《平行四边形的面积》教学反思

时间:2024-11-06 13:21:10 晓丽 教学反思 我要投稿

《平行四边形的面积》教学反思(精选13篇)

  随着社会不断地进步,我们的工作之一就是教学,反思过去,是为了以后。怎样写反思才更能起到其作用呢?下面是小编精心整理的《平行四边形的面积》教学反思,希望能够帮助到大家。

《平行四边形的面积》教学反思(精选13篇)

  《平行四边形的面积》教学反思 1

  本节课内容是在学生已经学会长方形、正方形的面积计算的基础上掌握平行四边形的特征,并认识平行四边形的底和对应的高的基础上教学。我能根据学生已有的知识水平和认知规律进行教学。

  心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学思想。

  一、渗透“转化”思想,引导探究

  通过本节课的学习,要能够为推导三角形、梯形面积的计算公式提供方法迁移。“转化”是数学学习和研究的一种重要思想方法。

  我在教学本节课时采用了“转化”的`思想,先通过数方格求面积发现数方格对于大面积的平行四边形来说太麻烦,然后根据观察表格中的数据,引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。

  接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。

  二、重视操作试验,发展能力

  本节课教学我充分让学生参与学习,让学习数方格,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。

  这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。

  三、注重优化练习,拓展思维

  练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。

  第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。

  第二题出示含有多余条件的图形题,强调底和高必须对应,学习上更上一个层次。

  第三题考察学生灵活运用公式求平行四边形的底和高。

  第四题认识等底等高的平行四边形的面积相等。现不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等。本课练习能促使学生牢固的掌握新知。

  《平行四边形的面积》教学反思 2

  平行四边形的面积计算式教学是在学生掌握了平行四边形的特征以及长方形面积计算基础上进行的,它同时又是进一步学习三角形面积、梯形面积的计算的基础。教材首先提出:公园准备在一块平行四边形空地上铺草坪,如何计算这块空地的面积?这是学生在学习了长方形、正方形的面积后,提出的如何计算平行四边形面积的问题。

  教材这样安排的目的是让学生面对一个新的问题,思考如何去解决教材提供了两种提示性的方法:一种是通过数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的`活动,将平行四边形的面积转化为长方形,然后计算出面积。通过本节课的使学生通过剪切、平移的方法理解平行四边形公式的推导过程,并能够运用公式解决实际问题。

  本节课教学中,用长方形面积公式导入,由学生猜测、验证、再猜测、再验证的方法推导出平行四边形的面积公式。在此次过程中教师充分调动学生已有的知识经验,通过小组合作,把学习的主动权交给学生,最后通过习题巩固,使学生灵活运用平行四边形的面积公式。

  《平行四边形的面积》教学反思 3

  新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。

  我设立的教学目标是

  (1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;

  (2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  (3)引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

  一、注重数学思想方法的渗透

  在教学设计方面,我先是创设情境,激发学生的学习兴趣,进出课题:《平行四边形的面积》,再让学生通过数方格,动手操作等、验证平行四边形的面积公式,最后通过练习,巩固知识,解决实际问题。

  二、注重学生数学思维的发展

  数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。

  在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长×宽,所以平行四边形的面积=底×高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的面积推导方法,也为今后推导三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维能力的.发展。

  三、注重了师生互动、生生互动

  新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。

  在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。

  四、我的遗憾

  1、课堂氛围不够浓厚,可能是学生太紧张,我在课前也没有让学生放松心情,课前可以给学生讲笑话或者故事,让学生放松心情,课堂氛围会好一点。

  2、有些引导语不是很贴近学生,有时候学生不会很快回答出来,需要思考的时间,或者后时候不知道怎么回答,这是因为老师的引导语或者提问的表达方式不够恰当。

  3、最后一个小故事与本节所讲的内容联系不是很大,没有用到本节所讲的知识,运用的是平行四边形的不稳定性,对于学生来说,有一定的难度,最后一题的设计不是很合理。

  4、板书字体不够工整,漂亮,还需要多练习,多改进。

  5、课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。

  这节课学生大部分都拼出第一种和第二种,后一种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。

  《平行四边形的面积》教学反思 4

  《平行四边形的认识》一课学生已经学习过有关四边形的知识,已初步掌握了长方形和正方形的特征,对平行四边形也有了初步的认识,认识了平行与垂直。学生头脑中已经积累了平行四边形在日常生活中应用的表象感知。这一节课除了让学生探讨平行四边形的特征外,认识平行四边形的底和高,并且会画平行四边形的底和高。这一课反思如下:

  一、培养学生的自主探索、合作交流的能力。

  在这次教学中,多次让学生自主探索、合作探究。如:在教学平行四边形的特征时,我先让学生说一说平行四边形的特征,然后进行验证,最后进行总结,让学生经历猜想——验证——交流——总结的过程,从而感悟平行四边形的特征。在总结平行四边形的`定义时,也是先让学生试总结,然后让学生打开书,看一看书上的定义,这样学生就会通过比较,很快地掌握平行四边形的特征。在整堂课中、学生有观察、操作、分析、和思考的机会,为学生提供了一个广泛的、自由活动的空间。

  二、学生在动手操作过程中,提高动手操作能力和解决问题的能力。

  在验证平行四边形特征、用准备好的四条边学生动手画高这些环节学生利用三角板、量角器等文具进行验证,学生边动脑,边操作、手脑结合,既激发了学生的学习兴趣,又让学生在操作中体验平行四边形的特点。在研究平行四边形易变形特性时,让学生动手操作拉一拉,感知平行四边形的不稳定性。

  在这节课中也有很多不足,如在探索平行四边形特征这一环节的设计中,我利用小组合作,借助三角尺、量角器、直尺等工具来验证平行四边形特征。课堂实践后我发现学生合作起来却无从下手,不知怎样合作。可能是我在合作前对学生合作方法指导较少,学生在自主探索、合作探究方法不够明确。对如何组织实施自主探索、小组合作学习方面缺乏应有的经验。在以后的教学中我会不断探索,不断进步。

  《平行四边形的面积》教学反思 5

  本节课是在孩子们已经掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习的平行四边形的面积的计算的,所以,我在立足学生已有知识储备的基础上开展教学活动。

  本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。

  根据课堂教学实际反思如下:

  一、教学设计要合理,不能出现误导学生的环节。

  课堂开始时我出示了一个长方形教具,让学生回忆长方形的长和宽,面积公式,然后通过把长方形拉伸变成平行四边形,让学生观察长和宽,面积有没有变化,利用麻吉星信息技术进行投票,然后留下疑问导入情境图。在学生通过数格子和剪拼活动推导出平行四边形的面积公式后回到这个问题,还是有一部分学生认为面积没有变化,认为平行四边形的'底就是长方形的长,高就是长方形的宽,而不知道拉成平行四边形后它的高就不是原来的宽了。

  在比较两个花坛的大小这一环节,课本上用数方格的方法,全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,然后加上满格的就得到了面积。也有学生思考后发现沿着平行四边形的高剪下一个直角三角形然后平移转化成长方形,这两种方格都是很好的,让学生上台表达自己的想法时需要注意培养孩子的语言表达能力,并注意要面向学生来表达。当然数格子的方法也可以分别把不满一格的平移到右边拼成满格的然后再数,这种方法老师也可以向学生介绍,开拓学生的思维。

  二、渗透“转化思想,让所积累的经验为新知服务。

  “转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化的思想,再数完格子后让学生说说自己的发现,再引导学生大胆猜想平行四边形的面积可能是什么,该怎样计算,接着引出将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。

  这节课学生只是拼出两种,另外一种情况(沿中间高剪开)只有几个学生拼出来。根据教参中的建议“如果学生除教材外的其他拼接方法,给予肯定”,其实是在提示我们不必追求拼接方法的多样化,而是应追求拼接之后的等量关系的研究与发现。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,让孩子们讨论比较,转化后的图形和原图形有哪些等量关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。这个环节在让学生动手操作前应该先给学生思考怎样操作,而不是直接动手操作。在学生剪拼完成之后学生应该在组内交流自己的操作方法和过程并对比图形说说自己的发现,这个环节学生参与度不够,不够积极认知,不会表达自己的方法,教师应该平时注意小组合作的规范性训练,要求每个学生在动手操作前先独立思考如何操作,然后再动手操作,并让小组长组织每个成员积极发言,小组长进行总结,每个环节都要有时间控制,合理、有序安排。

