- 鸡兔同笼教学反思 推荐度:
- 相关推荐
《鸡兔同笼》教学反思
作为一位刚到岗的教师,教学是我们的工作之一,在写教学反思的时候可以反思自己的教学失误,怎样写教学反思才更能起到其作用呢?下面是小编收集整理的《鸡兔同笼》教学反思,希望能够帮助到大家。
《鸡兔同笼》教学反思1
昨晚在家里与峰讨论,明天俞老师上“鸡图同笼”会怎样上呢?因为鸡兔同笼在五年级都已经学了,学生也会解决一些变式的题目,难道他会让学生解一些更难的题目,那么又会怎样来组织材料呢?是不是会解决各种方法之间的联系?....带着很多的猜想走进了今天俞老师的课堂。(很高兴猜中了一点:解决各种方法之间的联系,但是万万没有想到俞老师会用这样的组织方式,从一至六年级学生的解题方法来贯穿整节课),俞老师那幽默风趣的语言、孩子们那精彩的表现赢来了台下听课老师的阵阵掌声。整节课下来,使我体会到了“站在讲台上我就是数学”这句话的真正含义!
一、导入
1、出示一个鸡兔同笼的简单题目(鸡兔头有7个,有脚22只,问鸡兔各有几只?)
t了解学情
2、一、二、三四、五六、七八年级的学生分别怎样来做这个题目。
学生独立尝试
3、s1:二年级用凑数的方法。五六年级用假设的方法。
s2:五六年级还可以用方程解。
4、t:三种方法了,一年级可以用什么方法?
s:用画的方法。
t:用一年级的方法画。(先鸡头再变成兔头)
t:七八年级是怎样解决的呢?
s:1只鸡和1只兔为1组22除以6(用抬脚法)t:归入到三、年级
二、讨论各种方法的异
1、面对这种方法你有什么想法?
t:你认为这四中方法哪种方法最简单?
t:最难的`是哪一种?
学生得出数据大的时候,画的方法很难。
为什么一年级会做更难的呢?
s:因为一二年级的做法思路简单。
t:各种方法的主要特征?
s:第一种方法的特征是画出来
s:第二种方法的特征是凑出来
s:第三种方法的特征是算出来
s:第四种方法的特征是解出来
三、分类
1、t:四种方法分成两类,你认为怎样分?
s1:一、二种为一类 三、四为一类
t:还有没有别的分类呢?
(在老师的一只手举起来了,两只手举起来了,三只手举起来了...在耐心的等待中,学生的思维又进入了积极的状态中)
s2:一、四为一种、二三为一种。
小组讨论。画的一类。
s3:一、三为一种,二四为一种。
一、三都是假设的。
二、四都是设鸡为1只,兔为7-1,同方程的解。
t:三种分类,还有吗?
s:一、二三为一种,四为一种,根据有没有*
s:其实怎么分都可以,他们都有共同点。
t:四种方法一样在哪里?
s:都是用假设的方法。(第五种)
四、优化分类
t:哪一种分类方法最有智慧?
s:一二为一类、三、四为一类,因为一二形象化、三四简单化。
三是一的简单化 二是四的形象化
一是三的形象化 四是二的简单化
t:三四是一二的升级版。
t:如果一个小朋友学不会,你怎么教他?
五、小结
面对这份材料,你有什么想法?
数学有共同点,简单带来复杂,复杂的带来简单。
生:数学是一步一步的演化而来的。
t:我们不学猴子摘了玉米扔玉米,摘了桃子扔桃子...从懵懵懂懂的一年级到六年级,学了不要扔。
《鸡兔同笼》教学反思2
鸡兔同笼问题是我国民间广为流传的数学趣题。最早出此刻《孙子算经》中。教材首先透过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问题,并透过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。
本节课我从较简单的问题入手,让学生尝试解决,熟悉此类题型的一般思路,再让学生以填表的方式初步体验鸡兔同笼状况下两种动物的只数和脚的数量之间的关系,同时探索随着鸡兔只数的`变化,脚的数量也跟着变化的规律。透过展开小组讨论,引导学生从体验鸡兔同笼中鸡兔的头数和脚的只数关系到用“假设法”和列方程解的方法经历探究过程,此环节是本课的重点,学生从体验、尝试到此处的讨论、汇报,个人或群众的智慧在那里得到展现,方程解、算术解对于大部分学生来说至少有一种方法是他自己理解或掌握的。
但是,可能是由于我课前准备不够充分,或者驾驭课堂的潜力有限,在学生汇报的过程中没有做到机敏地倾听和机智地诱导,对于学生的列式没有指明理由,因此感觉学生在全班交流的过程中出现不能理解的状况。我觉得可能是在处理鸡兔只数和脚的数量变化规律的推导过程时,我直接让学生透过表格的形式进行观察,并没有引导学生到比较实际的方向上。
如果我能插入具体的鸡和兔的只数变化时的动态图像,学生就应能更加直观的体会到其中的规律,那么对后面的教学展开将易如反掌。由于此处设计的失误,导致后面的方程解的方法时间不够,课堂巩固练习也没能很好的展开。我想这也可能是我在设计教案时并没有准确思考到学生自身的实际认知水平,本课资料安排过多。如果下次再次教学鸡兔同笼,我想我会把假设法和列方程解的方法分成两个课时,争取让大部分学生都能从多角度思考,运用多种方法来解题。
《鸡兔同笼》教学反思3
“鸡兔同笼”是六年级上册数学广角的资料。在这节课当中,我主要借助教材上的列表法同时结合引导学生画图的方法,再配合假设法。充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。
本节课的重点放在了“尝试探究”这一部分,使学生充分感受数学的思维过程,培养学生的逻辑推理潜力。透过画图的过程中充分调动了学生的用心性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。应用练习是一个提升的过程,让学生回顾研究鸡兔同笼问题的解决方法的过程,选取适宜的方法来解决新的问题,在汇报时让学生说说理由。用哪种方法适宜?为什么?应用练习的设计,这样都能使学生巩固了解决鸡兔同笼问题的方法,同时解决问题的潜力也得以进一步的提升。课堂教学后,我进行了以下反思:
1、透过向学生带给了现实、搞笑、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生能够应用作图法、列表法、假设法、列方程解决问题。
(1)师生共同经历了三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。
(2)假设法教学与画图结合分析的方法上的突破,到达好的效果。
(3)列方程解决问题做为后进生的学习良方,也是解决难题的途径,也值得老师重点关注与突破。
