一位数除三位数教学反思
身为一名人民教师,课堂教学是重要的任务之一,通过教学反思可以很好地改正讲课缺点,教学反思应该怎么写呢?下面是小编收集整理的一位数除三位数教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
一位数除三位数教学反思1
本节课教学中,我通过仔细分析教材里不同计算方法的呈现特点,结合学生的实际,采取相应的教学策略,提高计算教学的效率。
教材通常在学生已初步具备解决某个计算问题的知识和经验,但独立探索新的计算方法难度较大时,可以先让学生探索,再老师示范、解释算法。在教学一位数除三位数的竖式计算方法时,考虑到学生已经掌握了一位数除三位数的竖式计算的方法、有余数除法的竖式计算以及一位数除整十数商是整十数的口算,教材在提出计算2386之后,先让学生估算,再让学生尝试计算,试算完毕,开展争当小老师的活动。在争当小老师的活动中,四人小组的成员自找同伴,互教互听。通过观察、讨论、发现每一题的笔算过程先做什么--再做什么--接着做什么--最后做什么,探索出笔算除法的运算程序。教学时,我充分利用教材提供的现实情境,努力激活学生已有的知识和经验,鼓励学生用自己的.方法计算。同时,启发学生通过同桌的合作与交流,互相启发,打开思路,并通过计算方法的展示和介绍,让学生感受不同计算方法的内在联系,体会到计算2386的基本策略。
一位数除三位数教学反思2
阿尔法趣味数学网今天带来的是人教3年级数学《三位数除一位数的估算》教学反思,附估算方法。
本节估算课中,孩子们能够仔细观察、认真思考合作交流,发现了知识,领悟了方法,品尝到了成功的喜悦,他们各个能投身于探索知识宝库的`活动中。最重要的是培养了他们的数感,学会了估算,并能在日常生活中灵活应用估算。
1、创设情境,激发兴趣
课一开始,我便出示相关的情境图,为学生呈现了许多信息,使他们从中体会解决生活中估算的乐趣,迸发出了合作的欲望。例如:由科技馆引入,先让生看图后搜集一些信息,我便问:"你认为这样分配才能使每批进去的人数较为合理呢?"从而引发了估算的需要。
2、自主探索,学习估算
数学课程标准中指出要放手让学生探究新问题,从而找到解决问题的途径。因此在整个课堂中,我都让学生进行自主探索→尝试估算→小组合作→展示估算→比较估算,这样孩子们经历了估算的过程,还增强了估算意识,提高了估算能力。例如:574÷3该怎样估算呢?生合作后会有许多的估算方法:①574÷3≈190②574÷3≈200……接下来学生对前两种估算过程与方法进行比较,再次组织小组合作学习使他们的估算思路更加清晰。
阿尔法趣味数学小课堂:三位数除一位数的估算估算方法
用竖式计算法:在计算过程中列一道竖式计算,使计算简便。加法计算时相同数位对齐,若和超过10,则向前进1。减法计算时相同数位对齐,若不够减,则向前一位借1当10。
一位数除三位数教学反思3
上完这节课,让学生判断出发算式商是几位数,在例题中,学生根据观察被除数312的第一位数比除数4小,应该用被除数的前两位数除以4,很容易判断出312÷4的商是几位数,通过提问“7为什么写在商的十位上”,学生在交流中体会到“除数是一位数的除法,当被除数的最高位不够商1时,就要用它的前两位去除,除到被除数的哪一位,就把商写在哪一位的上面”进一步巩固算理。本节课中,通过例题于复习题进行比较,这样在比较中学生比较容易理解商是三位数还是两位数的除法,关键是商的定位,此外,课堂中要重视估算,培养估算意识。
