解方程教学反思
身为一名优秀的人民教师,我们都希望有一流的课堂教学能力,通过教学反思可以有效提升自己的教学能力,教学反思要怎么写呢?以下是小编收集整理的解方程教学反思,欢迎阅读与收藏。
解方程教学反思1
本节主要教学目标是使学生通过结合具体实际问题的分析与解决,导出形如ax±b=c和ax±bx=c形式的方程,并结合原有旧知——等式的性质推导出解法步骤,同时利用这些方程来解决一些实际问题,丰富学生的解题方法,提高学生解决问题的能力。
通过几课时的教学与练习,学生在掌握方程解法上没有问题,说明学生对等式的性质掌握的比较扎实。但在运用方程解决一些实际问题时,部分学生表现出缺少一定的分析习惯和缺乏一定的分析能力,造成在解决问题(特别是一些例题的变式题)时产生较多错误。
通过前后练习的比较、观察,发现产生上述问题的主要原因在于学生在练习时偏重模仿和记忆,缺少具体分析的意识。从而造成在碰到一些变式题时就明显缺少解题策略,学生在读题后首先想到的.不是去思考题中有怎样的数量关系,而是在记忆中极力搜索“这个问题以前有没有讲过?或跟哪个问题是一样的?”等旧痕迹。然而这些变式题的解答难就难在它与例题有密切的联系,但又有区别。如果学生不能找到其中的区别和练习,光靠模仿和记忆,那就很难正确解答了。因此,在教学中教师要注意学生重模仿轻分析的学习方式,在练习中要加强数量关系的分析,注重学生对解题思路的表述。教师要强调学生读题后先分析并写出等量关系,每个实际问题的解答过程中都要设计等量关系的分析与交流,从潜意识中使学生重视起对问题的分析与判断。一开始学生可能在分析、判断等量关系时还会模仿例题的形式,因此在学生对基本类型有了一定的感悟后,要有针对性的出现变式题让学生来解决,使其在认知冲突中进一步感悟先分析、判断等量关系的重要性。但同时教师也要十分清楚的认识到寻找等量关系对于课改后的六年级学生来讲,并不是一件容易的事,除了缺少一定的意识外,更重要的是缺乏一定的分析能力。
产生这种情况的原因主要有两个,一是在新教材的编排中,在六年级前很少涉及甚至没有安排过等量关系寻找的内容。正是由于教材中忽视了这方面内容的安排,也就引起了第二个原因——教师和学生都忽视了寻找等量关系能力的培养。等到六年级要大量具体涉及到时,就发现学生很不适应了。如何提高学生寻找题目中等量关系的能力,就成了教学的一个重点,也是一个难点。为了提高学生等量关系的分析能力,除了如前所述要加强意识培养外,还应在具体方法上加以指导。而用线段图来表示题目中的条件和问题,是一种非常有效的提升学生分析、判断等量关系的方法,教材在例题分析中就先借助了线段图来分析,从而帮助学生找出题中的等量关系。在实际教学中我深深地体会到了画线段图来表示条件和问题,从而形象的表示出等量关系的有效性。同时,在教学中不能因为问题简单或赶进度而忽视画线段图表示条件和问题的环节。一开始学生可能由于以前缺少一定的训练而显得有些不适应,但经过几次的努力后,学生就能很快提高作图能力,从而有助于等量关系的寻找。
综上所述,在列方程解决实际问题的教学中,教师首先要注意学生学习方式的培养,从偏重模仿和记忆中逐步纠正过来,逐步建立具体分析的意识。其次是要培养学生用线段图表示题目中条件和问题的能力,借助线段图的表示形象的表现出相关的等量关系,提高学生寻找等量关系的能力,从而进一步提高学生列方程解决实际问题的能力。
解方程教学反思2
小学五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的'学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。 通过近段时间的学习,发现学生对这种方法掌握的很好,而且很乐意用等式的性质来解方程,但同时让我感到了一些困惑:
1、教材的编排上,整体难度下降,有意避开了,形如:45—X=23 56÷X=8等类型的题目。把用等式解决的方法单一化了。在实际教学中,如果用等式性质来解就比较麻烦。很显然这种方法存在着目前的局限性。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。但是用减法和除法各部分之间的关系解答就比较简单。
2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。
总之,要使孩子们爱学、乐学,教师就必须更新教学观念,充分理解教材,并要懂得为教学去创设合理情境,灵活处理教材中的问题,鼓励学生算法的多样化,真正体现课改精神——“人人学有价值的数学,人人都能获得必须的数学;不同的人在数学上得到不同的发展。
解方程教学反思3
《解方程》是学生接触方程以来的第一堂计算课,理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。本着孩子比较感兴趣的基础上,本节课我采用的是课前预习,课上交流的形式进行,整节课大多数孩子在预习的基础上能够掌握方程的解法,但是个别孩子没有掌握。现反思如下:
1、出示预习提纲,让孩子预习有根据。
为让孩子形成自觉的学习习惯,师指导孩子进行预习,出示了以下三个问题:
一是什么是方程的解?举例说明。
二是什么是解方程?你是根据什么来解方程?