  三、练习的设计要突出层次性,注意数学的严谨。

  ① 在设计下面这道习题时,我原本是把选项给出来让学生去选,这样就给学生思考的空间不够大,应该让学生自己思考后选出答案,然后利用麻吉星来投票,教师根据投票结果有针对性的用抽人功能来让学生说说他理由,加深学生对平行四边形面积的理解与运用。

  ②在让学生画一个面积为12平方厘米的平行四边形这个问题时,应该先让学生思考:面积为12平方厘米的平行四边形它的底和高应该是多少?学生自然能够想到有2×6=12、3×4=12和1×12=12这三种情况(底和高为整数情况下),每种情况有两种画法,共6种画法,而不是3种。在学生动手画图形时应该寻找并拍照学生的作品并通过上传图片来展示,这样操作可能效果会比较理想。

  《平行四边形的面积》教学反思 6

  1、深刻理解教材是有效课堂的基础

  教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?

  教学之前,我觉得数方格对平行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。

  这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现平行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。

  2、课堂环节的合理设计是有效课堂的保证

  教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。

  教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。

  然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究平行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。

  因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。

  3、数学思想方法的提炼是有效课堂的精髓

  让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的'过程,至于转化的思想,在本册中多次用到。

  如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。平行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算平行四边形的面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。

  教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完平行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿平行四边形对角线剪开,通过平移得到一个新的平行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。

  课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。

  《平行四边形的面积》教学反思 7

  苏霍姆林斯基说过:在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。

  在本节的平行四边形面积公式的推导过种中我就努力让学生得到这种需要。以小组为单位我先让学生尝试自己通过动手操作寻找出求平行四边形面积的方法。在学生汇报的过程中每个同学都很兴奋,我也尽可能让他们大胆地表达自己的想法,对于学生的想法,我均给予鼓励。在众多的想法中有个同学提出:平行四边形面积等于两条相邻边的乘积。理由是长方形和正方形面积公式猜想而得。基于此我让学生再展开想像的翅膀,大胆设想,验证这一想法的准确性。再一次探究的火花被燃起。虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的.,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。

  因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证 因而得以灵感。而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。

  《平行四边形的面积》教学反思 8

  本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。新课标指出“有效的数学活动不能单纯地依靠模仿与记忆,教师是要引导学生经过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”

  《平行四边形的面积》一课的教学中,经过让学生动手实践,自主探究,让学生经历了知识的构成过程。我设立的教学目标是:

  (1)经过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确运用平行四边形的面积计算公式进行相关的计算;

  (2)让学生经历平行四边形面积公式的推导过程,经过操作、观察、比较等活动,初步认识转化的方法,发展学生的空间观念。培养学生观察、分析、概括、推导和解决实际问题的能力。

  (3)使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

  一、注重数学思想方法的渗透,让所积累的经验为新知服务,渗透“转化”思想

  在教学设计方面,我先是让学生大胆猜测两个花坛(等底等高的长方形与平行四边形)的面积哪一个大,再让学生经过动手操作、验证平行四边形的面积,其实它们的面积是一样大的。“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,之后引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。

  二、注重学生数学思维的发展

  数学教学的核心是促进学生思维的发展。教学中,经过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的.面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应当是相对应的,经过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题供给了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三、注重了师生互动、生生互动

  新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应当互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,经过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。

  四、遗憾之处

  课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,经过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着经过我的引导让学生动手实践,剪出第二、三种剪法。

  本课中我以学生为主体,教师主导,较好地完成了教学目标,但课中有些地方不够完善,需改善。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改善,我们的课堂就会更加精彩。

  《平行四边形的面积》教学反思 9

  按昨天学习的体会我在自己班里实践了一下,课堂上收获了惊喜与平淡,现记录如下。

  1、准备学习材料,有点小困难。

  课前准备,我都会考虑材料尽可能简单,但效益要达到最大化。本节课就给学生准备一个平行四边行,供学生探究用。

  在word上画平行四边形时,遇到了困难。底与高都要取厘米数的平行四边形我不知道怎么设置,急中生智,用了一条参考线段就完成了。但邻边就没办法了,结果做出来的邻边长2.3厘米。不过这样的学习材料并不影响学生的研究。