学生在巩固练习,家庭作业的完成过程中,大多数学生左右为情况完成比较好,竖式格式较为规范,个别学生在写横式时漏写余数,或者是漏写横式答案。让学生进行估算得数是几位数,或者是让学生估算得数是几十多,几百多,可以提高学生的估算能力和正确率,练习中还出现了一些乘法的习题,培养学生的注意品质,让学生在计算时养成良好的`学习习惯,如计算时把数字看清楚,竖式的数位对齐,养成计算完要验算的好习惯,培养计算时要细心,耐心,用心的好习惯。
一位数除三位数教学反思4
上完这节课我认为有以下优缺点
优点:
一、让学生在动手操作中感知算理
在探索一位数除三位数(首位能整除)的口算方法时由于部分学生应能应用已有知识计算出结果,为让每一位学生都能进一步理解算理,我主要通过让学生摆小棒来理解。使学生通过动手操作,在操作过程中探讨出新知。因为动手操作是一种主动学习活动,它具有具体形象,易于促进兴趣,便于建立表象,有利于理解知识等特点。所以,通过组织学生动手操作学习新知识,正是适应这一认知特点,学生只有在一些实际操作中才能逐步体会、理解“形”和“数”之间的联系,从而使学生在动手操作的愉快氛围中获取知识。
二、让学生在观察思考中理解算理
在教学一位数除三位数(首位能整除)的笔算方法时,我主要是让学生自己观察竖式并结合操作思考以下问题:(1)从哪一位开始算起(2)2为什么写在商的十位?(3)竖式中的第二个4、6分别表示什么等问题,通过观察、思考,运用已有知识(有余数除法的笔算方法)的迁移摆小棒的过程,很容易理解第二个4、6分别是怎么得来的,表示什么。
缺点:一、学生对于竖式的计算没有达到预期的效果。
我认为学生以前接触过除法竖式,掌握起来应该不难,但是学生实际做起来并不理想。做起来丢三拉四,不是很好。
三、新旧知识点的对比不明显
本次教学是以有余数除法笔算方法为基础的,但两个知识点之间又存在着很大的不同:以前学的有余数的除法是直接应用表内除法计算的,商都是一位数,而现在所学的两位数除以一位数(首位能整除)的.除法则商是两位数,不能直接应用表内除法进行计算,而要从十位开始算起。由于没有让学生进行新旧知识的对比,导致很多学生在笔算两位数除以一位数(首位能整除)的除法时,和以前的知识产生混淆。
总之,由于学生已有认知基础和思维方式的不同。教学中要充分利用时间和空间,注重学生的动手操作,了解学生不同的操作方法,并在课堂上有效地引导,逐步让学生在比较明晰较合理的操作方法上理解算理,从而提高计算技能。
一位数除三位数教学反思5
这节课的内容是用一位数除商两位数的延伸,是以一位数除两位数为基础的,主要是解决被除数的最高位不够商1时,要用除数去除被除数的前两位数的问题。
先复习一位数除商两位数笔算除法,为学习新知识起到孕伏作用。接着引导学生以小组探讨的方式进行学习,加强新旧知识的联系,培养学生迁移能力。在总结法则时,先让学生讨论汇报小结法则,有利于培养学生的语言表达能力和对知识的`构建能力。 练习的设计突出有针对性的对容错的问题进行训练。
教学调整:
在这之前,学生已学习了两位数除以一位数的笔算除法的计算方法,在此基础上再让学生来学习三位数除以一位数的笔算除法。但教材编写进度太快,直接让学生学习被除数百位不够除,怎样处理的笔算情况,学生有困难。因此,在本课教学中,我将三位数除以一位数的笔算除法划分为两课时进行,第一课时让学生来探究被除数百位够除的笔算方法,在此基础上再让学生来探究被除数百位不够除的笔算方法。
从学生的起点出发重组教材:
教材中的安排是直接出示三位数除以一位数(白位不够除)的笔算,教学讲究循序渐进,还不会爬,如何会跑?所以这里我对教材进行了重组,在此课之前先出示684除以2让学生尝试笔算,以这一题为切入口让学生理解三位数除以一位数的笔算顺序,然后让学生尝试百位有余数的笔算,最后让学生尝试百位十位个位都有余数的笔算,这样的处理将难点进行逐一分解,分小步子进行教学,学生容易接受,而且掌握得比较扎实。教材是重要的教学资源,但并非“教条”,在教学中,我们应该结合学生的实际,合理地,分析教材,改造教材使其成为真正有用的课程资源。
一位数除三位数教学反思6
新教材中,教材例题的编写非常精简,有些知识点的跨越很大,教学“一位数除三位数”时,教材只呈现一个例题(一位数除三位数商是两位数),“一位数除三位数商是三位数”只在做一做中出现。而这部分知识难点较多:除法竖式的书写格式,试商,正确判断并计算“商是两位数或三位数”这两种类型的'题目。这些都是学生难以理解和掌握的。因此,在例题教学前,我加入了商是三位数的题目,除了可以加深对笔算除法算理的理解外,还可以与商是两位数的除法形成有力的对比。
虽然,通过复习铺垫、自主探究、交流反馈、对比发现,学生对一位数除三位数笔算除法的算理已经清晰明了,但仅此,学生要想正确计算,还需要在大量的练习中熟练把握,而那些学习处于中、下等水平的学生,学起来仍很吃力。尤其是商是三位数的情况,学生往往会同时移动两位来计算,造成了计算上的错误。但全班整体掌握较好。
从这节课的教学中,我深刻感受到:在教学时,一定要先熟悉教材,吃透教材,挖掘所有知识点,把握编者意图,并根据班级实际选择合适的教学方法,才能造就一节高效的课堂。
一位数除三位数教学反思7
这节课是学生在学习了一位数除两位数的基础上学习的,其复杂之处在于:一,被除数的位数增加;二,试商的难度增加了,当被除数的最高位不够商1,要用除数去除被除数的前两位。教材只呈现一个例题——通过小梦和小欣整理照片的情境不仅让学生复习238÷6估算的结果,同时还要掌握其笔算的方法。课前我仔细研读教材,发现在“做一做”中还出现了“商是三位数”的一位数除三位数的笔算除法,教材这样设计的目的何在呢?通过进一步的研究,我又重新修改了自己的教学设计——在重点教学完238÷6的'笔算方法后,还增加了一个变式题——“假如他们一共有678张照片,咱们又该怎样解决这个问题?” 之后又通过对比两道笔算试题发现判断一位数除三位数“商的位数”的方法。由于我增加了这两个教学环节,所以学生不仅能迅速判断出一位数除三位数商的位数,而且还在对比中进一步强化了一位数除三位数的笔算方法——计算过程一样,只是试商存在区别。
这节课之所以增加“试商”的练习,更是为了让学生感受到“判断商是几位数”其实也是检查自己笔算是否正确的一种方法,培养学生检查的习惯。
一位数除三位数教学反思8
开学第二周开始学习商是两三位数的的笔算除法,这一知识是在已学习的商是一位数除法基础上学习的。(上学期刚学过),但比起去年,学生学习起来非常困难,不知为什么?