2、遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生带给探索和交流的空间,鼓励学生自主探索与合作交流。透过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。透过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的潜力。图形与鸡兔同笼的有效结合,让知识“二合为一”,有效沟通对知识的.迁移,以及培养孩子“举一反三”的潜力有重要的好处。
3、在学习中注意独立思考与小组合作相结合,鼓励每个学生参与学习过程,不同学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在学生独立思考2—3分钟后再强调学生之间交流,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,使学生共同学习,共同进步,共同提高,提高合作学习的有效性。
总的来说,教学有效性更注重把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。这堂课研究的方法多,容量大,有的地方只是蜻蜓点水,部分学生理解上还有点问题,我想将在练习课中进一步完善。一句话:尊重学生的思维水平。
鸡兔同笼教学反思
1、数学教学要通过知识的学习让学生得到思维锻炼,“鸡兔同笼”问题就属于这类问题。在生活中,“鸡兔同笼”的现象很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数它们的脚呢,直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,“鸡兔同笼”问题,是让我们在鸡、兔脚数的变化中,寻找不变的规律,并采用有效的手段来解决数学问题。
2、学生是学习的主人,在学习过程中尽可能多地为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。
3、由于学生原有的认知背景不同,他们对解答此类问题时存在较大的差异。在教学的过程中,不能提出统一要求,要允许不同的学生采用不同的解题方法。在本节,师生共同经历了列表法、假设法等,最后比较哪种算法比较好。这样教学既提高了学生探究能力和小组合作能力,又体现了算法多样化,也让不同的学生在同一节课中都有不同程度的提高。
《鸡兔同笼》教学反思4
这节课上完后,自我感觉不够理想,有些设计不够好,更有一些细节未加重视,还有就是教师的基本功太弱。但在设计上还是有必须优势的,主要体此刻以下几点:
一、在课始,我开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮忙学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
二、由于“鸡兔同笼”问题在小学五年级时出现过,也有小部分学生可能在数奥书上见过,会做。大部分学生不是很会做,因此在备课时我充分思考到这个状况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导进学生行分析,加以课件演示,帮忙学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再加以课件演示。透过这两步的'学习,大部分学生就应基本能利用假设法来解答“鸡兔同笼”问题。在此基础上教学方程法,主要教给学生找等量关系式,列方程从而让大部分学生能用方程法解决”鸡兔同笼”问题。估计教学时间有些问题。根据教学实际状况进行调整。
三、在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的理解潜力和时间上的思考,本来这节课讲的方法就很多,个性是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。
四、我认为本节课的重难点都就应是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡那里,用26-16=10条腿,那里就应说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,透过我和我们年级组其他教师的讨论,并看了很多教案和课例,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时能够直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”那里是把兔假设成了鸡,肯定就应是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
本节课欠缺的地方:
一、在列表观察腿数变化时,在全是兔或全是鸡时,腿与实际相比为什么会有这样的变化,学生似乎不能很好的说出。反思了下,也是我设计时的一个弊端,没有给学生一个阶梯,跳跃太大,导致后面学生对为什么除以2一知半解。蔡老师给了我一个推荐,能够在列表的基础上画图。全部画成鸡,腿16条,一只鸡变为一只兔,腿增加2条,之后再变。让学生透过形象的展示更加清楚腿数变化的真正原因。
二、还有一点比较重要的是计算完验算的过程在上课时被我忘掉了,虽然在课上我也引导他们观察,假设全是鸡先算出的是什么,全是兔是先算出是什么,但学生还是会马虎的,会计算错误,或鸡兔数量弄错因此很多学生会把鸡兔的数量弄错,验算很关键。
三、上课时,为体现方法多样,想着简单让学生了解下方程思想,实践之后发现完全能够把这块去掉,一者学生没有提出,二者在教授假设法时时间不够充裕。
《鸡兔同笼》教学反思5
本单元是课本中的第九单元——数学广角,趣味性非常强。本节课在开始我先问了同学们知道哪些科学家、数学家。同学们给出了:爱迪生、爱因斯坦、牛顿、诺贝尔、毕达哥拉斯......只有一个同学说出了一个中国人的名字——刘徽(不过还把“徽”读错了)。由此可见对于中国古人的智慧了解甚少。告诉大家其实中国也有很多世界著名的科学家、数学家,要多了解中国古人们的`智慧。
这节课首先从一个非常简单的“鸡兔同笼”问题入手,利用列举的方式同学们都能够得出正确的结果。接着我又讲了课本第8页的最后一道题,31页最后一道题,都是利用图形表示数的题目,接着又复习了加法交换律如何用字母表示。有了这些铺垫之后,利用设未知数的方法,写了一个二元一次方程,带领同学们慢慢的来解题。最后我问有多少人听明白了,没人举手。不过还是有4、5个学生听得明白,只是没好意思举手。
在得知大部分人都没有听明白,我就又讲了一个《孙子算经》中非常有趣的解题方法。这个方法显然更适合小学生的智力水平。
在本节课中,可喜的是我们班有4、5个能够听明白的!