三是如何进行方程的检验?
好多孩子能够对这几个问题进行探究,并对意义理解比较深刻。
2、课上交流。
交流是学生思维火花的碰撞。对于什么是方程的解,孩子们举例子,根据例题来诠释方程的解的'意义。在进行交流根据什么来解方程的环节中,孩子们各抒已见,有的是用加法中各部分间的关系,有的是用等式的性质,还有的还接口答。依次把方法展示给大家,让孩子明白方程的解的意义和解方程的过程。再确定统一的解答方法,这个环节孩子兴趣很高,大部分孩子能够学会利用等式的性质进行解方程。整个的环节让孩子在探究中发现规律,找到方法,学生学的开心,对于概念的理解也很扎实。
解方程教学反思4
五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学着解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
在教学前,由于我个人比较偏好于传统的.教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学着的主人”和“教师是学着的组织者、引导者与合作者”的这一角度上,()为学生创设学着此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学着活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
解方程教学反思5
学生从五年级就开始接触简易方程,经历一年多的学习对于方程有了一定的认识,然而为何要设单位“1”的量为未知数这个问题在列方程解决稍复杂的分数实际问题时就一直困扰着学生。列方程解决稍复杂的百分数实际问题是小学阶段的最后一个有关方程学习的单元,因此有必要从本质上去拨开学生心中为何要设单位“1”的量为未知数的那团云。正好借助这节课通过对比分析的方法帮助学生很好的解决这个困惑。
案例描述:苏教版数学六年级下册教材
教材例5:朝阳小学美术组有36人,女生人数是男生人数的80%。美术组男生、女生各多少人?
学生能很快根据题目条件进行相关的找单位“1”分析数量关系的解题前期准备,经历这这两步后学生通过已有经验可以很快确定用方程的策略来解决这个问题。
在教学的过程中,笔者故意提出:这里男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?学生在底下开始异口同声地回答设单位“1”的量也就是男生人数为未知数比较合理。设美术组有男生X人,女生就有80%X人。那么根据等量关系式:男人人数+女生人数=36学生很自然地列出方程
X+80%X=36。就在大家十分“得意”的时候,一个小男孩发表了自己不同的意见:“也可以把女生人数设为X。”刚开始很多同学觉得有点不可思议,以前做这类问题不都是将男生人数(单位“1”)设为未知数X的吗?抓住这个千载难逢的机会,我就让他说说他是怎么想的。他是这么说的:设女生人数是X人,男生人数是X÷80%人,根据等量关系式:男人人数+女生人数=36列出方程:X+X÷80%=36。听完他精彩的发言,大家恍然大悟,原来还可以这样?
