参上是怎么说的。教参说这时的学生应该具有什么样的知识经验,教师便坚信自己的学生也定是如此了。没有或者很少考虑到虽然是同一个年龄段的孩子,但还有诸多不同的因素:也许你的学生是后进的,他的基础没你想象的那么牢固;也许他是绝顶聪明的,学习进度已经超过好多课业了。
如上述案例中,关注学生转化的思想就是本课时教学的重中之重.数学知识有着本身固有的结构体系,往往是新知孕伏于旧知,旧知识点是新知识点的生长点,数学教学如何让知识体系由点到线,线到面,使知识结构“见木又见林”是十分必要的`。案例1从整数乘法迁移到分数乘整数,想法是可取的,但整数乘法的意义在二上年级就已经出现,而且教材中没有出现整数乘法的抽象表达方式(即整数乘法表示求几个相同加数的和),对于五下年级的学生来说,遗忘程度可想而知。而案例2中,以五上年级的分数加法为基础,让学生自由探索,效果是非常明显的。转化是需要条件的,只要“跳一跳”,就能摘到“桃子”,学生才会去尝试。
今天这节课的算理看似简单,其实理解还是有困难的.根据学生的认知心理,在遇到一个陌生的问题,如”1/5×3=?”时,学生对算法的兴趣远远胜于算理.因为算法可以直接得到结果。一旦知道算法,多数学生会对算理失去兴趣。甚至为了考试成绩去死记硬背算理,算法与算理完全脱离。那么我们实际上不是教数学,而是在教一门计算程序:不是在培养研究者,而是在训练操作工。这与”学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的思想方法和必要的应用技能”相违背的。
数学思想方法内容十分丰富,学生一接触到数学知识,就联系上许多数学思想方法。寓理于算的思想就是小学数学中的基本思想方法。在教学时,把重点放在让学生充分体验由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和对算法的切实把握。小学是打基础的教育,有了算理的支撑,算法才会多样化,课堂才会更开放。
课标中,原来讲“双基”,现在变成“四基”,多了基本思想、基本活动经验,笔者认为,只有具备了基本思想、基本活动经验,才能在思维上促进基本知识、基本技能的发展。不但教给学生一个表层的知识,更要给学生思维的方法与思想。
分数乘整数教学反思 11
课上充分利用知识间的内在联系,向学生提供充分从事数学活动,探究的机会,让学生在自主探索、合作交流中得到发展,提高思维,培养创新能力。
创设情境,质疑猜想。
师:你能说说你现在最想解决什么问题?
生:整数乘法运算定律可以推广到分数吗?会不会让计算也变得简便呢?出示课题,画上一个“?”通过创设的问题,引发学生的.认知冲突,进而组织学生猜想:能否推广到分数乘法。
让学生自由的发表自己的猜测。验证完合理性后,在例题教学中,我决定现由学生个体尝试,碰到困难,可求助于学习小组,然后再到小组交流,进而过渡到全班汇报。步步为营,层层递进,始终紧扣重点“简算时,运用了什么定律”展开,实践自己探究出的新知,使学生获得成功的体验,增强学习数学的信心;独立解答,再在小组内交流,也使合作学习落到实处,进一步扩充了课堂教学的信息渠道。在我设计的练习题中,通过多样化的形式,如选择,判断,填空等,加深对新授的理解和难点的突破。有助于学生形成良好的认知结构。总之,本堂课将立足学生,培养他们学习的能力和创新的意识,为学生今后的发展,提供良好的锻炼空间和舞台。
分数乘整数教学反思 12
分数乘法是在前面学生掌握了整数乘法、分数加减法、分数的意义和性质等知识的基础上进行教学的。
成功之处:
1.明晰分数乘法的意义。分数乘法包含两种情况:一种是分数乘整数,另一种是分数乘分数。在教学分数乘整数的意义中又分为两种情况:一是分数乘整数;二是整数乘分数。虽然它们的计算方法相同,但是表示的'意义却不相同。学生非常容易在此处出现意义上的模糊。例如:2/3×4表示4个2/3是多少,而4×2/3表示4的2/3是多少。教学分数乘分数的意义时,学生出错较少,能够清晰的表示出分数乘分数的意义。