《鸡兔同笼》教学反思6
1、教学目标的定位
我把“鸡兔同笼”这个内容划分为两个课时,本节课为第一个课时,在本节课中重点研究解决问题的一般策略——列表。我想通过本节课列表发现的规律为探索新策略奠定一定的基础。在教学过程中,我给学生充分的时间他们经历列表、尝试和不断调整的过程,从中对于列表策略有所体会。学生在这个过程中也出现了多种列表方法,对于多种列表方法引导学生对方法进行优化,从而达到能灵活运用列表解决鸡兔同笼问题。
教学中我补充了其他的解法,但是却分散了学生的注意力,影响了学生对列表方法这一常用方法的掌握。这是本节课的遗憾之处。
2、凸现学习价值
我觉得学习要让学生感兴趣地去学,发自内心的想去学,觉得学习是有用的。而鸡兔同笼问题来于生活。但它高与生活,它需要用一些数学策略去解决,而学习策略以后用来解决生活中的问题。因此在课堂小结时我放手让学生对生活中类似于鸡兔同笼问题的举例,让学生体会到现实生活中此类问题是广泛存在的。进而凸显了本节课的价值。
3、关注结果,也关注过程
结果是比较直接的,容易被大家重视,而过程也是不可忽视的'。我们不仅要关注结果同时也需要关注过程。在解题的过程中学生的思维是一大亮点,有些学生想法很有创意但算错了,这样的学生我们应该给予表扬和肯定。
本节课总的来说把我自己定的目标是完成了,但是还有许多值得思考的问题。比如说如何把北师大版的教材和人教版的教材进行结合,让学生更容易理解,展示自己的机会更多,使不同思维水平的学生对于这类问题真正巩固
《鸡兔同笼》教学反思7
一节好的数学课就应让学生懂得一个知识点,获得一种思想,积累学习经验,行走在构成某种技能的路上。教学完鸡兔同笼,我留下了这样的感悟。
鸡兔同笼是六年级数学上册“数学广角”的资料。本节课作为本册教材“数学广角”中唯一的教学资料,它的价值在于它不仅仅是一道我国民间广为流传的数学趣题,而且它是生活中的一类典型的问题,研究这类题,不仅仅使学生学习一种数学思想,而且收获解决策略与方法的同时,培养学生的逻辑推理潜力。
研读教材后,我依据新课标,从设计理念到教学目标及重难点的确立都做了认真地思考,连教学环节都是几经修改的,但整个课堂教学效果实在有些汗颜。
一、“猜测”形同虚设。
其实,列表法,假设法,方程法解决问题的策略都是同“猜”字而生。猜测是一切发明创造的开始,也是思维的开始。学生就应历经一个猜测----验证----调整---最终找到正确答案的思维成长过程。而我把“猜测”只作为一个课堂环节,一个程序,没有将猜测与后面的环节建立联系,致使“猜测”环节形同虚设。
另外,在学生猜测后,老师应及时引导学生思考,如果发现猜测不对,腿的总条数多了,该怎样调整;反之,又该怎样调整,其实调整的过程,就是让学生自然而然地发现每一次调整,一个一个地增,或一个一个地减,腿数之间都相差2。这是关键。就应给学生后面的自主探究起到抛砖引玉的作用。同时,也为学生的自探究明确了目标和指明了方向。这样就不会出现后汇报中的“尝试法”的孤立无援了。
虽然列表尝试法在学生的眼中是一种笨拙的方法。但本节课的列表尝试法是让学生经历由常规逐一举例向减少举例次数的过渡,实现“跳跃式”列举,而且在学生在思考、交流、感悟的数学活动过程中,渐渐地发现其中的规律:“每增加一只鸡同时减少一只兔,就会减少2条腿;反之,每增加一只兔同时减少一只鸡,就会增加2条腿。”学生在这样发现下就很容易找到了“假设法”的`影子。为下面的假设法的策略解决问题做了提前渗透和有力地铺垫,同时也能感受到量与量之间的共变关系。然而由于我把尝试法探究活动与寻找其他策略并入一个学习活动中,使得学生只顾去寻找其他的方法,而有的同学直接忽略尝试法,失去了此处探究活动的价值和好处。如果我能分步实施,细化活动要求:活动一、列表尝试,汇报后,再进行活动二:寻找其他策略,就不至于出现汇报中的“混乱”
三、数学课上的语言规范性有待加强。
在数学课堂上,老师不但要有深邃的思想,渊博的知识,娴熟的教学技巧与方法,还要讲究教学语言的准确明晰,具有逻辑性。本堂课假设法算理是一个难点,如果老蚰能用清晰而准确,富有逻辑性的语言把算理引导出来:
假设笼子里都是鸡,一共有几只脚?条件告诉我们几只脚,这样就少了几只脚呢?为什么会少了10只脚呢?这样就能使学生理解得更清晰更明朗。所以我感到教师的言之有序,才能成就学生的有序思维。
当我上完了课,我留下了开篇的感悟。由于本课的诸多不足,后面的习题一道也没有练。对这种低效的课堂我有些惭愧,但我想“教后知困”。使我看清了自己努力的方向。“工欲善其事,必先利其器”。看来,在数学教学的这条路上,加强身身的数学修养是教好数学的根本。
《鸡兔同笼》教学反思8
