《长方体和正方体》教学反思
《长方体和正方体》教学反思1
《长方体和正方体》这一单元是学生由平面图形到立体图形的一次过渡,也是学生学习其它立体图形的基础。是学生对图形认识的一个转折点,它从平面图形过渡到立体图形,从计算面积到计算体积,而且对于学生空间观念的发展更是一个质的飞跃。特别是对于那些构建空间念能力薄弱的学生来说,本单元的'学习是有一定难度的。而对长方体正方体特征的充分认识就显得尤为重要了。虽然说长方体在学生的身边随处可见,但是要发现它的特征,还是不怎么容易的
学生计算长方体、正方体表面积、体积必须具有较强的空间观念,这是教学的难点。为此,本节课我运用多媒体课件,让学生观察长方体动画拆开的过程,使学生全方位感知长方体的表面积概念,培养空间观念,寻找知识的结合点,让各种现代化教学手段在提高课堂教学效率与质量上发挥更好的媒介作用,实现信息技术与数学教学的整合。
线上授课,还受到网速,不能有效交流等弊端,以后会慢慢改进。
《长方体和正方体》教学反思2
“长方体和正方体的表面积”教学内容,是在学生初步认识了长方体和正方体特征,知道它们都有6个面、12条棱、8个顶点。长方体的每个面都是长方形,相对的面的形状相同,大小相等;12条棱分为3组;相交于一个顶点的三条棱的长,分别叫做长方体的长、宽、高,以及正方体的6个面都是面积相等的正方形的基础上而学习的。对于表面积的概念与平面图形的面积,既有联系又有区别。同时是后继学习的基础。
我认为表面积的概念的学习,要是通过学生对长方体特点的感知并懂得表面积的意义基础上,进行学习。学生虽然会正确求长方形的面积,但要求表面积,这是一个质的飞跃。为什么呢,因为是从平面到立体,从二维到三维。成人看似简单,而对小学生却有一定的.难度。同时,小学生往往习惯于迁移,长方形面积明明是长×宽,而现在怎么变成长×高、宽×高了呢?这对于一部分学生来说,肯定存有困惑。所以要把长方体展开,变6个面为一个面,这种转化不是老师来完成,而是在学生思维中展开,因此,在前一课时就应打下一定基础:上下面:前后面、左右面等概念!对立面相等等知识点。再通过观察长方体的每一个面的面积任何计算!有没有简便方法等。
在教学中,激发学生的学习积极性显得尤为重要!思维的活跃,积极的学习是本堂课成功的的关键。
不足之处:在教学中、思维的发散显得不够!以至于在后来的无盖,甚至四个面计算中部分同学不理解!
非常遗憾、值得反思!
《长方体和正方体》教学反思3
出示例5:一个长方体玻璃鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?(鱼缸的上面没有玻璃)
一起分析题意后,学生列式计算。
生1:先算出6个面的总面积,再减去上面的面积。(5×3.5+3×3.5+5×3)×2-5×3
生2:先求出前后、左右、下面的面积,再相加。式子是:5×3.5×2+3×3.5×2+5×3
生3:我的方法和刚才的基本相同,列式上可以再简单些:(5×3.5+3×3.5)×2+5×3
三种方法都交流完后,我本以为就到此为止了,但我班的数学课代表举手了,他说:“我还有方法”。
我一楞,心想,方法不是都讲完了吗?怎么还有?但我还是叫起了他,想让他说说。
他说:我从生3的方法上想到了一个更为简便的式子:(5+3)×3.5×2+5×3
咦?这不是把生3的式子运用乘法分配律而得到的吗?这个式子每一步会有具体的含义吗?
