- 相关推荐
导数与函数的单调性的教学反思
作为一位到岗不久的教师,课堂教学是重要的工作之一,借助教学反思我们可以学习到很多讲课技巧,我们该怎么去写教学反思呢?以下是小编为大家整理的导数与函数的单调性的教学反思,仅供参考,大家一起来看看吧。
导数与函数的单调性的教学反思1
1、本节课由于提前撰写了教学设计,并且经过了精心的修改,通过课堂教学的实施,能够把新课标理念渗透到教学中去,体现了以学生为主体,以教师为主导的作用发挥的比较到位,学生能极思考,思维敏捷,合作学习氛围浓厚,是一堂成功的教学设计课。
2、本节课存在的不足之处是:
①教学引入时间较长,致使整堂课时间安排显得前松后紧。
②在引导学生探讨如何把导数与函数的单调性联系起来时,列举的函数有点多;应该去掉1-2个函数(一次函数只需选一个)。
③教态不够自然、大方;显得过于紧张。
④由于前松后紧,课堂小结不够到位。
3、
①本节课教学设计安排比较紧凑,加之学生基础较好,是能够完成教学任务的,而且效果显著;但在实施过程中,由于学生对函数的增减性概念不熟透,致使引入时间较长,课堂教学的'结尾显得太匆忙。
②由于听课教师太多,讲课时太紧张,课堂表达显得不自然,语言不够精炼。
4、改进的思路:
①选取函数时去掉两个一次函数。
②在引导学生提问时,问题要简明扼要。
③多进行公开课,锻炼自己的胆量和语言表达能力。
导数与函数的单调性的教学反思2
一、本节课的成功之处:
1.注重教学设计
本节课由于提前撰写了教学设计,并且经过了精心的修改,通过课堂教学的实施,能够把新课标理念渗透到教学中去,体现了以学生为主体,以教师为主导的作用发挥的比较到位,学生能极思考,思维敏捷,合作学习氛围浓厚,是一堂成功的教学设计课。
2.注重探究方法和数学思想的渗透
教学过程中教师指导启发学生以循序渐进的模式由简到难,再从理论上探究验证,这个过程中既让学生获得了关于新知的内容,更可贵的是让学生体会到如何研究一个新问题,即探究方法的体验与感知。同时也渗透了归纳推理的.数学思想方法。培养了学生的探索精神,积累了探究经验。
3.突出学生主体地位,教师做好组织者和引导者
教师在整个教学过程一直保持着组织者与引导者的身份,通过抛出的若干问题,促使学生主动探索、积极思维。充分发挥学生的主动性,让学生在动脑、动口、动手的活动中掌握知识和方法,提炼规律。并体验发现规律的喜悦感,激发热爱数学的积极情绪。
4.现代信息技术的合理使用
多媒体的使用,第一,在教学上节省了时间,让学生有更多时间去探究。第二,利用几何画板的优势,使原本不能画出的图像都通过几何画板画出,直观的验证了函数的导数的正负与单调性的关系。帮助学生发现规律。使探究落到实处。
二、本节课存在的不足之处是:
(1)课件中有些漏掉的部分。
(2)作业部分未展示。
(3)复习导数概念时,由于学生说不清楚,教师没及时中断,导致引入时间有点长。
三、改进思路:
(1)加强学习现代信息技术,提高制作多媒体技术的水平。
(2)在设计教学时,在考虑全面一些,是教学过程更符合学生实际水平。
导数与函数的单调性的教学反思3
本次学校在数学组内开展了“行知杯”赛课活动,我抽到的题目“利用导数研究函数的单调性”。由于我近期需要准备市公开课,两组公开课同时进行确实让我感受到力不从心,我也深深的感觉自己需要改进的地方还有很多。作为刚刚接手高二的新教师,这节课我是在借鉴了他人的教学过程的基础上加入了自己的想法后形成的教学设计。对于本节课的教学反思如下:
第一,教学整体设计
导数这个概念是高等数学的基本概念,又是中学阶段数学学习的一个主干知识,它是进一步学习数学和其他自然科学的基础,更是研究函数相关性质的重要工具之一.单调性作为函数的主要性质之一,主要用来刻画图象的变化趋势,在必修1的学习中定义了单调性,并且在学习幂指对及三角函数时,能够借助于函数图象特征和单调性的定义来研究函数的单调性.那为什么还要用导数研究函数的单调性?能不能用导数研究函数的单调性?怎样用导数研究函数的单调性?循着这样的思路,整个教学过程,从创设情境—实例验证—揭示本质—强化应用—回顾反思,五个方面入手,层层递进,螺旋上升.