1.教材分析:
鸡兔同笼问题设置在数学广角中,其教学与常规课有所不同。区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,培养学生的逻辑推理能力,为学生的终身发展奠定基础。
《数学用书》中说道:“数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。”因此,鸡兔同笼问题作为数学广角教学内容之一,正是教材注重渗透思想方法,关注学习过程的重要体现。教材借助我国古代趣题“鸡兔同笼”问题,让学生应用列表、假设、方程等多种方法来解决问题。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。教材的编排有以下特点:(1)、教材首先通过“鸡兔同笼”这一问题,激发学生解答我国古代著名数学问题的兴趣。(2)、注重体现解决“鸡兔同笼”问题的不同思路和方法。(3)、让学生进一步体会到这类问题在日常生活中的应用。
2.学情分析:
六年级的学生他们已初步接触多种解题策略,会一些基本的`解决数学问题的方法。
教学目标:
1.知识与技能目标:通过学习,让学生掌握用图示法、列方程法、假设法解决"鸡兔同笼"问题,让学生体验解决问题的多样性,并能用这些方法解决生活中类似"鸡兔同笼"的问题。感受古代数学问题的趣味性和解法的巧妙性。
2.过程与方法目标:学会在学习中进行尝试.比较.分析,培养解决问题的能力,并在解决问题的过程中培养学生的合作意识和逻辑推理能力。
3.情感与价值目标.了解我国古代数学研究成果,增强明族自豪感。
教学重点:尝试用不同的方法解决"鸡兔同笼"问题。
教学难点:在解决问题的过程中培养学生的逻辑推理能力。
教具准备:圆形纸片、小棒若干小黑板图片
教学过程:
一、谜语激趣,导入新课
1.出示谜语卡片。(目的是激发学生学习兴趣问题的欲望,同时引出课题)
顶上红冠戴红红眼睛白白毛
身披五彩衣长长耳朵短尾巴
能测天亮时身披一件白皮袄
呼得众人醒走起路来轻轻跳
(猜一动物)(猜一动物)
老师根据学生的回答,先后在黑板上出示鸡和兔的图片。
2.板书课题:鸡兔同笼。
3.用数学语言描述一下鸡和兔各有什么特征。(目的是为后面的教学做铺垫)
(预设:鸡和兔各有一个头,鸡有两只脚,两只翅膀,兔子有四只脚。)
二、合作讨论,探究新知
1.出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?(小黑板)(“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此我第一次出示的尝试题把原题中的数据改小了,这样有利于激起学生的学习兴趣,能充分照顾到不同层次的学生,让学生主动参与进来。)
2.从题目中你们能发现什么数学信息?(捕捉隐含信息)(目的是引导学生理解题意:鸡和兔共8只,鸡和兔共有26条腿,同时捕捉隐含信息:鸡有2条腿,兔有4条腿。)
3.独立思考:(培养学生独立解决问题的能力。)
4.小组讨论探究。(老师参与其中,启发、点拔,师生互动。)(针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平,采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。在师生互动中让每个学生都动口、动手、动脑,腾出足够的时空和自由度使学生成为课堂的主人,使每个学生的学习都能有体验、有收获、有感想。目的是激发学生的探索欲望,让学生在小组讨论交流中弄清“鸡兔同笼”问题的结构特征和解题策略,亲历多样化解题的过程,初步形成解决此类问题的一般性策略。)
5.学生汇报探究的方法和结论。
预设以下几种方法:(根据时间而讲解其中的二至三种方法)(这种设计有一定的伸缩性,教师可以灵活把握。)
(1)用方程解
解:设兔有X只,那么鸡有(8-X)只。
4X+2(8-X)=26
16+2X=26
2X=26-16
X=5
8-5=3(只)
即鸡有3只,兔有5只。
引导学生口头检验
(2)形象生动,讲解假设法
①、假设全是鸡一共就有8×2=16条腿。实际有26条腿,这样笼子里就少了26-16=10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。每只兔少算两条腿,那把几只兔当成了鸡算就会少算10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算)10÷2=5就是兔的只数,8-5=3(只)鸡
②、思考:假设笼子里都是兔该怎样求?