我一抛出这个问题,该生起初一楞,当时只顾着寻求不同的列式却没考虑意思,现在一时间回答不上来了。
但其余同学被他的思路启发后,思维一下子打开了。
一位学生解释道:底面先不看,如果沿着高将玻璃缸展开,会变成一个长方形,这个长方形的长就是原长方体长加宽的和的2倍,这个长方形的宽就是原长方体的.高,所以这个长方形的面积就是(5+3)×3.5×2,再加上一个底面积,就可以列成(5+3)×3.5×2+5×3的式子了。
该学生解释,我配合着画图,在图形的帮助下,众学生豁然开朗。
[反思]多好的思路,多好的解释!我庆幸没为自己的卤莽而抹杀了一个创新的方法,我也为自己课前预设的不够周全而后悔。在之后的教学中,我发现用这种方法的地方有很多,如在教学完例5后的练一练的第1题:一个长方体饼干盒,长17厘米,宽11厘米,高22厘米。如果在它的侧面贴一圈商标纸,这张商标纸的面积至少有多少平方厘米?这道题也可以用(17+11)×2×22的方法来做,且比较简单。在今后的教学中,教师还得用心去细细研读教材,逐一分析每一道题,力求做到预设全方位。
《长方体和正方体》教学反思4
《长方体和正方体的表面积》这部分内容,是人教版五年级数学下册第3单元《长方体和正方体》的一个重点,也是难点。它是在学生认识掌握了长方体和正方体特征的基础上教学的。学习的难点在于,学生刚接触立体图形,空间观念不强,往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过剪一剪、看一看、比一比 ,自主探究等方式来认识概念,理解概念。
我在设计《长方体和正方体的表面积》这节课时,考虑到班级学生较多,所以活动主要以小组进行。思路主要是沿着什么是长方体的表面积——怎样求长方体的表面积——长方体的表面积在生活中的应用这样一条线来让学生自主探究的`。在小组交流的过程中,我发现对教材的深度钻研和对学生的预设显得尤为重要。如课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积和再乘2,但是有的学生只说出了其中的一种简便情况。如果我在课前有更深入的研究,还可拓展学生思维,引导学生找出另外的方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。另外在让学生做当堂检测第三关时,我发现有学生做错了,只是把错题通过投影仪呈现了出来,由于受条件限制,未能结合原题给学生好好评讲,这一点比较遗憾。
实践表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性 。
《长方体和正方体》教学反思5
1、让学生主动参与,亲身实践,合作探究,实现学习方式变革。
充分利用学生已有的生活经验,从观察实物------土豆,来丰富表象,再让学生动手操作------切成长方体,来提高感性认识,最后通过交流、反思等活动中逐步让学生体会数学知识的产生形成和发展过程,学生在观察中理解,在操作中感知,不仅拓宽了思路,获取了新知识,而且沟通了知识的内涵,领悟了学习方法,转变学习方式,激活学习热情,达到全员主动参与“学数学”目的,培养了学生的学习能力。
2、让学生经历“学数学”过程,要发挥好教师的“主导”作用。
本案例教学中,教师始终把学生置于主体地位,积极引导学生通过看、摸、想、议、切、说等学习过程,让学生亲身经历数学知识的“再发现”、“再创造”过程,调动学生的学习主动性和积极性,在学知识过程中既发展了空间观念,又培养了能力;既培养独立思考能力,又培养了合作交流的能力,让学生感受到成功的喜悦。教师起着组织者、指导者、帮助者和促进者的作用。
3、让学生经历“学数学”的过程,其核心问题是“学会思考”
让学生学会数学地思考,是数学课程的重要目标之一,而积极有效的思考依赖于合适的、富有挑战性的'问题。依据知识自身的重点和学生已有的知识经验,改呈现知识为呈现问题,能吸引学生充分参与数学学习过程,自觉调动已有的知识经验和心智技能,从而促使数学学习活动有效地展开并不断深入。
苏霍姆林斯基说过,在人的内心深处都有一种根深蒂固的需要这就是希望自己是一个发现者、研究者、探索者,在儿童精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学教学环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的数学知识和技能的同时。在情感、态度和价值等方面得到充分发展,立生积极的情感体验,进而创造性地解决问题
用《数学课程标准》来教学,必须让孩子们体会到数学的价值,学会运用数学的思维方式去观察、分析现实社会,解决日常生活中的问题,形成勇于探索、勇于创新的精神。总之,数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。真正体现新的课程理念,让学生“学数学”是一个生动活泼的、主动的富有个性的过程。
《长方体和正方体》教学反思6
本节课的目的是让学生通过实践活动,探索并掌握长方体、正方体体积的计算方法,图在观察、操作、探索的过程中,提高动手操作能力,进一步发展学生的空间观念。因此课一开始,我并没有设置“漂亮”的教学情境,而是在学生用数方块的方法得出几个立体图形体积的基础上,数出小长方体的体积,目的有二:一是抛弃繁索的动作,直奔中心;二是快速刺激学生的探索欲望。果然,课上学生的兴趣快速激起,为后面的探索活动提供了足够的情感准备,并羸得了充分的操作探索时间。