  2、尝试也出现三种思路。

  课始,我开门见山就让孩子们量出平行四边形的相关数据,计算平行四边形的面积。(边指周长与面积的环节都省了,这个环节有必要吗?)大部分学生能按自己的理解进行测量并计算,十来名学生三分钟的探究不知道如何下手。这是我始料未及的,课前的准备还是不太充分。下次是不是给那些没办法研究的小朋友准备个研究提示?提示该怎么提示才有效?提示会不会影响那些本来有自己研究思路的学生的思路?或者会不会呈现的材料不够丰富?……有太多的疑问了。

  我的课堂上也出现了三种解决平行四边形的面积的思路。

  方法一:求周长。

  方法二:底乘邻边;

  方法三,底乘高。

  讲评时,我先展示求周长的思路,学生一看就知道这是不对的。再出示底乘邻边的方法,安琦说:“因为长方形是特殊的平行四边形,长方形面积是长乘宽,所以平行四边形也是长乘宽”。居然与案例呈现的孩子回答的一模一样,难道这是孩子们应然出现的思路吗?当我出示教具把平行四边形拉成长方形时,绝大多数的孩子都赞同了这种方法。“把平行四边形拉成长方形,面积没变化吗?”我急着抛出研究的关键点。连续问了三遍,等了一分钟,终于有人举手了。侠宋上台把原来的平行四边形进行害虫补成长方形,跟拉成的长方形一比较,孩子们这才发现,把平行四边形拉成长方形,面积变大了。第三种方法的得出极其自然。真佩服名师,这个环节的设计,割补法应然而出,不过既是为了验证“拉”的方法的不正确,又为正确方法埋了伏笔,高!

  3、基本练习。

  我采用了两道题,一道只呈现对应底和高的.平行四边形,一道有多余邻边的平行四边形,结果还是有人掉进陷阱。是不是太早出现干扰因素了?如果第二课时再出现这个,会不会好一点儿?

  4、变式练习。

  画面积是12平方厘米的平行四边形,孩子们觉得有些简单。怎样把这个环节设计精彩,成为本堂课的第二个高潮点?有待下次继续思考。

  5、课尾。

  我也采用了朱老师的那三道题,“一个底是8米,高是6分米的平行四边形,面积是多少?”“把它分成两个大小一样的三角形,一个三角形的面积是多少?”“把它分成两个大小一样的梯形,一个梯形的面积是多少?”就让学生答吧,处理有些简单,继续深入,会不会扯得太多?学生一开始力挺的底乘邻边的方法,是不是在这时给个回就比较好?

  遗憾与惊喜并存,上课,真有意思!

  《平行四边形的面积》教学反思 10

  “平行四边形的面积”这一课时是第六单元《多边形的面积》的起始课,也是学生第一次用转化的数学思想方法来探索面积计算公式,这节课上,学生在探索过程中获得数学思想,活动经验为之后的“三角形的面积”及“梯形的面积”计算公式的探索起到重要的借鉴作用。根据我所教的班级的学生实际情况,在备课时我注重以下几个方面的尝试:

  一,创设生活情境,激发孩子们的学习兴趣。引入部分,我为学生设计了比较平行四边形花坛和长方形花坛两个面积比较大小的情境,使学生在情境中发现以前所学的知识并不能解决这个问题,从而自发的产生探究平行四边形面积计算的`兴趣。

  二,动手操作,探索新知。在推导平行四边形面积计算公式的过程中,我设计了数一数,剪一剪,拼一拼等一系列的操作活动,放手让学生利用方格纸及割补,拼摆等方法,在操作实验中运用转化的思想将平行四边形转化成学生熟知的长方形,并引导学生观察交流,讨论所拼成的长方形的长和宽与原来平行四边形的底和高之间的联系,通过学生自己的观察分析,得到长与底,宽与高的一一对应的关系,从而顺理成章的得到平行四边形的面积计算公式。

  三,突出学生在数学学习中的主体地位,彰显生命化课堂的学习本质。在本节课的教学中,我始终将自己定位在学习的组织者,引导者参与其中,注重在探究中向学生渗透有效的数学思想和数学方法,注重学习方法的优化。并通过教学中师生之间,生生之间的互动关系产生教与学之间的共鸣。