同桌口头完成。
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)
(3)列表法。
出示图表:(小黑板)
学生反馈填表过程,说明从中发现的规律。
《鸡兔同笼》教学反思9
这节课上完后,自我感觉不够理想,有些设计不够好,更有一些细节未加重视,还有就是教师的基本功太弱。但在设计上还是有一定优势的,主要体现在以下几点:
1、在课始,我开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
2、由于“鸡兔同笼”问题在小学五年级时出现过,也有小部分学生可能在数奥书上见过,会做。大部分学生不是很会做,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导进学生行分析,加以课件演示,帮助学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再加以课件演示。通过这两步的学习,大部分学生应该基本能利用假设法来解答“鸡兔同笼”问题。在此基础上教学方程法,主要教给学生找等量关系式,列方程从而让大部分学生能用方程法解决”鸡兔同笼”问题。估计教学时间有些问题。根据教学实际情况进行调整。
3、在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的接受能力和时间上的考虑,本来这节课讲的方法就很多,特别是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。
4、我认为本节课的重难点都应该是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡这里,用26-16=10条腿,这里应该说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,通过我和我们年级组其他教师的.讨论,并看了很多教案和课例,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时可以直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”这里是把兔假设成了鸡,肯定应该是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
本节课欠缺的地方:
1、在列表观察腿数变化时,在全是兔或全是鸡时,腿与实际相比为什么会有这样的变化,学生似乎不能很好的说出。反思了下,也是我设计时的一个弊端,没有给学生一个阶梯,跳跃太大,导致后面学生对为什么除以2一知半解。蔡老师给了我一个建议,可以在列表的基础上画图。全部画成鸡,腿16条,一只鸡变为一只兔,腿增加2条,接着再变。让学生通过形象的展示更加清楚腿数变化的真正原因。
2、还有一点比较重要的是计算完验算的过程在上课时被我忘掉了,虽然在课上我也引导他们观察,假设全是鸡先算出的是什么,全是兔是先算出是什么,但学生还是会马虎的,会计算错误,或鸡兔数量弄错因此很多学生会把鸡兔的数量弄错,验算很关键。
3、上课时,为体现方法多样,想着简单让学生了解下方程思想,实践之后发现完全可以把这块去掉,一者学生没有提出,二者在教授假设法时时间不够充裕。
《鸡兔同笼》教学反思10
一节好的数学课应该让学生懂得一个知识点,获得一种思想,积累学习经验,行走在形成某种技能的路上。教学完鸡兔同笼,我留下了这样的感悟。
鸡兔同笼是六年级数学上册“数学广角”的内容。本节课作为本册教材“数学广角”中唯一的教学内容,它的价值在于它不仅是一道我国民间广为流传的数学趣题,而且它是生活中的一类典型的问题,研究这类题,不仅使学生学习一种数学思想,而且收获解决策略与方法的同时,培养学生的逻辑推理能力。
研读教材后,我依据新课标,从设计理念到教学目标及重难点的确立都做了认真地思考,连教学环节都是几经修改的,但整个课堂教学效果实在有些汗颜。
一、“猜测”形同虚设。
其实,列表法,假设法,方程法解决问题的策略都是同“猜”字而生。猜测是一切发明创造的开始,也是思维的开始。学生应该历经一个猜测----验证----调整---最终找到正确答案的思维成长过程。而我把“猜测”只作为一个课堂环节,一个程序,没有将猜测与后面的环节建立联系,致使“猜测”环节形同虚设。
另外,在学生猜测后,老师应及时引导学生思考,如果发现猜测不对,腿的总条数多了,该怎样调整;反之,又该怎样调整,其实调整的过程,就是让学生自然而然地发现每一次调整,一个一个地增,或一个一个地减,腿数之间都相差2。这是关键。应该给学生后面的自主探究起到抛砖引玉的`作用。同时,也为学生的自探究明确了目标和指明了方向。这样就不会出现后汇报中的“尝试法”的孤立无援了。
虽然列表尝试法在学生的眼中是一种笨拙的方法。但本节课的列表尝试法是让学生经历由常规逐一举例向减少举例次数的过渡,实现“跳跃式”列举,而且在学生在思考、交流、感悟的数学活动过程中,渐渐地发现其中的规律:“每增加一只鸡同时减少一只兔,就会减少2条腿;反之,每增加一只兔同时减少一只鸡,就会增加2条腿。”学生在这样发现下就很容易找到了“假设法”的影子。为下面的假设法的策略解决问题做了提前渗透和有力地铺垫,同时也能感受到量与量之间的共变关系。然而由于我把尝试法探究活动与寻找其他策略并入一个学习活动中,使得学生只顾去寻找其他的方法,而有的同学直接忽略尝试法,失去了此处探究活动的价值和意义。如果我能分步实施,细化活动要求:活动一、列表尝试,汇报后,再进行活动二:寻找其他策略,就不至于出现汇报中的“混乱”。