存在问题有
1、个别的学生在算商与除数相乘时,乘法口诀错误。如“六九五十四,写成六九四十五。
2、更多的问题笔算步骤不会写。如:笔算568÷3时,百位上应商1,1乘3积写在百位5的下面,余数是2,但有的学生就把这个余数2不要了,光把十位上的6落下来后继续在十位上商2;也有的学生算出余数2后,把十位的6和个位上的8一起落下来,导致愁眉哭脸,束手无策。
3、在计算有余数的除法时,竖式很正确,但横式上不写余数。
4、在验算有余数除法时,横式上的得数有时写成验算后的得数,即出现了被除数除以除数等于被除数的现象。
更让你苦笑不得的是:有一天在做笔算48÷6时,这道去年非常熟练的题,本次做起来有七八人出错,得数有得71的,也有得7,还有实在是不会做空着的,真是莫名其妙呀。
在做除数是一位数的.笔算除法时,不管被除数是几位数算理都是一样的。都是先用除数去试除被除数最高位上的数,够除就试商,不够除就试除前两位数,如果除到哪位有余数了,要把余数和落下来的下一位合并后继续用除数除(个位例外)。除到被除数哪
位就把商就在哪位上面,每求出一位商余数一定要比除数小。两、三位数除以一位数,商是两三数的除法,是继续学习商的中间或末尾有0的除法的基础。
反思;首先,大部分学生都知道除法应从最高位除起,这个地方点到为止。然后弄清百位上的被除数是几,百位上有没有余数,余到十位上加上十位上的数字共同成为十位上的被除数,接着除,再看十位上有没有余数,余到个位上加上个位上的数字共同成为另一个被除数,接着除,个位上还有与余数的就余下来作为商的余数,这样讲条理会清楚一些,学生接受起来,模仿起来也容易上手。
其次,对除法法则的渗透还要加强。我自己是在不知不觉中运用了除法法则,但是没有明确的说出来,造成了人为的障碍。最典型的错误就是余数会比除数大,光看算式很容易发现余数不应该比除数大,但是在计算的过程中就经常出现,问题大多出在试商的环节,口诀不熟,慢,一慢一不熟就容易让思维停滞,一旦停滞就不能考虑周到,往往乘法好不容易嘀咕出来是多少了,写出来一减余数还老大的,所以下面要练习学生的试商,简单点就直接练习乘法的口诀。
所以,计算教学需要思考的还很多,现在我越来越觉得教的过程可以不完美可以琐碎,但要条理清楚,要让人容易上手,上完学生都会做作业那就是最实在的奖励。
一位数除三位数教学反思9
本节课是教学一位数除三位数,教材例题的编写非常精简,有些知识点的跨越很大,教学“一位数除三位数”时,教材只呈现一个例题(一位数除三位数商是两位数),“一位数除三位数商是三位数”只在做一做中出现。而这部分知识难点较多:(1)除法竖式的书写格式(2)试商(3)正确判断并计算“商是两位数或三位数”这两种类型的题目。这些都是学生难以理解和掌握的。
在本节课中,我根据上节课学生有了一位数除两位数的经验,三位数除以一位数的除法,由于有两位数除以一位数的基础,我觉得应该不会很难,所以在例题 “238 除以6”的竖式计算中,就放手让学生自己探索下面的算法了,在教学过程中,大部分学生都知道除法应从最高位除起,当被除数的最高位不够商 1,要用除数去除被除数的前两位。但是商是三位数的除法让学生无从下手,尤其是那些学习处于中、下等水平的学生,学起来仍很吃力。本该是一位一位往下挪的数字,有的学生却一起挪到下面来,或者是百位上有余数却没有移下来,有的数位也没有对齐就乱移一通。还有些学生在写横式时有余数的忘记写余数。还有由于我在教学一位数除三位数笔算除法的算理时啰嗦,导致时间紧张,没有时间练习。
虽然,通过复习铺垫、自主探究,学生对一位数除三位数笔算除法的.算理已经清晰明了,但仅此而已,学生要想熟练计算,还需要在大量的练习中积累运用,尤其是商是三位数的情况。