2.明确分数乘法的计算方法。在教学中,对于分数乘整数的计算方法要让学生明确分数的分子与整数相乘的积作分子,分母不变;而对于分数乘分数的计算方法要让学生明确分子相乘的积作分子,分母相乘的积作分母。在计算中先约分,再计算,会使计算变得简便。
不足之处:
1.学生在计算分数乘整数时,还是有个别同学把整数和分子约分计算,还有的出现先计算,再约分,容易出现约分后的分数不是最简分数。
2.在计算小数乘分数时,学生容易出现小数与分母约分后得整数的现象。
3.在简便方法计算时,学生容易出现应用乘法分配律进行计算的错误。特别是形如2/9-2/9×7/16这样的题目,学生往往不知道是应该应用乘法分配律来进行计算。
再教设计:
1.强调分数乘整数的计算方法,特别是整数必须要与分母约分。
2.强化练习形如2/9-2/9×7/16这样的题目,避免学生在此题目上出错。
分数乘整数教学反思 13
“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:
⑴让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
⑵强化分率与数量的一一对应关系。并根据关键句说出数量关系。
⑶帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。
对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的'能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。
教学中也显露出一些问题。主要存在于:
1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。
2、在学生表达解题思路时,不宜集体讲,更应注重学生个体表达,并且不必一定按照课本的固定模式,应该允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。
3对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系。
分数乘整数教学反思 14
本单元教学所需关注的几个问题:
1、计算,分数乘法切记约分,计算的.正确率有待提高,分数乘法教学反思。
2、简便方便:乘法分配律有的学生不能熟练运用,简便方法不能灵活运用,举一反三。
3、注意单位“1”的找法,教学反思《分数乘法教学反思》。
4、分数乘法应用题:要注意是连乘的还是求两个量的,学生易混。
5、倒数的概念教学,它将成为下一单元的教学起点,所以必须落实好。
应用题教学注意:
1、教学中结合实际例子,结合文字式题,结合实际生活,结合线段图。
2、注意对比。例如:
红纸30张,黄纸比红纸多1/2张,黄纸有多少张?红纸30张,黄纸比红纸多1/2,黄纸有多少张?
分数乘整数教学反思 15
本节课是分数乘法式题的教学,教者有意安排了一道带分数乘法的式子题,旨在进一步提高学生的计算能力。但这节课在诸多方面已经远远超越了教者的本意,达到了一个新的境界,这是一节非常成功的数学课,本人认为这节课有以下几方面的优点:
1、改变了单纯的知识传授者的身份
在本节课中,教师积极创设了有利于学生自主学习的环境: “猜一猜,”真是这个“猜一猜”点燃了学生思维的火化,开放了学生思维的空间。教者并没有直接告知学生如何去计算,不只是单纯的进行知识灌输,不再是用原有的 “教师中心”的做法,已经站到了学生的.中间,从学生的经验出发组织学生的学习,为学生提供了更多的发展机会。
2、倡导个性化的知识生成方式
新课程实施旨在扭转 “知识传授”为特征的局面,把转变学生的学习方式为重要的着眼点,以尊重学生学习方式的独特性和个性化为基本信条、新课程要求在学科领域的教学中渗透 “自主、探究、与合作”的学习方式。在本案例中,教者不再仅仅是 “教教材”, 当问题出现后,不再是教者面对知识的独白,并没有告知学生如何去做,而是让学生先 “猜一猜”,说说自己的想法。当学生提出不同的见解后,又积极引导学生对有价值的“经验、见解”深入进行探究,共同寻求解决问题的方法。这已经超出了个人化行为,成为群体合作行为,与学生建立了真正的对话关系,超越自己个体的有限视界,填平 “知识权威”与 “无知者”之间的鸿沟。这一切有助于学生个性化的知识生成,更有助于学生形成 “不断进取 ,不断创新”的精神世界。