二、数学课上的语言规范性有待加强。
在数学课堂上,老师不但要有深邃的思想,渊博的知识,娴熟的教学技巧与方法,还要讲究教学语言的准确明晰,具有逻辑性。本堂课假设法算理是一个难点,如果老蚰能用清晰而准确,富有逻辑性的语言把算理引导出来:
假设笼子里都是鸡,一共有几只脚?条件告诉我们几只脚,这样就少了几只脚呢?为什么会少了10只脚呢?这样就能使学生理解得更清晰更明朗。所以我感到教师的言之有序,才能成就学生的有序思维。
当我上完了课,我留下了开篇的感悟。由于本课的诸多不足,后面的习题一道也没有练。对这种低效的课堂我有些惭愧,但我想“教后知困”。使我看清了自己努力的方向。“工欲善其事,必先利其器”。看来,在数学教学的这条路上,加强身身的数学修养是教好数学的根本。
《鸡兔同笼》教学反思11
鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:
一、关注每位孩子的成长是成功的前提
鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。
二、关注课堂的互动、生成是取得良好效果的基础
课堂是师生双边的交换活动,是教师与学生交流的活动。课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。因此,在评价方面我采取学生回答精彩时,及时有效的正面评价;学生回答不上来或回答不够具体时,友好的提醒先想一想或听听同学们的意见,再交流……点滴的心语交流,让孩子们没有负担的学习,同时发展性的评价,更促使孩子们高度关注学习的内容,做到了良性的情绪循环,促进了教学的有效性展开。正是如此,自然形成了融洽的课堂,达到良好的教学效果。
三、关注数学思想的`传承是达成目标的保障
解决鸡兔同笼问题的过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的假设思想,有方程代数的数学建模思想等。本人思考如果一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。因此,我选取了适合孩子们认知的方式的,首先用一个诙谐幽默的鸡兔玩游戏的故事引入,让学生弄清鸡兔各有什么特点?4只鸡和3只兔一共有多少条腿?鸡学兔走路,地上有几条腿?多的几条腿是谁的?兔学鸡走路,地上有几条腿?少的几条腿是谁的?根据学生已获得的知识,注意引导学生围绕自己的发现,进行深层次地思考,重点渗透以列表的一一对应思想和算术解决的假设模型等数学思想,并通过猜想、验证,使学生应用所发现的数学知识进行判断,很快掌握了用假设法解鸡兔同笼问题的方法,并在学习方法的过程中,体会数学思想。
本课虽然没有华丽的修饰,但已引起学生的共鸣、激发了他们的学习愿望,完全吃透所学内容,思维得到锻炼。
《鸡兔同笼》教学反思12
鸡兔同笼问题是我国古代数学名著《孙子算经》中出现的广为流传的数学趣题。教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问题,并通过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。
本节课我依然遵循数学学习的规律,从较简单的问题入手,由易入深,先让学生尝试解决,熟悉此类题型的一般思路,再让学生以填表的方式初步体验鸡兔同笼情况下两种动物的只数和脚的数量之间的关系,同时探索随着鸡兔只数的变化,脚的数量也跟着变化的规律。通过展开小组讨论,引导学生从表格中找出等量关系式,运用以往学过的方程知识,用方程解决鸡兔同笼的问题。然后采取自学的方法体验鸡兔同笼中鸡兔的头数和脚的只数关系到用“假设法”经历探究过程,此环节是本课的'重点,学生从体验、尝试到此处的讨论、汇报,个人或集体的智慧在这里得到展现,最后了解古人的解法“抬腿法”,然孩子感受古人的无限智慧。方程解、假设法对于大部分学生来说至少有一种方法是他自己理解或掌握的。
在这节课的实际操作中由于我课前准备不够充分,或者驾驭课堂的能力有限,太流程化,没有顾及到每一位学生。胡子眉毛一把抓,没有突出重点。比如孩子们在表演网络解决法事先准备的就不够充分,导致当堂搞砸。在学生汇报的过程中没有做到机敏地倾听和机智地诱导,对于学生的列式没有指明理由,因此感觉学生在全班交流的过程中出现不能理解的情况。由于此处设计的失误,导致后面的方程解的方法时间不够,课堂巩固练习也没能很好的展开。我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把假设法和列方程解的方法分成两个课时,争取让大部分学生都能从多角度思考,运用多种方法来解题。小组合作学习中我觉得自己调控不到位,如时间的把握、学生合作过程的控制、合作学习的效果等;今后在课堂教学中,我会加强小组合作的建设,让小组合作学习有目标,有过程,有结果。
反思本节课的教学,在以后的教学中我会扬长避短,不断突破,使教学走上一个新台阶。
《鸡兔同笼》教学反思13