情境引入
本课的难点是引导学生发现导数与函数单调性之间的联系,而这两个概念都是非常抽象的,学生很难直接感知,所以在引入阶段,利用生活中的常见问题汽车灯光的指向与上下坡之间的联系,第一次抽象:引导学生发现道路可以抽象成函数的图象,灯光可以抽象为切线,这样问题就转化为切线斜率正负与曲线上升下降的联系;适当建系后,第二次抽象:将曲线看做是函数y=f(x)上的一段图象,那么切线斜率即为函数在该点处的导数,顺势猜想结论,感知导数正负与函数单调性之间的联系,从而轻松高效引入课题,成功激发学生的求知欲.
合作探究
前面已经猜想出结论,但是该结论是否正确,还有待检验,学生首先想到的就是验证已经学过的常见函数,从而深化对所得结论的理解.再从“形”回到“数”,进一步引导学生经历从特殊到一般的过程,抓住导数和单调性的定义之间的联系来提炼一般性的'结论,由学生自主探究、分组展示,互相点评,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体.
典例应用
在典例演练,强化应用的过程中,例题1由“形”到“数”,规范了用导数研究单调性的书写,加深了对结论的理解;例题2在了解函数的性质基础上,要求学生画出三次函数的大致图象,经历由“数”到“形”的过程,并对导函数图象与原函数图象进行对比、深化理解,突显了利用导数研究函数单调性的优越性;例题3由三角函数图象很快能得出结论,解三角不等式时,学生可以画出导函数图象辅助解题,题目解完后数形结合再次画出原函数图象加以验证,并且突显了利用导数研究函数单调性的一般性.三道例题逐层推进,体现了导数法在研究函数单调性中的一般性和有效性,由形到数,由数到形,数形结合贯穿始终.
第二,教学中存在的不足
教师语言感染力度不够。一节课下来,语言起伏度较低,未能将重点知识通过起伏的语言方面传递出来。同时课堂评价语言单调,不能够起到鼓励学生的作用。作为一名新教师,教学基本功不够扎实,仍需多加练习,增加听课频率,多像优秀教师学习教学技能和技巧。
教学重难点内容的安排形式有待改善。本节重点知识在于为什么用导数研究函数的单调性,怎样用导数研究函数的单调性。怎样引导学生将导数的正负与函数单调性之间建立联系。实际上,这节课的重点,我觉得教师必须讲清楚函数在一个区间上的任一点出的导数为正时,在任一点处的切线斜率为正,函数在这个区间上的任一点处呈上升趋势,所以函数在整个区间上单调递增。但根据上课效果来看,学生并没有这样层次的理解,对于知识的认知还停留在表面,所以我提醒自己在今后的教学过程中应该加强数学知识本质的教学,让学生知其然,知其所以然。
小组讨论环节有待改善。本次课的小组讨论环节实际上是让班级学生分小组互相列举一些基本初等函数验证导数的正负和单调性的关系。但在实际教学中没有达到应该有的效果。每个学生自己单独完成了这个过程,并没有合作探究。课后我反思了这一过程,主要是和班级学生的熟悉程度不够,也是我在教学中引导过度不够自然,没有引起共鸣。通过这节课的教学,我有一个这样的疑惑,在数学教学中小组讨论,合作探究这个过程对学生的学习是否一定需要,是否一定会起到正面的效果,我觉得这是一个可以深入思考的问题。
板书设计有待改进。本节课板书不太理想,客观原因上课班级黑板不好使用,当然我对于本节课的板书设计确实准备不足,应该将情境引入部分整体思路理清楚,本节课的重点知识展示清晰。
经过这次的组内赛课,我感触颇深,也意识到自己教学技能的薄弱,对教研和教学认识的浅薄。关于教学,还有很多需要我学习的地方。不论是教研水平还是教学技能,我都急需向组内各教师好好学习,以期成为一名具有强大的语言功底、丰富的知识储备、强悍的课堂驾驭能力的优秀教师。我相信在各位同仁的指导帮助下,自己一定能够取得进步。