本节课,我最满意的是长方体和正方体体积的探索过程及结果。由于在前几节课拼搭立体图形中,学生曾用8块小正方块既搭出了长方体也搭出了正方体,因此在本节课中,有好几个小组的学生通过同一次的操作活动,就能同时得出长方体和正方体的体积计算公式,并且正确地阐述了原因——正方体是特殊的长方体。同时学生能根据长方体与正方体的关系——正方体是长、宽、高都相等的长方体,进一步的揭示了正方体的.体积=棱长×棱长×棱长与长方体的体积=长×宽×高之间的联系与区别。在这一个环节的操作探索活动中,学生通过数据的记录与分析,发现长方体体积与长、宽、高之间的关系,知道了求长(正)方体体积所必需具备的条件,并根据数据抽象归纳出体积公式,这当中不仅提高了学生的动手操作能力,也发展了学生的分析概括能力。同时在整个的观察、操作、探索的过程中,更进一步地理解与掌握长方体与正方体之间的联系与区别,有助于知识体系的重组与构建,学生的空间观念也得到了进一步的发展,这也是本节课的意图之一。
不足之处是练习的安排,应该更有层次和梯度,使学生在理解基础知识和掌握基本技能的基础上,在适当有些拓展,提高课堂四十分钟的效率,提高学生分析问题和解决问题的能力。
《长方体和正方体》教学反思7
一、教材分析
《长方体和正方体的表面积》是人教版教材第十册第五单元中的第一节课。长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。这节课就是要在学生初步认识长方体和正方体的基础上,来进一步掌握长方体和正方体的特征,是接下来继续学习长方体的表面积和体积的重要基础。
教学目标:
1通过观察、***作等活动,使学生认识长方体和正方体,掌握长方体、正方体的特征。
2、发展学生的空间观念,提高学生的动手***作能力。
3、培养学生自主探索、合作交流的意识。
重点:掌握长方体、正方体的特征,以及长方体和正方体之间的关系。
难点:通过观察***作概括出长方体、正方体的特征。这也是本节课教学的关键。
二、学情分析
学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。
教学手段:学生动手***作,同时配合多媒体课件演示。
三、教学过程
这部分内容分3课时进行教学。第1课时教学长方体、正方体表面积的概念和长方体表面积的计算方法。第2课时教学正方体表面积的计算方法,及根据实际情况确定算哪几个面的面积。第3课时进行综合应用,提高学生运用所学知识解决实际问题的能力。
具体教学环节如下:
(一)巧设情境、生活引入
生活本身就是一个巨大的数学课堂,我们要善于结合课堂教学内容捕捉生活现象,把学习和儿童自己的生活充分地融合起来,让学生能够感受到数学处处与生活同在;
课一开始首先让学生回忆以前学过那些几何图形,接着让学生拿出课前收集来的各种形状的实物,让学生识别,说一说这些物体是什么形状的,使学生明确鞋物体的形状都是立体图形,占有一定的空间。并从这些事物中找出哪些是长方体和正方体。
这样就把学生熟悉的生活原型,上升为数学知识,让学生亲身经历了一个“数学化”的过程。
让学生根据以前对长方体的初步认识,指出那些物体的形状是长方体。
(二)自主探索,形象感知
动手***作的过程是一个手、脑并用的过程,学生在用学具进行***作性学习过程中,多种感官参与学习活动,不仅能加深学生对知识的理解,而且能把学生推到主体地位,让他们主动***作、主动探索、主动思考。这一单元是学生系统学习立体图形知识的开始,因此在教学中要加强动手***作,提供直观形象、富有吸引力的感性材料,让他们通过一系列实践***作活动,经历长方体、正方体特征的感知、理解、概括的过程,在头脑中建立清晰的表象,丰富他们的感性认识。
1、探索长方体的特征
首先让学生仔细观察手中的.长方体纸盒,通过数一数、摸一摸、量一量等时间***作活动,去探索和发现长方体具有那些特点?并在小组内互相说一说。
然后在此基础上以小组为单位进行交流,通过各个小组的汇报,逐步归纳概括出长方体面、棱、顶点的具体特征:明确长方体是由6个长方形围成的立体图形(特殊情况下有两个相对的面是正方形),它有12条棱,8各顶点。并且在一个长方体中,相对的面完全相同,相对的棱长度相等。
接下来让学生用准备好的小棒、橡皮泥的材料自己动手制作一个长方体的框架,在实际的观察、***作过程中学生会发现这12条棱可以分成三组,每一组的长度都相等。在此基础上再引导学生观察相交于一个顶点的棱有几条,它们长度怎样,使学生明确相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高,并且从中体会出长方体的形状和大小是由它的长宽高来决定的。再这一环节中,为了帮助学生正确理解长方体的长宽高,应该让学生把长方体横放、竖放、侧放,根据不同的摆放情况,分别让学生指出他的长宽高,防止学生死记硬背,同时发展学生的空间观念。
2、探索正方体的特征
这部分有了长方体的特征做铺垫,学生掌握起来会比较容易,具体过程基本与前面相同。只要最后向学生说明一下由于正方体的所有棱长度都相等,所以它的长宽高都叫做棱长就可以了。
3、教学长方体、正方体的比较
这时学生已经基本掌握了长方体、正方体各自的特征,所以可以引导学生按照面、棱、顶点的顺序,通过讨论交流,来总结和概括它们的相同点和不同点,最后整理成表格。另外通过这一环节还要使学生明确正方体是特殊的长方体,并会用集合圈表示出它们的关系。
《长方体和正方体》教学反思8
本课学习之前,孩子们们已经掌握了长方体体积的计算公式V=abh和正方体体积的计算公式V=a3,为了沟通这两个公式之间的联系,减轻学生记忆的负担,培养学生的抽象概括能力,也为以后学习柱体体积计算公式打下基础,本节课学习长方体和正方体统一的体积公式,即底面积乘高。
课始我引入了古代数学家计算长方体体积的方法引入:
西汉末年我国古代数学家编撰了一本不朽的传世名著《九章算术》。这本书共九章,其中一章叫商功章,它收集的都是一些有关体积计算的问题。书中是这样叙述有两个面是正方形的长方体体积的计算方法的:“方自乘,以高乘之即积尺.”就是说,先用边长乘边长得底面积,再乘高就得到长方体的体积。
目的是想让孩子们知道两千多年前,我国古代数学家已经明白了怎么计算长方体的体积,让他们明白我们在此基础上学习肯定能学得更出色,从而激发孩子们学好数学知识的`情感。
接着围绕四个问题展开讨论:
(1)看完这段叙述,你想到什么?