仔细回想这个聪明男孩的问题,原来数学真的需要动脑。这个问题在学习分数除法之前教材是一直在回避的,到了这里我灵机一动将题目改成:教材例5:朝阳小学美术组有36人,女生人数是男生人数的2倍。美术组男生、女生各多少人?那你觉得这个问题我们以前是怎么解决的?学生很自然的想到把一份数男生人数设为X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人数设为X人呢?学生思考了一会列出:X+X÷2=36,这个方程没有学习分数除法之前学生是没有办法解出来的,可能这就是教材一直回避的.重要原因吧。但是学生学习了分数除法,理解了分数和百分数的意义之后凭借自己的理解列出超乎常规的方程的勇气是值得肯定的。经过这两个问题的对比,学生明白了设未知量也是很重要的。课上到这里,并不是去推翻学生已有的经验,而是让学生有这样一种意识:数学很多时候不是一种硬性规定,遇到这类问题只能设单位“1”的量为未知数。于是我顺水推舟让学生比较了这两个方程:X+80%X=36、X+X÷80%=36哪一个解起来不较容易?学生通过计算终于明白:X+80%X=36方程的优越性,于是又回到了:男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?通过这样的对比进一步让学生体验到了:设男生人有X人(单位“1”的量为未知数的)合理性,不仅仅能很快表示出女生80%X人,而且X+80%X=36是学生熟悉的形如:aX+bX=c(这里a,b,c已知),而X+X÷80%=36这个方程不是学生熟悉的类型,是需要学生根据除法将它转化为aX+bX=c,这一步转化至关重要。经过上述的两次对比学生终于明白了:为什么在设未知量的时候一般要把单位“1”的量设为未知数了。有了这样的深刻的体验,学生解决这类问题就十分自然,心中的困惑可能就会烟消云散。
解方程教学反思6
本节课的教学重点和难点是:
理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点,因此我进行了大胆的尝试,在讲解方程的解时,新课程解方程教学与以往的最大不同就是,不是利用加减乘除各部分间的关系来解,而是利用天平保持平衡的原理,也就是我们常说的等式的基本性质解方程。教学中我先利用演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例1,让学生列出方程x+3=9,用演示x+3个方块=9个方块,提问:“如果要称出x有多少块,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?
学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的.3减去。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。 另外我还要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。在做练习时我发现大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来求出方程中的未知数,只有个别学生懂得运用等式的性质来求出方程中的未知数。在讲授“解方程”定义概念时,我主要从教材思想出发,通过让学生说出采用各自不同的方法求解方程的过程叫解方程,使方程左右两边相等的未知数的值,叫做方程的解。
解方程教学反思7
方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的难度。
五年级数学上册第四单元的教学内容是“简易方程”。为了更好地实现小学与初中知识的接轨,新教材对简易方程的解法进行了一次改革,将旧教材利用加减乘除法各部分之间关系解方程,改为让学生根据天平的原理来学习方程解法,也就是利用等式的基本性质来解方程。举个例子:
旧教材:
x+48=127
x=127-48
依据运算之间的关系:一个加数等于和减另一个加数。
新教材:
x+48=127
x+48-48=127-48
依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。
在实际教学中发现,同旧教材的方法相比,现行教材中的这种解法,学生更容易接受,他们不必再去记“一个加数=和-另一个加数、被减数=减数+差……”这些关系式了,只需根据等式的基本性质,想办法让方程左边只剩下X就行。学生很快就将这种解法运用自如,毫不费力。
可是,当学到用方程解决实际问题时,却出现了状况。
新教材在改革方程解法的同时,有一个相应的调整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因为利用等式的基本性质解a-x=b、a÷x=b,方程变形的过程及算理解释比较麻烦。然而,在列方程解决实际问题时,却不可避免地会出现以上两种类型的方程。如:“一本书有65页,王红看了一部分后,还剩27页。王红已经看了多少页?”学生很自然就列出65—x=27这样的方程。
如何解决这个难题?细读教参,发现编者的思路是,当需要列出形如a-x=b或a÷x=b的方程时,要求学生根据实际问题的数量关系,改列成形如x+b=a或bx=a的方程。这样的处理方法倒是可以继续回避上述的两种特殊方程,可是,新的矛盾又出现了。
我们知道,方程最大的意义,就是让未知数参与进式子,利用顺向思维,降低思考的.难度。这是方程方法的优越性。然而,在刻意回避a-x=b或a÷x=b这样的方程时,往往会出现和方程思想的基本理念相违背的现象。
如“6枝钢笔比4枝铅笔贵12元。钢笔每枝3元,铅笔每枝多少元?”
合理的做法应是“设铅笔每枝X元”,从顺向思考,列出方程为“6×3-4X=12”。然而,按新教材的编排,学生无法解这样的方程,只能转列成“4X+12=6×3”。再如:一共有128人平均分成Х组,每组8人,学生们都不假思索地列出了128÷X=8,等到解方程时才发现利用天平的原理没法继续,只好改列成8X=128。
如此一来,学生怎么能充分体会方程顺向思维的优越性?