从这节课的教学中,我还深刻感受到:教师的一言一行很重要,不经意的一句话有可能会打击学生回答问题的积极性,影响课堂整体效果。
一位数除三位数教学反思10
一、比较好的地方
1.联系生活情境,计算与解决问题相结合。
体现在两个方面。首先是新课的引入,创设了班里常见的分小棒的情境,通过对这个问题的解决来引导学生理解一位数除两位数的`算理,探索笔算方法。其次是练习中的扑克牌和买奖品,引导学生用学到的知识去解决实际问题,体现计算的意义,使学生感到数学是有用的。
2. 口算、笔算、估算相结合,鼓励算法多样化。
在解决分小棒的问题时,强调解决问题的方法多样化。可以利用学具直接操作得出结论,也可以用除法计算出来。计算又可以分为口算和笔算,我重点引导学生掌握笔算的方法。最后还可以用估算来验证自己的笔算结果。这样就使学生体会到解决问题的方法有很多,但也要从中选择更为方便实用的一种。
3. 动手操作与竖式书写相结合,帮助理解算理,突破难点。将操作与算理的讲解不分开,融为一体。边操作边讲解,每一步算理都与操作紧密结合,使得抽象的算理变得直观易懂了。
二、不足之处
1、操作中对不同的处理方法没有鼓励学生创新、找出更多的方法。另外在处理百位分不完余下的处理时我没有给学生更多的发挥空间,操之过早,应该多给学生时间去找出方法。
2、在用竖式计算时,对学生的书写要求不是很严,导致有的学生书写不规范,我没有引起重视,今后应该在这方面严格要求。养成认真书写的习惯,和验算和估算的良好学习习惯,从而提高学生计算能力,更好的利用知识解决问题。
一位数除三位数教学反思11
上学期教学两位数除以一位数时,结合着可操作的实物情境(羽毛球),算理讲得很充分很透彻,学生也的确做到了“知其然也知其所以然”,唯一可惜的是并未脱离情境从计数单位的角度来引导学生理解算理。
本学期第一课三位数除以一位数(商是三位数)的教学却让我犯了难:竖式计算的算理教还是不教?怎么教?从教材和教学用书看,似乎以迁移两位数除以一位数的算法为主,并不需要算理的支撑(仅解决商的最高位问题),但如此一来,又如何跟学生解释“除完百位只把十位移下来除而不要连个位一起移”之类的问题?学生在尝试计算和巩固练习中可都出现了这样的问题。
看来还是要讲一讲道理的,可道理又该如何讲?再借助实物情境是不可能了,没有这样的`情景可用。那就只能从计数单位的角度来讲了,可这样高度抽象的算理在具体教学时是一带而过,还是花大力气细讲?又有多少学生能接受,又有多少学生能记住?这里是个大大的问号。
思之再三,课上还是没敢“讲道理”。通过估算,学生确定了商的最高位。然后就放手让他们自己利用旧有经验试着写完竖式,巡视中我果然发现了不少学生出现了十位个位一起移下来除的情况。交流时先让正确的学生详细介绍了计算过程,随后我举出了发现的这一问题,问:一起移下来后方便继续除下去吗?在正、反例的对比下,学生知道了:要一位一位往下除。但他们的所谓知道也仅是知道表面上的原因而已,个中的真正原因是不清楚的。接着就与复习中的两位数除以一位数竖式进行求同比较,粗略的概括了这么几条:从最高位除起;一位一位除;有余数要和后一位合起来再除;除到个位才能结束。
总体来看,浮于表面的迁移、简单的模仿、机械的演练————这就是孩子们今天所经历的。虽然由于知识本身的难度不大,加之旧知较扎实,他们还是较快且较熟练的掌握了三位数除以一位数的方法。但,他们的收获也仅限于技能层面了。缺乏了理解,学生们还能将今天的笔算方法内化到他们的认知结构中去吗?新旧知识之间缺失了内在的有机联系,学生们还能建构起关于笔算除法的雏形系统吗?