(2)这段文字中描述的长方体有什么特征?底面积指的是哪一个面的面积?
(3)古代数学家是怎样计算长方体体积的?它与我们今天掌握的计算方法相同吗?为什么?
(4)怎样将这个长方体变成一个最大的正方体?它的体积怎样计算?
这四个问题为孩子们思考、交流并推出长方体、正方体的体积计算统一公式起了一个导航的作用。它加深了学生对长方体、正方体特征及之间的关系的认识,渗透了几何变换的思想方法,也让孩子们感受我国数学的源远流长。
在第三个问题的交流中,我主要引导学生将自己掌握得长方体和正方体体积计算公式和古代数学家总结出来的底面积乘高进行对比,在交流对比中明白长乘宽或者棱长乘棱长其实就是底面积,之后,在调整中概括出长方体和正方体统一的体积计算公式。这次对比,使孩子们对原有的计算公式进行了重组,使他们对柱体体积计算方法也有了一个基本的认识,也为日后学习各种柱体体积奠定了基础。
《长方体和正方体》教学反思9
《长方体和正方体的表面积》是在学生认识并掌握了长方体和正方体特征的基础上学习的,是本单元的重要内容。
这节课是学生学习立体图形计算的开始,为了使学生更好地建立表面积的概念和计算方法,我通过演示课件,加强动手操作和实物演示,按照“创设情境----动手操作----自主探究----总结规律”的教学流程进行教学设计。
(一)创设情境,让数学知识和生活结合起来
本节课我创设让学生“想一想”做一个长方体纸盒至少需要多少纸板这一情境来引发学生思考,要求“需要多少纸板”就必须知道长方体纸盒的什么,让学生通过思考和交流,认识到“必须分别计算出六个面的总面积”。这时及时我指出:“长方体或正方体六个面的总面积叫做表面积”,这样设计能刺激学生产生好奇心,唤醒学生强烈的参与意识,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
(二)动手操作,激发学生的自主探究能力
在教学长方体表面积的计算方法时,先让学生动手量一量这个长方体纸盒的长、宽、高,然后让学生独立思考如何求这个长方体纸盒的表面积,最后以小组为单位交流想法并把方法与结果记录下来,共同探索出长方体表面积的计算方法。
(三)巧编练习题,培养学生的.优化思维和归纳能力
在学生掌握了长方体表面积的计算方法后,我没有单独安排时间推导正方体表面积的计算方法,而是设计了一道练习题(求长、宽、高都是3厘米的长方体的表面积的最优方法)。学生在探讨算法的过程中很自然地发现了正方体表面积的计算方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,在学生探究和交流的过程中,达到优化思维,推陈出新的效果,并从中感受到学习的乐趣。
(四)联系实际,利用数学知识解决问题
我通过创设情境让学生看到许多实际生活中的问题可以通过学到的知识来解决的,学生深刻地感受数学与实际生活是密切联系的。为此,我出示了在生活中经常见到的火柴盒,让学生分别求一求火柴盒的内盒和外盒的表面积,从中使学生认识到长、正方体的表面积也会遇到许多特殊情况,我们在求表面积是不能死套公式,要根据实际情况具体问题具体分析。
【《长方体和正方体》教学反思】相关文章:
《长方体和正方体》教学反思07-03
长方体和正方体的体积教学反思06-16
《长方体和正方体的体积》教学反思09-07
《长方体和正方体体积》教学反思10-19
长方体和正方体的认识教学反思05-30
长方体和正方体体积的教学反思07-04
长方体和正方体的认识教学反思08-25
长方体和正方体的体积教学反思范文12-02
长方体和正方体的表面积教学反思08-27
《长方体和正方体的表面积》教学反思07-26