如果说用旧教材的思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,如何是好?
我只能把新旧教材两种方法进行互补,告诉学生,遇到这类方程时,一种解决的办法是按减法和除法各部分之间的关系进行解答;另一种方法就是先按等式的性质,把方程的左右边都加或乘一个x,然后把方程的左右两边交换一下位置,再按照a-x=b及a÷x=b的方法进行解答。
解方程教学反思8
解方程是数学领域里一个关键的知识,在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。
在教这单元之前,我一直困惑解方程要采用初中的“移项”解题,还是运用书本的“等式性质”解题,还有老教材中提到的运用关系式各部分之间的关系来解决?面对困惑,向老教师请教,学生该吸收那种方法呢?困惑,学生该如何下手,运用“移项”解题,学生对于这个概念或许不会系统清晰,但是“等式性质”解题时,在碰到a-x=b和a÷x=b此类的方程,学生能如何下手,“四则运算之间的关系”老教材的方式改变,必有他的理由,能用吗?困惑!我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的.负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的衔接,而存在局部对学生会更困难,如a-x=b和a÷x=b此类的方程。了解这一信息,我决定采用新老教材一起使用,先从教材中的运用等式基本性质教学孩子会解简单的方程,以便初中学习可以衔接,而初中的“移项”也会顺利的接收,但是面对现在五年级的思维和解题的方便性,我再教学老教材的“四则运算关系”解放程,至少这样能让现在的学生会解各种题型的方程。在我看来,这样的教学书本的知识不丢,方法又可以多种变通。
通过这块知识的整理,我感觉到教材需要教师好好的研究,才能用最合适的方式去教导学生,数学经常存在一种一题多解情况,老师就是引导学生走最好最合适的路。
解方程教学反思9
前两天讲解了简单的方程的解法,加法、减法乘法除法的,觉得孩子们接受的不错,一节课下来练习了好多题,每个孩子都能得心应手,自己还有点窃喜。可是今天却让我大跌眼镜。
昨天上课讲解了例4和例5,孩子们对了复杂的方程有了初步认识,但在每一步的分析之下孩子们也觉得很熟悉,原来是简单的方程结合在一起变成复杂的,只要掌握运算顺序就不难,结合例题的图示,分彩笔的例子,先分什么再分什么,让学生明白在具体算式中也是结合着实物图来做,先把3x看做一个整体,把剩下的4根彩笔减掉,要想得到一整盒x根的彩笔,就得把3整盒再平均分配,这样下来孩子们能够明白每一步的'意思,他们能够知道先处理多余的彩笔,再考虑整盒的彩笔。这样下来理解也不是问题,又练了几道同类的题,也很顺手。例5的讲解上有些难度,孩子始终不太理解把括号看做一个整体,但在讲解和练习下也能做上了。
今天我想验收一下昨天学的怎么样,结果让我很头疼,为什么过了一宿好多同学又没了思绪,留了6道题,少数几个好同学能够顺利的做上,大部分同学还在思索着,课下辅导了几个差生,原来他们又把前面学的简单的方程解法又忘了,自己思考了一下,得给孩子们消化时间,课上会了不代表他们一直不忘,还得多加练习啊
解方程教学反思10
方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。一元一次方程是最简单、最基本的代数方程,它不仅在实际中有广泛的应用,而且是学习二元一次方程组、一元二次方程、分式方程等等知识的基础。解方程既是本章的重点,也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。
本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。
总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。由于时间的关系,本节课这一点做得还不够完善,可从学生的课堂练习中反应出来。再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的`知识形成和掌握情况。
总的来说,虽然课堂上同学们总结错误点总结得不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。
我始终遵照“坚持启发式,反对注入式”的教学原则。即在课堂上,凡是学生自己努力能解的方程都应由学生自己解决完成。
解方程是重点,要求人人过关。通过实验教学,达到预期满意效果。不仅有利于学生的学习,更有利于教师的发展。
解方程教学反思11