一位数除三位数教学反思12
对于例题,采用了两个问题进行教学:
(1)“估一估,大约是多少?”学生能得到70多的人不是很多,“有100多吗?”引导学生感受百位上的数不够除,越来越多的学生发现了需要用31÷4,得出估计。
(2)“那我们估计的是否比较准确呢?请你列竖式计算出准确结果。”学生独立计算。只有不到一半的同学能比较熟练的进行计算,为了留给部分学生充分的.思考时间,提出了“你能像前面一样,验一验你的结果吗?”学生完成验算过程。在评讲过程中,呈现了两个学生的作业:一个正确,另一个“7”的位置写在百位上的情况?生生互动,解决“7为什么要商在十位上?”这个问题。教学反思第一部分的学习由于受昨天学生意外情况的出现,教学时过于谨慎,出现迈“小步子”领着学生学习的状态,现在想想,其实完全可以把四个问题变成一个大问题进行“放”:“先估一估,商大约是多少?然后利用竖式算一算,看看你估计的是不是比较准确。对于竖式计算,你有其他方法进行检验吗?试着做一做。”这样设计,学生可以经历一个相对完整的计算过程:估一估、算一算、验一验,老师在教学过程中能实践“课堂开放”,把课堂还给学生,同时在此基础上也让学生逐步养成一个良好的学习习惯。在“收”的过程中,先解决估计,然后解决算法,并在此过程中形成计算方法:一商、二乘、三减、四落,而不是在整个学习结束后来总结。最后验算、总结,一是检验估计的方法是否正确,二是引导学生还可以利用乘法对除法进行检验,并引导学生总结回顾整个学习过程。第二部分的学习可以由三个问题组成:第一个问题不变,估计。第二个问题把“算一算、验一验”相结合,问题以块状呈现,在交流过程中把评价权还给学生,让学生结合不同情况的展示,理解“7为什么要商在十位”。接着进行巩固练习,熟练方法。最后提出第三个问题:“今天和昨天都是学习三位数除以一位数,有什么相同和不同的地方?”通过对比,建立联系,使孩子的数学学习可以螺旋式上升。
一位数除三位数教学反思13
课堂回顾
1、简单的复习铺垫(一位数除两位数)后,揭示本课教学内容“一位数除三位数”。
2、出示题目:684÷2
729÷3
多数学生在第一题的计算上浪费了大量的时间,当百位计算完后,把十位和个位一同移下来,导致无法正确解答。板演集体交流后,第二题完成较顺利。
3、出示例题(一位数除三位数商是两位数):238÷6
在笔算之前先让学生估算(目的是培养学生的估算能力),然后让学生阅读教材22页,出示自学提示:
(1)被除数百位上的“2”除以6不够除时,应怎样处理?
(2)处理后的商写在哪一位上,为什么?
(3)接下来的商应该写在哪儿,为什么?
学生交流汇报,要求学生结合提示理清思路,说出计算过程。
4、对比发现:一位数除三位数商是两位数和商是三位数两种情况。
5、总结笔算方法:顺口溜:除数是一位,先看前一位,一位不够看两位,除到那里商那里,每次除后要比较,余数要比除数小。(边总结时边向学生解释每句话的意思,让学生在理解的基础上记忆。)
6、根据这个让学生完成教材23页的第一题(不计算判断商是两位数还是三位数)
7、检测练习。(教材“做一做”)
教后反思
新教材中,教材例题的编写非常精简,有些知识点的跨越很大,教学“一位数除三位数”时,教材只呈现一个例题(一位数除三位数商是两位数),“一位数除三位数商是三位数”只在做一做中出现。而这部分知识难点较多:除法竖式的书写格式,试商,正确判断并计算“商是两位数或三位数”这两种类型的题目。这些都是学生难以理解和掌握的。因此,在例题教学前,我加入了商是三位数的题目,除了可以加深对笔算除法算理的理解外,还可以与商是两位数的除法形成有力的对比。数学试题—数学教案—数学课件—高考试题—中考试题—竞赛试题—反思—论文—说课
虽然,通过复习铺垫、自主探究、交流反馈、对比发现,学生对一位数除三位数笔算除法的算理已经清晰明了,但仅此,学生要想正确计算,还需要在大量的练习中熟练把握,而那些学习处于中、下等水平的学生,学起来仍很吃力。尤其是商是三位数的情况,学生往往会同时移动两位来计算,造成了计算上的错误;还有些学生在写横式时有余数的总忘记写余数。所以我每天利用课余时间采取一对一的`方式对学生进行辅导,并不断的鼓励他们,同时提醒他们仔细认真计算,因此全班大部分掌握较好。