  虽然这节课由于时间的关系,还有一部分的学习任务没有完成,但是我想学生通过这样的自主探究,由“要我学”到‘我要学“的思想转变,相信还是受益匪浅的。

  《平行四边形的面积》教学反思 11

  《平行四边形的面积》是人教版五年级上册第五单元《多边形的面积》第一课时的教学内容。本节课是学生掌握并运用“转化”思想的关键,更是学生进一步探究其它平面图形面积计算的基础。课前,我带着如何有效实践“图形与几何”领域的新课标理念,如何更好地让学生获得基本活动经验,形成基本数学思想等问题,反复研读课标,揣摩教材,力求让学生在学习中不仅能够获得平行四边形面积计算公式的知识,而且能够体会和运用数学思想和方法,不仅能够正确地应用公式,而且能更好地理解这一公式的来源,力争在教学中,展示探究平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。以下是我在设计与执教“平行四边形的面积”一课中获得的一些启示,可能还不够成熟,可能还存在这样那样的问题,真诚地希望您能够提出宝贵意见。

  一、注重 “转化”思想的渗透。

  在数学教学中,要注重数学思想方法的渗透,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。平行四边形的面积计算公式是几何图形面积计算第一次运用“转化”的思想方法推导得出的,这无疑增加了学生学习的难度。本节课的教学,长方形的面积计算是平行四边形面积计算的生长点,是认知前提,所以新课伊始,我首先复习长方形的面积计算公式,并通过计算不规则多边形的面积,引导学生初步体会运用剪、移、拼的方法把不熟悉的未知图形转化成我们熟悉的已知图形来计算它的面积,渗透“等积变形”,实现用“旧知”引“新知”,把“旧知”迁移到“新知”的教学预设,让学生对“转化”有所熟悉,不再陌生。同时,在潜移默化中,引导学生明确转化是一种很好的数学学习的方法,为学生进一步理解转化思想奠定基础。

  在探究平行四边形的面积计算公式的教学环节中,我首先让学生通过数方格的方法分别求出平行四边形和长方形的面积,然后观察表格中的数据,感知平行四边形与长方形的`内在联系,当发现用数方格的方法计算实际生活中图形的面积不太适宜时,引导学生大胆猜测平行四边形的面积计算公式,并运用“转化”的方法将平行四边形转化成长方形,从而验证猜测,推导出公式,也让学生更深刻地理解了转化的本质。

  二、注重学生数学思维的发展。

  数学教学的核心是促进学生思维的发展。在这节课中,我设计了求不规则多边形的面积、运用剪一剪、拼一拼的方法进行图形转化等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与原平行四边形底和高有什么关系?充分利用多种媒体形象、直观的教学辅助作用,使学生在动手操作,交流研讨中得出结论。同时引导学生发现底与高的一一对应关系。在一系列的教学活动中,学生通过观察、交流、讨论、练习等形式,在理解公式推导的过程中学会解决问题,在亲自尝试,亲身体验中掌握了平行四边形面积公式的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三、注重培养学生的问题意识。

  问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,在教学中,为了引导学生进行自主探究,我设计了这样一系列问题:“请你猜测平行四边形面积的计算公式?为了验证猜测,你想把平行四边形转化成我们学过的哪个已知图形?怎样转化呢?”这些问题的指向不在于公式本身,而在于探究公式的来源,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、猜想,并进行实践。当学生运用割补平移的方法将平行四边形成功地转化成长方形后,我又及时出示问题,引导学生在小组内讨论原平行四边形与转化后的长方形之间的关系,从而达到公式推导的目的。学生在独立思考、动手操作、相互交流、相互评价的过程中,增强发现问题、提出问题、分析问题和解决问题的意识和能力。

  四、注重学生学习方式的多样化。

  动手实践,自主探索与合作交流是学生学习数学的重要方式。教学中,我为学生创设了民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,充分地调动了学生的学习主动性。让每一个学生亲自动手操作,边操作边观察边思考,在自主探究与合作交流过程中,经历知识的形成。课堂上,学生们乐想、善思、敢说,他们自由地思考、猜想、实践、推理、验证……

  教学是一门有着缺憾的艺术。作为教者的我们,往往在执教后,都会留下或多或少的遗憾,但只要我们用心思考,不断改进,我们的课堂就会更加精彩。

  《平行四边形的面积》教学反思 12

  新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,要让学生通过自己的活动去获取知识。在《平行四边形的面积》这一课的教学中,我充分调动学生的学习积极性,让学生动手实践,自主探究,让学生经历了知识的形成过程。反思这节课,我总结了以下几点:

  一、注重数学思想方法的渗透

  我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。数学专业思想方法即解决数学具体问题时所采用的方式、途径、手段,它是学习数学知识、运用数学知识解决实际问题的具体行为。在数学教学中,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中我先利用求不规则图形的面积向学生渗透转化的思想,从而引出用转化的方法求平行四边形面积的计算方法。在整个探究过程中,“转化”的方法为学生提供了解决问题的途径,学生通过把新知“求平行四边形的面积”转化为旧知“求长方形的面积”,从而达到解决问题的目的。这一方法在数学学习中,具有普遍应用的意义,同时它也是求其他图形面积的重要方法。

  二、注重学生自主探索和合作学习

  动手实践,自主探索与合作交流是学生学习数学的重要方式。因为学习任何知识的最佳途径是通过自己的实践活动去发现,这样发现理解最深,也最容易掌握。学生学习数学知识是主动建构过程,也就是说,学生学习数学只有通过自身的操作活动和主动参与的去做才能产生效果。现代教育理论主张让学生动手去“做”科学,而不是用耳朵“听”科学。本节课我放手让学生从自己的思维实际出发,让学生在独立思考的基础上进行合作交流,这样既能满足学生展示自我的心理需要,又使学生敢想、敢说、敢做、敢真实地表现自己,让学生的潜能和主体作用得以充分发挥。同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的`观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。

  三、注重了学生数学思维的发展

  数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?接着,充分运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形转化为长方形的过程,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调平行四边形底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  四、注重练习的优化设计

  练习是课堂教学中的重要环节之一,是巩固知识、运用知识、训练技能技巧的必要手段,是检查教学效果的有效途径。因此,练习设计必须紧扣教学内容和目标,必须注意基础性、针对性、应用性,练习的形式应具有趣味性、层次性、开放性,从而达到有效的练习。本课教学过程中,我注重练习设计,做到学练结合,体现出以下几点:一是抓住重点,练习注意基础性和针对性。第一题告诉学生底和高,直接求平行四边形面积,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,强调底和高必须对应,让学习上更高一个层次。二是动手操作,练习应注意实践性与应用性。第三题出示把一个长方形的木条框拉住它的两个对角,使它变成一个平行四边形,发现周长和面积有什么变化?三是循序渐进,练习注意层次性。在这个练习的设计中,把练习设计的有层次,由易到难,不能一下子就出现很难的题目,否则把学生难倒了,从而也检测不到本节课的教学效果。四是训练思维,练习注意开放性。设计练习时,有意识地设计一些能开拓学生思路的开放题。第四题比较同底等高的平行四边形的面积,意在提升学生对平行四边形特征的认识和加深对面积计算公式的理解。

  总之,本节课为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境和探索解决问题的过程,在学生活动的过程中为学生提供充分的活动条件和活动空间,使学生的数学学习成了一个不断感受、体验、探索、交流和应用数学的过程。当然在课堂上也出现了很多不足的地方,但只要我用心去思考,不断反思,相信自己能在不断的自我反思中成长,在不断的自我实践中发展,在不断的自我成长中创新。

  《平行四边形的面积》教学反思 13

  教学片断中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:

  (一)创设生活情境,激发探究欲望

  小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。回归生活,让课堂与生活紧密相联,是新课程教学的基本特征。因为我们知道,只有植根于生活世界并为生活世界服务的课堂,才是具有强盛生命力的课堂。所以新课程强调突破学科本位,砍掉学科内容的繁、难、偏、旧,把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。

  上述教学片断中,教师带领学生进行实地考察,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。

  (二)重视学生的自主探索和合作学习

  动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:"在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。"上述这个教学片断中,对传统的平行四边形面积的教学方法作了大胆改进,教学中我有意设计了曹冲称象这个同学们都熟悉的故事引入,其用意一方面是激发学生的学习兴趣,另一方面是孕伏了转化的数学思想。为学生解决关键性问题-把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的`体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自己的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,有的同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理。

【《平行四边形的面积》教学反思】相关文章:

平行四边形面积的教学反思08-20

《平行四边形的面积》教学反思07-28

平行四边形的面积教学反思08-08

《平行四边形面积》教学反思10-11

《平行四边形的面积》教学反思05-17

平行四边形面积教学反思07-10

平行四边形面积的教学反思07-16

面积的教学反思09-19

《面积》教学反思05-27