有昨天加减法方程作铺垫,今天乘除法方程的解答可以说是顺水推舟,毫不费力。学生完全能够通过迁移自主探索出解法。但令我头痛的是如何引导学生会解形如a-x=b及a÷x=b方程。
本以为按新课标教材这两类方程小学阶段不用掌握,但在学期初教材分析会上教研员明确指明:这两类方程教师必须作为例题向学生补充讲解,且属于学生必会、考试必考内容。原因如下:1、在列方程解决实际问题时,学生中往往会出现以上两种类型方程,教师难以回避。2、如果教师有意回避,会使学生产生等式的基本性质只适用于部分方程的错误理解。
基于上述原因,我今天在教学完例2后为学生补充了相应内容,但教学效果较差。虽然许多学生能根据加减乘除各部分之间的关系推导出X的值,但当要求他们根据等式的`性质来解答时,尝试成功。通过指导,全班也只有50%左右的学生基本掌握解答的方法。分析此次教学失败的原因可能是安排的时机还不够成熟。因为学生刚接触解方程没多久,还须一段时间巩固教材中最基本的常见方程类型,而今天补充的两种类型虽然与例题一样,都是根据等式的基本性质,但在解答第一步时不再是思考“怎样才能使天平左边只剩X,而保持天平平衡”的问题了。学困生听完拓展练习后,作业中出现明显混淆的现象。如5X=1.5本应根据等式的性质直接将等号两边同时除以5求解的,可却有学生先将等式两边同时除以X,变成了“1.5÷X=5”, 这可真是越变越复杂。
值得思考的是,如果必须两教a-x=b及a÷x=b两类方程,你们觉得是按加减乘除法各部分之间的关系教好呢,还是按等式的性质教学好呢?
解方程教学反思12
由于自己没有教过五年级,新教材在解方程这方面做了改革,不再利用乘除法之间的关系去解方程,而是全部改成了直接利用等式的性质,在方程的两边同时称或除以一个数,我一开始很不习惯。在课堂上我甚至于批评学生。下课后,在与其他老师讨论中才明白,原来自己搞错了。
我又重新找出了五年级的教材,仔细阅读了一遍,才明白,原来五年级上册中,解方程采用了等式的`性质,而没有采用各部分之间的关系。于是我合同年级老师讨论了这个问题。
其实,我们没有必要强制要求非此即彼。而且,在整数范围内,形如,X/2=10.我们认为,还是利用除法各部分之间的关系直接计算快。只是系数分数时,我们才能体会到两边同乘以他们的公分母的方便。所以,我们认为在教到这里时,应该灵活机动的补充四则运算各部分之间的关系。使我们的计算简便。
以上观点不一定正确,但是是我在实践中根据本班实际情况总结出来的。希望各位能给予批评指正 谢谢!
解方程教学反思13
本节课的学生学习的重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;学习目标是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例1若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。
一、从学生喜闻乐见的事物入手,降低问题的难度。
解稍复杂的方程这部分内容烦琐乏味,解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的事物入手,引出数学问题,激发学生的学习数学的兴趣,又为学习新知识做了很多的铺垫。
二、放手让学生思考、解答,选择解题最佳方案。
让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例1,最后老师让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的'优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,白色多少块,黑色多少块,白色比黑色少多少等信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法。
让学生成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。
解方程教学反思14
这节课,先复习了方程的概念后,马上让学生说说方程需要满足几个条件,让学生意识到方程是一种特殊的未知数,然后出判断题,让学生进一步加深理解方程的意义,并让学生明白等式和方程的区别联系,紧接对有关方程的知识进行梳理,构建网络。并解决实际问题。