3、把握生成,与境俱进
记得一位教育专家曾经说过这样一句话: “每一节课都有生成,只是教师有没有注意吧了。”在本案例中,教者能做到 “与境俱进”,能在预设“猜一猜”的基础上,抓住生成,及时灵活处理具有 “生成价值”的问题与回答,就话答话, “与境具进”,及时引导学生针对提出的话题展开探讨。整个教学充满灵动、智慧、活力,课堂教学真正做到 “开放”与 “灵活”,充分促进学生自主和富有个性化、创造性地学习。
课改大潮轰轰烈烈,涤荡着每一个角落。当前的课堂教学如何实施,我想本案例很值得我们学习和借鉴。
分数乘整数教学反思 16
小学数学《分数乘整数》这节课是让学生理解分数乘整数的意义,掌握分数的计算法则。依据知识的`迁移,我首先进行了必要的铺垫,复习整数乘法的意义,利用知识之间的联系,使学生顺利掌握“分数乘以整数的意义与整数乘法意义相同”。同时,复习分数加法,为后续教学铺垫。
在教学分数乘法在过程中约分时,书上的例题是:6×5/9,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性,因此,我将题目改得稍复杂些,变成“6×17/18”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。
分数乘整数教学反思 17
《分数乘整数》是北师大教材五年级下册的一个教学内容。在教学一个数乘分数的意义和分数乘分数的计算法则中,通过操作、演示、观察、比较等活动,即先形象具体,后抽象概括,帮助学生理解分数乘法的意义和算理。在教学中,老师引导学生操作,直观感悟,使学生参与到教学中来,充分发挥学生的主动性,调动学生的积极性。
从已学知识的基础上出发,利用知识的迁移和扩展,理解分数乘法的意义。教学时先通过知识迁移,进行必要的铺垫。比如对整数乘法的复习,思考“4个3是多少?用什么方法计算?”这样的问题让学生复习旧知,并运用新旧知识的联系,使学生明确整数乘法的意义,再充分利用直观图,使学生清楚地看出可以用加法计算,也可以用乘法计算。
引导学生把直观操作与抽象推理相结合,理解分数乘法的计算法则的`推导过程。还要将算法多样化与算法优化有效结合,让学生通过充分尝试、感悟、体验、思辨、探索总结出“能约分的先约分,再计算,比较简便”这一最优计算方法。
由于分数乘法的计算法则比较抽象,学生理解起来有一定的困难。教学时我针对教材提供的情境,让学生自由提问,尽量加强直观,变抽象为形象,使数学情境更生动,还要多给学生创造对手操作的机会,激发学生学习的兴趣,使他们主动地参与到教学过程中来。在直观操作的基础上在推导出分数乘分数的计算方法,进而概括出分数乘法的法则。
培养学生良好的计算习惯和认真的学习态度。学生掌握这部分内容并不困难,但要通过这部分内容的学习和练习,培养其认真审题、注意运算顺序、观察数字特点,、选择简便方法等良好的计算习惯和严谨认真的学习态度,为他们以后的学习打好基础。
在教学过程中,要以教师为主导,学生为主体,为学生创造参与教学活动的情景,通过操作、演示、观察、比较培养学生的抽象概括能力,通过分析讨论,培养学生的分析综合能力。同时,教学过程中要注意抓住新旧知识的内在联系,使学生了解知识間的横向联系。学生在联系和比较中找到了知识与知识之间的联系,并获得探索知识的体验。
通过教学及单元检测后的分析,本单元教学还存在以下问题,今后教学要引起重视:
1、少数学生做题时不认真看题,将题目做错了。
2、做题时不读题,只看数字就列算式。
3、最后结果不化成最简分数。
4、学过的知识不会灵活运用,题目只要稍微转一下弯就做不到了。
分数乘整数教学反思 18