导数与函数的单调性的教学反思4
本节课是一节新授课,教学内容是导数在研究函数的单调性方面的应用,全组教师进行了认真的反思研讨:
第一、教学上应突出数学思想方法,本课时的定位是探究课,作为一堂探究课,学生是课堂的主体,必须把课堂时间交给学生。本节课通过复习二次函数的单调性,让学生动手发现探究原函数的单调性与其导数符号的关系,最后归纳出结论:一般地,设函数y=f(x)在某个区间内可导,则导函数的符号与函数的单调性之间具有如下关系:
1)如果在某个区间内,函数的导数,则在这个区间上,函数是增加的。
2)如果在某个区间内,函数的导数,则在这个区间上,函数是减少的。
优点:
1、从熟悉的二次函数入手,简单复习回顾以前学过的确定函数单调性的方法,使知识学习有连贯性。
2、由不熟悉的三次函数单调性的确定问题,使学生体会到,用定义法太麻烦,而图像又不清楚,必须寻求一个新的解决办法,产生认知冲突,认识到再次研究单调性的必要性。
3、从简单的、熟悉的二次函数图象入手,引导学生从函数的切线斜率变化观察函数单调性的变化,再与新学的导数联系起来,形成结论。再用代数法求出导数进行验证。另外,也使学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般,同时体会数形结合的思想方法。
4、学生分组探讨,用导数的几何意义和代数法两种方法探讨,每组选出中心发言人,将本组讨论的结果公布出来,从而抽象概括一般性的结论。这个过程充分体现了学生的.合作学习、自主学习、探究学习。
第二、例题和变式练习体现层次性、思想性。例题设计的两重用意:一是利用已知的二次函数的知识再次体验归纳结论的正确性,前面得到的是通过归纳得到的结论,没有严格的证明,这样处理有利于培养学生严谨的数学思想;二是对于二次以下的多项式函数,不仅可以通过用导数求单调性,也可以用图像法和定义法,都比较简单,也为了突出再求三次、三次以上的多项式函数或图像比较难画时的函数的单调性,应用导数的优越性。
1.通过例题让学生总结导数法求函数的单调区间的步骤,体会算法思想。
2、定义域的强调:对于求导,学生容易急于求成,往往忽略了定义域,让学生去讲例题,学生之间发现问题,他们印象会更深刻。
3、时刻注意学生基本功,学生的计算能力一直是薄弱点,每节课刻意去强调这些基本功,这样到高三就不会在这些方面费太多时间。
第三、教学中让学生“形成知识还是形成思想?”数学思想方法是以知识为载体,依附在具体的数学知识之中,是数学教学的隐形知识体系,但具体教学知识的教学不能代替数学思想方法的教学。数学思想方法将零散、具体的数学知识串起来,优化知识结构、、迅速构建学生的认知结构,从而对学生的数学思维产生深刻而持久的影响。相对而言,知识的有效性是短暂的,思想方法则是潜在的,持久的。因此,方法的掌握、思想的形成,才能使知识转化为能力,才是数学教学教育的最终目标。
但是,本节课对学生还放的不够开,还不能算一节高效课堂。今后的教学中,应注重高效课堂的探索和实践,老师尽可能少讲,让学生动起来,引导学生动口、动脑、参与数学活动,发挥主观能动性,主动探索新知。让学生分组讨论,合作交流,共同探讨问题。真正做到以学生为中心,学生100%参与,体现三维目标,培养学习能力。
【导数与函数的单调性的教学反思】相关文章:
函数单调性说课稿范文08-26
《函数》教学反思08-31
初中函数教学反思09-05
函数的概念教学反思05-16
《对数函数》教学反思08-28
对数函数教学反思06-28
二次函数教学反思08-29
《正比例函数》教学反思05-04
反比例函数教学反思05-15
函数的概念教学反思9篇10-27