通过研读教材和教学用书,我知道鸡兔同笼问题最早出现在我国古代的一本数学著作《孙子算经》中,虽历经1500多年,该类问题还是向我们展现出了其巨大的魅力。二、三年级的奥数中有,五、六年级的教材中有,到了初中还要学,那么该类问题中究竟蕴含着怎样的数学思想,我们在教学中应该怎样构建该类问题模型,教给学生解决该类问题的方法,使学生的数学思维得到相应的发展呢?带着这样的思考,我不断地查阅资料,寻找我课堂教学的立足点。很幸运的是在查阅资料的过程中我有机会读到了《“鸡兔同笼”问题中的数学思想方法及其渗透策略》这篇文章,其中有这样一段话给了我很大的启发。
这段话给我这节课的教学设计起到了很好的理论支撑的作用。这段话中提到“当转化、猜想、列举、画图、假设、建模、代数、抬脚等多种数学思想方法同时作用于“鸡兔同笼”问题中时,它们之间必然存在相互关联之处。转化为猜想、列举、画图等提供了便捷,猜想是列举的开始,列举则是假设的前奏,画图是对列举的结果的形象呈现和为假设提供的直观支撑,假设是对前面诸法的有效提升,建模则是假设的'必然结果,代数是假设的联想产物,抬脚无非是假设的另一种特殊形式。”
“如果按思想方法的作用给其分类,转化是解决“鸡兔同笼”问题中的基础性的思想方法,不可少之;猜测、列举、画图、抬脚是解决“鸡兔同笼”问题中的颇有局限性的思想方法,虽为假设做好了铺垫或延伸,但会受到数目大小或奇偶性的限制,不能广泛用之;真正能够适应于此类问题的具有普遍意义的一般性方法,无疑还是假设和代数的思想方法。如果按思想方法的新旧给上述思想方法分类,转化、猜想、列举、画图、建模和代数的思想方法,都是在前面教学中教师多次渗透、学生领悟较深的思想方法,惟有假设和抬脚才是本节课中新出现的思想方法,而抬脚不过是特殊的假设,且具有很强的局限性。由此看来,学生真正最需要获得的,又能适应解决问题普遍性要求的一种新的数学思想方法就是假设。”在进行了充分的思考与备课之后,我如期的上了这节课,通过对这节课的实际教学,检查了学生这节课的学习效果之后,我对本节课有了以下几点反思:
1、体现了解决问题策略的多样化与优化
鸡兔同笼问题作为六年级数学广角的内容,那它的思维含量必然很高,由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:列表法、假设法、列方程、画图法、抬脚法即古人的砍足法,在进行练习时,我先让学生选择自己喜欢的方法进行接的解答,指名生汇报后,进一步问:“还可以怎样解?”促进学生去思考更多的解法,并尽可能多的让学生说出解法,最后比较哪种算法比较好。从列表的枚举法到假设的算术法,不仅从思维上层层递进,而且更好地体现了解决问题策略的多样化与优化。
2、注重了数学思想、数学文化的传承
“鸡兔同笼”是我国民间广为流传的数学趣题,教学中,我从该趣题引入,到解决该趣题,到感悟古人解决该类问题的方法,揭去了它令人生畏的奥数面纱,还其生动有趣的一面。通过学习,不仅使学生感受了祖先的聪明才智,渗透一种古代数学文化,更重要的是体会了其中蕴含的丰富数学思想方法,培养了学生的学习兴趣和能力。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。
3、形成了假设的数学思想
课前,我就感受到了这节课容量大,学生难理解,如果一节课中要求学生理解所有的思想内涵,必将导致课堂内容学习的拥堵和孩子们学习的不知所措。教学中,我并没有平均分配学习时间和关注度,而是结合孩子们认知方式的,选取了算术解决的假设模型为本课数学思想的重点去渗透,让孩子们在学习解决问题的过程中,在不知不觉的对比中,体会数学思想。正如一些听课老师所说的,学生能够提出用假设法解决鸡兔同笼问题,那这节课的教学目标就已经达到了,因为他已经体验和形成了假设的数学思想。
4、构建了该类问题的数学模型
在学生重点掌握了两种解题思路后,我话锋一转,告诉同学们“鸡兔同笼”问题并不单指“鸡兔同笼”,该类问题在我们的生活中经常遇到,如龟鹤问题、民谣中的人狗问题、租大船小船问题等。明确其在生活中的应用,体现数学的生活味和应用价值。让学生感受到“鸡兔同笼”问题的学习,贵在学习一种假设推理与代数方程的思想方法,贵在用来解决生活中类似于鸡兔同笼的变式问题。拓宽了对“鸡兔同笼”问题的认识,构建了该类问题的数学模型,形成了知识的迁移。
《鸡兔同笼》教学反思14
这节课上完后,自我感觉不够理想,有些设计不够好,更有一些细节未加重视,还有就是教师的基本功太弱。但在设计上还是有一定优势的,主要体现在以下几点:
一、在课始,我开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
二、由于“鸡兔同笼”问题在小学五年级时出现过,也有小部分学生可能在数奥书上见过,会做。大部分学生不是很会做,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导进学生行分析,加以课件演示,帮助学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再加以课件演示。通过这两步的学习,大部分学生应该基本能利用假设法来解答“鸡兔同笼”问题。在此基础上教学方程法,主要教给学生找等量关系式,列方程从而让大部分学生能用方程法解决"鸡兔同笼"问题。估计教学时间有些问题。根据教学实际情况进行调整。
三、在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的接受能力和时间上的考虑,本来这节课讲的方法就很多,特别是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的'时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。