又一个学期开始了,本学期在复习了一下本已经学过了的新知识后,结合站、校统一月考安排,对班里学生的学习情况做了个单元测试。从而分析教师应该如何对学过的知识进行加强练习,有的放矢。 在批完所有的试卷后来看,一些填空、判断、选择的概念部分失分最严重,80分以下的学生基本都要丢10以上,80—90分之间的也要达到5分以上,其次是脱式计算部分,80分以下的学生也要错上一两题,有的甚至错上四五题,这些方面的丢分决定了他们在本次测试中只能达到那个分数。当然90分以上的学生或多或少都存在以上的问题,只不过少严重一些罢了。
结合试卷,反思教学,问题颇多。比如在填空部分的补充数量关系式,绝大部分学生能找到单位“1”的量,却找不到分率的对应数量,全对的人很少,这说明了我在教学的时候学生的理解还是很肤浅的,只是能到达听懂的层次,没有给学生自己充分地表达时间,甚至在自己的.本子上写写的机会,导致测试时不知何从下手。而在计算部分,学生失分一直较严重,说明在练习课上,我还得加强时效性,课的内容还要加强备学生,有些计算可能对学生来说只是无味的重复,针对性不强,在平时课上应当注重口算练习。在应用方面,一定要让学生有一个很明确的解题思路,确定关键句,找准单位“1”很重要,然后列出数量关系式解答。这单元只是涉及到了分数乘法部分,加上下一单元的分数除法,学生一定会更加混乱,所以一个清晰的解题思路很重要。也体现了这是我平时教学中的一个难点,如何更有效地去突破,这需要我好好向同行们请教的。
分数乘整数教学反思 19
一、注重旧知的铺垫,为新课导航。
本节课,开启课时,我注重从孩子的身边挖掘素材,引出整
数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。
二、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。
我设计的两个环节,引起了学生强烈的求知欲望。第一,在
复习完后我鼓励学生根据已有的知识,去大胆的猜想:整数乘法运算定律是否可以推广到分数乘法?于是孩子们的思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题
后,我又让学生大胆的'质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。
三、需要改进之处:
1、对学生的多样思维应加大评价力度。
孩子们在猜想整数乘法运算定律是否可以推广到分数乘法时,有一个孩子说到她是想到了整数加法的运算定律可以推广到分数加法,所以断定也能推广到乘法。这里,我给予了肯定,但力度不够。以上可以看出,评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还有待加强。
2、课前对学生的估计过高,所以使一些事先设计好的练习,没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。
3、学生的学习兴趣和学习自信心有待激发。
分数乘整数教学反思 20
这节课是上周上的,杂事纷扰,一直没有闲暇来好好写写当时教这节课的感受。
这节课上下来,有两个重点需要把握,一个是理解分数乘分数的意义,这是解决分数乘分数所有的实际问题的前提,如果意义不理解,问题解决犹如空中楼阁。那教学的第一个板块就是意义的教学,上一节课我们已经知道分数乘整数的另外一个意义,即求一个数的几分之几的是多少,我从这个意义入手,延伸到一个分数的几分之几也是需要用分数乘法的。
借助《庄子。天下》那句“一尺之锤,日取一半,万世不竭”入手,先回顾一个整数的几分之几用分数乘法,再引申到当一个分数的几分之几时同样也是可以用分数乘法的,在出示分数乘分数的时候,同时出示具体的木棒截取的过程,让孩子在具体实物中理解,其实其中一个分数表示一个具体的量,而另外一个分数就是一种分法(或是按照孩子们的想法叫做截法),或是有些孩子理解到分数乘分数其实是分了两次。在这个环节,孩子们需要重点理解意义,同时也初步感受到分数乘分数可以用分母乘分母,分子乘分子。