从这节课的教学中,我深刻感受到:教师的一言一行很重要,教师板书学生的几种算法时没用尺画横线,为了让两边的学生能看到教师的板书,有时侧着身子写竖式导致偶尔竖式没有写正,未能起到很好的示范作用;在教学时,一定要先熟悉教材,吃透教材,挖掘所有知识点,把握编者意图,并根据班级实际选择合适的教学方法,才能造就一节高效的课堂。
一位数除三位数教学反思14
1、被除数哪个数位上的数够除数除,哪个数位就要上商,如果百位不够,就要和十位合并了去除,并且商在十位上。
2、结合例一的4写在百位和例二的7写在十位完善了算理理解,最终完整的解决了尚首位定位问题。
例一和例二的教学,在除法中实际解决了两大问题,即如何用竖式一步步计算三位数除以一位数,如何确定商的定位,也就是计算方法和计算算理问题的解决。
总之,由于学生已有认知基础和思维方式的不同,同一问题有不同的`解决方法。教学中要充分利用时间和空间,注重学生对知识的理解,并在课堂上有效地引导,逐步让学生在比较明晰较合理的操作方法上理解算理,从而提高计算技能。
一位数除三位数教学反思15
今天开学第一天,而第一天就被随堂听课,运气真是很好,幸好昨天做了认真的准备,所以不算很慌张,但是课上出现了很多我没有预设到的问题,上着上着我却是越来越慌张,最后除数被除数都不分了。
三位数除以一位数的除法由于有两位数除以一位数的基础,所以我觉得应该不会很难,所以在例题986除以2的竖式计算那里,黑板上提示到百位上商4,就放手让学生自己探索下面的算法了,但是三位数的被除数让学生无从下手,本该是一位一位往下挪的数字,有的孩子一起挪到下面来,或者是百位上有余数却没有移下来,有的数位也没有对齐就乱移一通,我自己在解释的时候也乱,后来想清楚了,觉得自己挺悲剧的。
首先,大部分学生都知道除法应从最高位除起,这个地方点到为止。
然后弄清百位上的被除数是几,百位上有没有余数,余到十位上加上十位上的数字共同成为十位上的被除数,接着除,再看十位上有没有余数,余到个位上加上个位上的数字共同成为另一个被除数,接着除,个位上还有与余数的就余下来作为商的`余数,这样讲条理会清楚一些,学生接受起来,模仿起来也容易上手。
其次,对除法法则的渗透还要加强。我自己是在不知不觉中运用了除法法则,但是没有明确的说出来,造成了人为的障碍。最典型的错误就是余数会比除数大,光看算式很容易发现余数不应该比除数大,但是在计算的过程中就经常出现,问题大多出在试商的环节,口诀不熟,慢,一慢一不熟就容易让思维停滞,一旦停滞就不能考虑周到,往往乘法好不容易嘀咕出来是多少了,写出来一减余数还老大的,所以下面要练习学生的试商,简单点就直接练习乘法的口诀。
这节课我是想有一个尝试的,就是以最简答的小组合作的形式——同桌合作,来完成练习部分的锻炼。因为两个人能形成最简单的合作,并且两个人的合作有多人合作没有的优势,就是在两人合作中每个人都必须参与其中,每个人都是发言者和倾听者,每个人必须更专心的记录或发言,而合作意味着对话的开始,对话是思维的外衣,是两个人平等的展现自己的思想,哪怕是最浅显的,也给进一步的思考提供了自信的源泉。前面两人合作口算问题不大,后面的笔算出现了各种各样的问题,打乱了我的教学预设,很多该小组完成的作业被延误了。
所以,计算教学需要思考的还很多,现在我越来越觉得教的过程可以不完美可以琐碎,但要条理清楚,要让人容易上手,上完学生都会做作业那就是最实在的奖励。
【一位数除三位数教学反思】相关文章:
一位数除两位数教学反思03-17
两位数除一位数教学反思01-19
《两三位数除以一位数》教学反思04-20
两三位数除以一位数教学反思01-19
三位数除以一位数教学反思06-09
《三位数除以一位数》的教学反思05-22
《两、三位数乘一位数》教学反思04-22
《三位数除以一位数的笔算除法》教学反思04-14