本节课的教学目标是结合具体情境,了解方程的含义以及会用方程表示简单情境中的等量关系。在教学的过程中,我设计导学案,先课件出示几个情境图,让学生从生活中的跷跷板引入,看清情境图。让孩子们从中找出数学信息,从而找到等量关系,让孩子用自己的语言进行描述,尝试着列出方程。知道了什么是等式,接着在交流书本的三个情境图,逐渐加大难度。多请几位孩子说说他们找到的等量关系。尝试列出等式。然后观察列出交流,从而知道含有未知数的等式叫方程。做练习进行巩固如何找等量关系,从而列出方程。本节课,我力求让学生通过自主探索,利用生活的例子,让每个学生都有观察、作分析、思考的机会,提供给学生一个广泛的,自由的活动空间,让学生大胆尝试,探索,感受数学的趣味。学生也都表现得比较积极,通过同桌交流等形式,找出等量关系,列方程时,同学们用不同的方式列出了式子,有些学生可能还受到旧知识的影响,把要求的未知数单独放在了等式一边,当时我虽然告诉孩子们方程不能这样列,但从某些后进生做的练习来看要转变过来还是有些困难,我想,可能是我没能把书本第一个出现天平的'情境图讲的还不够透彻,不能真正掌握找出等量关系的方法。整堂课当中,感觉对后进生的关注度不够,如果多加关注,可能可以找出错误资源,然后教师再加以引导,让同学们能更好的快速找出等量关系,更快的列出方程。最后,对自己比较不满意的是,1、学生说的问题与我设想的有出入。2、学生展示的时候不大胆。流程走完了,留给学生的空间太少了。
想让学生有个轻松愉悦的学习氛围,但可能我还需要一些时间,希望以后能上出让学生轻松愉悦的数学课。
解方程教学反思15
一、认知基础的“顽固性”
心理学研究表明,当人们熟练地掌握某种法则以后,往往就很难从另一种角度去思考问题,从而也就不容易顺利地实现由“过程”向“对象”的转变。在一至四年级,学生都是根据四则运算各部分之间的关系来做计算的,它既是学生十分熟悉的运算规律,同时又为新知的学习提供了合适的基础。方程是把已知和未知看作同等的地位,一样参与运算,从这个角度去看,当然也可以运用四则运算各部分之间的关系来做。而且,四则运算各部分之间的关系学生是先入为主、根深蒂固的,具有相对的“顽固性”,甚至在一定程度上会排斥新学的等式的性质,导致思维的“过早封闭”。因此,大多数学生这样做也就可以理解了。
以前教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,比较两种思路:第一种方法是把未知数x优先从背景中筛选出来,依据四则运算各部分之间的关系求出x的值;第二种方法用“结构性观点”去看待方程,着眼于其所表明的等量关系,体现了方程思想的本质,较好地解决了中小学关于方程解法的衔接问题。《数学课程标准》也明确要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。那么,教材编排的价值是不容置疑的,即不能因为学生思维的轻车熟路,而忽视新知的教学,忽视学生数学思想的进一步提升。利用关系式这种方法解方程书写较少,形式简单,但教学时总碰到差生不理解关系式也记不住关系式,因此在解方程时因想不起关系式而不会解。这几星期的教学,我发现孩子们还是比较喜欢学的,学得也不错,教材利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。教材又通过天平平衡原理过渡到等式的.性质,从而利用等式的性质教学解方程,使得解方程变得顺理成章、水到渠成。学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。虽然这样教学学生有兴趣,学得不错,但也存在局限性,如a-x=b和a÷x=b,虽然教材没有要求解这类方程,但试卷和相应的练习有出现,因此,有必要特别利用一些时间给学生补充讲解这类方程解法。我发现用等式性质教这类方程,比较麻烦,学生学起来有一定难度。
二、两种方法形式上的相似引发学生思维的惰性
第一种方法书写较少,形式简单。第二种方法从表面看,显得烦琐、麻烦,而且方程左边的“40x÷40”可以直接简写成“x”,这样从表面上看就和第一种方法一样了。根据已有的经验已经能够正确地解方程了,何必又多此一举,再去理解、掌握等式的性质呢?学生形成思维惰性,就不会再去深究思路和观念的不同,更不会创新解法。
方程变得顺理成章、水到渠成。学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。这时,教师再适时介绍教材之所以这样编排是为了中小学方程解法的衔接,使学生认识到利用等式的性质解方程的必要性,观念得以更新、深化。
【解方程教学反思】相关文章:
《解方程》的教学反思07-07
解方程的教学反思08-19
解方程二教学反思06-08
数学解方程教学反思06-15
《解方程二》教学反思08-23
解方程二的教学反思10-08
解方程的教学反思15篇10-08
《解方程》教学反思(通用20篇)11-13
数学解方程教学反思6篇08-15
《解方程(二)》教学反思(精选6篇)05-21