那接下来的环节就直捣黄龙了,深入探索分数乘分数的方法,当然很多孩子已经知道方法就是分母乘分母,分子乘分子,但是不知道为什么那样,那下面的探索环节就是要弄清楚方法的原理。算理的理解还是需要借助直观模型,因为算理在学生头脑里是一个很抽象的东西。当然在探索之前,我们还是对意义进行了再次强调,还把两个乘数反一反,再说意义。紧接着出示书本例题,放手让孩子去画图,在一个长方形中涂出最后的结果。涂完之后,把不同的结果反馈到黑板上,孩子们分别说,说的`过程中我进行一些重点追问,这些追问无非就是在关注每一次分法。全部说完之后,再次沟通各种方式。开始提炼这些图形与算式之间的共同联系,这种联系就是在明晰算理的内在原理,孩子们归纳发现,原来在图形中,被分了2次之后,这个总份数其实就是分母乘分母(也就是最终结果的分母),比较难理解的是在图形中怎么体现分子乘分子,经过一番激辩,孩子们渐渐明白两次取出份数之积就是最终答案的分子,在图形中就是先取了几份,再在这几份中取出几份,也就是说是几份中的几份,那最红取出的总份数就是把两次取出份数乘起来就好了。
最后强调先约分,而不是最终结果出来在约分,这样计算会更加简洁,不过从课后作业来看,如何约分还是需要细讲。
分数乘整数教学反思 21
《分数乘整数》这一单元教学后的总体感受是:再简单的知识对学生来说也还是难的,主要原因是学生没有静心读题,按要求完成题目。就算是 简单的计算,学生的错误也很多,不是题目抄错就是把分数加法算成分数乘法,分数乘法的计算在通分。所以我觉得可以采用如下做法:
⑴每节课的内容不易过多,不能贪多 ,贪多嚼不烂,学生不易一下全掌握。要分的稍微细致一些,以便学生理解掌握,也有利于知识的扩展与深化;
⑵分数乘法中:求一个数的几分之几是本册中重点,所有数与代数教学内容都是围绕着这一中心展开的。在教学中要重点对待,要求学生能根据题意画出线段图;
⑶对于教复杂的求一个数的几分之几的解决问题,在教学中要强化分率与数量的一一对应关系,让学生用画图的方式强化理解一个分数的几分之几用乘法计算,帮助学生理解"一个数的`几分之几"与"一个数占另一个数"的几分之几的不同。
⑷通过对比训练区分带单位的分数和不带单位的分数计算。如比30千克多3/4是多少和比30千克多3/4千克是多少。
分数乘整数教学反思 22
上一轮教分数乘整数已经是六年前的事了,那时用的教材是人教版的,而北师大版的教材还是第一次教到这一内容,因此集体备课时与同事们进行了深入的探讨。
分数乘法如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。
一、充分利用学生已有的知识水平与生活经验,实现新知识的迁移。
在教学分数和整数相乘时,根据学生的已有的知识基础,导学稿上设计了复习整理整数乘法的意义和同分母分数的加法的计算法则。在教学分数和整数相乘的计算法则时,我指导学生联系旧知再小组中自行探究,例如:教学3/10×5,首先要让学生明确,要求5个3/10相加的和,也就是求3/10+3/10﹢3/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是3×5,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与5×3/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练5×3/10,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的.先约分。
二、努力结合现实的问题情境,引导学生理解分数乘法的意义。
练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算,又可以启发学生用加法算出3/10×5的结果。
总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。
【分数乘整数教学反思】相关文章:
分数乘整数教学反思10-21
《分数乘整数》教学反思06-28
《分数乘整数》教学反思02-17
分数乘整数教学反思15篇12-20
数学分数乘整数教学反思12-23
数学分数乘整数教学反思10篇03-02
《分数乘整数》教案09-21
《小数乘整数》教学反思04-07
小数乘整数教学反思01-15