四、我认为本节课的重难点都应该是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡这里,用26-16=10条腿,这里应该说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,通过我和我们年级组其他教师的讨论,并看了很多教案和课例,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时可以直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”这里是把兔假设成了鸡,肯定应该是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
本节课欠缺的地方:
一、在列表观察腿数变化时,在全是兔或全是鸡时,腿与实际相比为什么会有这样的变化,学生似乎不能很好的说出。反思了下,也是我设计时的一个弊端,没有给学生一个阶梯,跳跃太大,导致后面学生对为什么除以2一知半解。蔡老师给了我一个建议,可以在列表的基础上画图。全部画成鸡,腿16条,一只鸡变为一只兔,腿增加2条,接着再变。让学生通过形象的展示更加清楚腿数变化的真正原因。
二、还有一点比较重要的是计算完验算的过程在上课时被我忘掉了,虽然在课上我也引导他们观察,假设全是鸡先算出的是什么,全是兔是先算出是什么,但学生还是会马虎的,会计算错误,或鸡兔数量弄错因此很多学生会把鸡兔的数量弄错,验算很关键。
三、上课时,为体现方法多样,想着简单让学生了解下方程思想,实践之后发现完全可以把这块去掉,一者学生没有提出,二者在教授假设法时时间不够充裕。
《鸡兔同笼》教学反思15
本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。让学生获得亲自参与探究学习的积极体验。
按照我对教材的理解,并遵照《新课程标准》中:在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流的精神。首先以观察鸡兔的图片入手,让同学们发现动物身上隐藏着许多的数学问题,然后开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点;接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的去阅读书中的一段阅读资料,了解古人的解题方法,并试着解释。老师再利用多媒体课件帮助学生理解古人这种独到的解题方法————抬腿法。从而让学生受到古文化的熏陶,感受道古人的了不起。最后就是利用法学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。
“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材第十一册中。对学生尤其是基础不好的学生来说有一定的难度,因此,我认为必须让学生经历从多种角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的.经验,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,并灵活运用该方法解决生活中的类似“鸡兔同笼”问题。特别是用假设法解答,学生理解起来很难,为此我用画图的方法来帮助学生理解,先画8个圆圈代表8只鸡,每只鸡画2只脚,这样就有16只脚,缺了10只脚,再把其中的几只鸡每只添上2只脚就变成了兔子,所以有5只兔子。这样把抽象的知识直观化了,学生很快理解了这种方法。
我注重从以下几个方面进行数学文化的渗透:
一、介绍中国古代的数学成就。
中国有着历史悠久、成就辉煌的数学文化,出现了许多伟大的数学家和经典的数学名著。结合本节课的教学内容,教师通过向学生介绍记载“鸡兔同笼”问题的数学名著《孙子算经》,介绍古人解决鸡兔同笼问题的巧妙方法,使学生了解数学知识丰富的历史渊源,感受古人的聪明智慧,增强民族的自豪感。
二、渗透解决问题的思想方法。
数学思想方法是数学文化的精髓,教师有意识地向学生渗透一些基本的数学思想方法,可以加深学生对数学知识的理解,提高学生的思维品质。结合本节课的数学内容,教师适当渗透了化繁为简、猜测验证、假设、数形结合等思想方法,其目的不仅是让学生掌握好本节课的基础知识和基本技能,更重要的让学生了解一些解决问题的策略,提高解决问题的能力。
三、注重数学模型的实际应用。
在数学教学中,从学生已有的生活经验出发,让学生亲身经历讲实际问题抽象成数学模型并进行解释与应用的过程,能激发学生的兴趣,让他们全身心地投入学习。结合本节课的教学内容,教师安排了大量与“鸡兔同笼”有着类似数量关系的问题,让学生会用数学的思维方式去观察、分析周围世界,并且在这现实的、有意义的,富有挑战性的探索活动中,加深对数学知识的理解与掌握,感受到数学的真谛与价值。
但在平时的教学中也存在值得我们进一步思考的问题:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;
2、要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标;
3、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。