初中数学教案

时间:2024-10-29 06:54:13 教案 我要投稿

初中数学教案必备(15篇)

  作为一位兢兢业业的人民教师,就有可能用到教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?以下是小编帮大家整理的初中数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

初中数学教案必备(15篇)

初中数学教案1

  教学目标:

  1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.

  2.理解对顶角相等,并能运用它解决一些问题.

  重点:

  邻补角、对顶角的概念,对顶角的性质与应用.

  难点:

  理解对顶角相等的性质的探索.

  教学过程:

  一、创设情境,引入新课

  引导语:

  我们生活的世界中,蕴涵着大量的相交线和平行线.

  本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.

  二、尝试活动,探索新知

  教师出示一块布片和一把剪刀,表演剪刀剪布的过程.

  教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?

  学生观察、思考、回答,得出:

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.

  教师提问:我们可以把剪刀抽象成什么简单的图形?

  学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.

  教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?

  学生用量角器分别量一量各角的.度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)

  学生根据观察和度量完成下表:

  两条直线相交、所形成的角、分类、位置关系、数量关系

  教师提问:

  如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?

  学生思考回答:

  只会改变数量关系而不会改变位置关系.

  师生共同定义邻补角、对顶角:

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

  如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.

  教师提问:

  你同意下列说法吗?如果错误,如何订正?

  1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.

  2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.

  3.邻补角是互补的两个角,互补的两个角也是邻补角.

  学生思考回答:1、2是对的,3是错的.

  第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.

  教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.

  教师把说理过程规范地板书:

  在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.

  教师板书对顶角的性质:

  对顶角相等.

  强调对顶角的概念与对顶角的性质不能混淆:

  对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.

  三、例题讲解

  【例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

  【答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.

  四、巩固练习

  1.判断下列图中是否存在对顶角.

  2.按要求完成下列各题.

  (1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.

  eq o(sup7(,图(1)) ,图(2))

  (2)如图,若∠AOD= 90°,那么直线AB与CD的位置关系如何?

  【答案】

  1.都不存在对顶角.

  2.(1)对顶角,邻补角.

  对顶角:∠AOC和∠BOD,∠AOD和∠BOC.

  邻补角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.

  (2)垂直.

  五、课堂小结

  教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.

  教学反思

  通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。

初中数学教案2

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  重点难点:

  能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学过程:

  一、试一试

  1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

  2.x的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

  对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

  二、提出问题

  某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:

  1.商品的利润与售价、进价以及销售量之间有什么关系?

  [利润=(售价-进价)×销售量]

  2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降价x元,则每件商品的'利润是多少元?一天可销

  售约多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

  [x的值不能任意取,其范围是0≤x≤2]

  5.若设该商品每天的利润为y元,求y与x的函数关系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  将函数关系式y=x(20-2x)(0 <x <10=化为:

  y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2)

  三、观察;概括

  1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

  (1)函数关系式(1)和(2)的自变量各有几个?

  (各有1个)

  (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)

  (3)函数关系式(1)和(2)有什么共同特点?

  (都是用自变量的二次多项式来表示的)

  (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

  2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  四、课堂练习

  1.(口答)下列函数中,哪些是二次函数?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3练习第1,2题。

  五、小结

  1.请叙述二次函数的定义.

  2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

  六、作业:略

初中数学教案3

  活动目标

  1、复习

7的组成,练习用数的组成、分解知识进行7的加减运算。

  2、学习

7的加减,能根据推理列算式,进一步理解交换两个加数的位置,得数不变的规律活动准备7以内的数字卡片、课件、幼儿用书第1册第47页、铅笔。

  活动过程

  1、复习7的组成,列出7的分合式。

  (1)拍手对数:教师拍手和幼儿拍手合起来是7下。

  (2)填数活动。给7的组成填上合适的数。

  2、新授7的加减法:

  (1)教师演示课件出题,请幼儿列算式。先列加法,再列减法。

  ①"树上飞来了1只小鸟,后来又飞来了6只小鸟,请问,现在书上一共有几只小鸟?"引导幼儿列出加法算式1+6=7。"如果是先飞来了6只小鸟,有飞来了1只小鸟呢?"怎么列算式?6+1=7,让幼儿发现将加号两边的数互换位置以后,总数不变。

  ②引导幼儿根据推理的方法,列出7的第一组减法算式:7—1=6 7—6=1

  (2)请幼儿根据7的分合式,自己探索将7的其它几组算式列出来,教师指导。

  (3)利用快问快答的`形式,反复练习7的加减法运算。

  3、组织幼儿翻开幼儿用书,观察图意,填写正确的数字或算式,巩固7的加减法。

  活动延伸

  请幼儿回家以后和父母一起练习7的加减法,学习解决生活中的一些数字问题。

初中数学教案4

  一、教学目标:

  1、知道一次函数与正比例函数的定义。

  2、理解掌握一次函数的图象的特征和相关的性质。

  3、弄清一次函数与正比例函数的区别与联系。

  4、掌握直线的平移法则简单应用。

  5、能应用本章的基础知识熟练地解决数学问题。

  二、教学重、难点:

  重点:初步构建比较系统的函数知识体系。

  难点:对直线的平移法则的理解,体会数形结合思想。

  三、教学过程:

  1、一次函数与正比例函数的定义:

  一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

  正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

  2、一次函数与正比例函数的区别与联系:

  (1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

  (2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

  平行的`一条直线。

  基础训练:

  1、写出一个图象经过点(1,— 3)的函数解析式为:

  2、直线y=—2X—2不经过第 象限,y随x的增大而。

  3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:

  4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:

  5、过点(0,2)且与直线y=3x平行的直线是:

  6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是:

  7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。

  8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为 。

  9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

  (1)求线段AB的长。

  (2)求直线AC的解析式。

初中数学教案5

  一、主题分析与设计

  本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。

  《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

  二、教学目标

  1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。

  2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事

  3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

  4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

  三、教学重、难点

  1、重点:对平行线性质的掌握与应用

  2、难点:对平行线性质1的`探究

  四、教学用具

  1、教具:多媒体平台及多媒体课件

  2、学具:三角尺、量角器、剪刀

  五、教学过程

  (一)创设情境,设疑激思

  1、播放一组幻灯片。

  内容:

  ①供火车行驶的铁轨上;

  ②游泳池中的泳道隔栏;

  ③横格纸中的线。

  2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

  3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

  4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7。2探索平行线的性质(板书)

  (二)数形结合,探究性质

  1、画图探究,归纳猜想

  教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

  教师提出研究性问题一:

  指出图中的同位角,并度量这些角,把结果填入下表:

  教师提出研究性问题二:

  将画出图中的同位角任先一组剪下后叠合。

  学生活动一:画图————度量————填表————猜想

  学生活动二:画图————剪图————叠合

  让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

  教师提出研究性问题三:

  再画出一条截线d,看你的猜想结论是否仍然成立?

  学生活动:探究、按小组讨论,最后得出结论:仍然成立。

  2、教师用《几何画板》课件验证猜想,让学生直观感受猜想

  3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

  (三)引申思考,培养创新

  教师提出研究性问题四:

  请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?

  学生活动:独立探究————小组讨论————成果展示。

  教师活动:评价学生的研究成果,并引导学生说理

  因为a ∥ b(已知)

  所以∠ 1= ∠ 2(两直线平行,同位角相等)

  又∠ 1= ∠ 3(对顶角相等)

  ∠ 1+ ∠ 4=180°(邻补角的定义)

  所以∠ 2= ∠ 3(等量代换)

  ∠ 2+ ∠ 4=180°(等量代换)

  教师展示:

  平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

  平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

  (四)实际应用,优势互补

  1、(抢答)课本P13练一练1、2及习题7。2 1、5

  2、(讨论解答)课本P13习题7。2 2、3、4

  (五)课堂总结:这节课你有哪些收获?

  1、学生总结:平行线的性质1、2、3

  2、教师补充总结:

  ⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)

  ⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)

  ⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)

  ⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

  (六)作业

  学习与评价P5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)

  六、教学反思:

  数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:

  ①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。

  ②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。

  ③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐'导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

  总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧

初中数学教案6

  教学 建议

  一、知识结构

  二、重点、难点分析

  本节 教学 的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.

  1.不等式的解与方程的解的意义的异同点

  相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.

  不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如, 能使不等式 成立,那么 是不等式的一个解,类似地 等也能使不等式 成立,它们都是不等式 的解,事实上,当 取大于 的数时,不等式 都成立,所以不等式 有无数多个解.

  2.不等式的解与解集的区别与联系

  不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.

  注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.

  3.不等式解集的表示方法

  (1)用不等式表示

  一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 的解集是 .

  (2)用数轴表示

  如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圆.

  如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圈.

  注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.

  一、素质 教育 目标

  (一)知识 教学

  1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.

  2.知道不等式的“解集”与方程“解”的不同点.

  (二)能力训练点

  通过 教学 ,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.

  (三)德育渗透点

  通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.

  (四)美育渗透点

  通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.

  二、学法引导

  1. 教学 方法:类比法、引导发现法、实践法.

  2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的'画实心圆点,无等号的画空心圆圈.

  三、重点·难点·疑点及解决办法

  (一)重点

  1.不等式解集的概念.

  2.利用数轴表示不等式的解集.

  (二)难点

  正确理解不等式解集的概念.

  (三)疑点

  弄不清不等式的解集与方程的解的区别、联系.

  (四)解决办法

  弄清楚不等式的解与解集的概念.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪或电脑、自制胶片、直尺.

  六、师生互动活动设计

  (一)明确目标

  本节课重点学习不等式的解集,解不等式的概念并会用数轴表示不等式的解集.

  (二)整体感知

  通过枚举法来形象直观地推出不等式的解集,再给出不等式解集的概念,从而更准确地让学生掌握该概念.再通过师生的互动学习用数轴表示不等式的解集,从而为今后求不等式组的解集打下良好的基础.

  (三) 教学 过程

  1.创设情境,复习引入

  (1)根据不等式的基本性质,把下列不等式化成 或 的形式.

  ①   ②

  (2)当 取下列数值时,不等式 是否成立?

  l,0,2,-2.5,-4,3.5,4,4.5,3.

  学生活动:独立思考并说出答案:(1)① ② .(2)当 取1,0,2,-2.5,-4时,不等式 成立;当 取3.5,4,4.5,3时,不等式 不成立.

  大家知道,当 取1,2,0,-2.5,-4时,不等式 成立.同方程类似,我们就说1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3这些使不等式 不成立的数就不是不等式 的解.

  对于不等式 ,除了上述解外,还有没有解?解的个数是多少?将它们在数轴上表示出来,观察它们的分布有什么规律?

  学生活动:思考讨论,尝试得出答案,指名板演如下:

  【教法说明】启发学生用试验方法,结合数轴直观研究,把已说出的不等式 的解2,0,1,-2.5,-4用“实心圆点”表示,把不是 的解的数值3.5,4,4.5,3用“空心圆圈”表示,好像是“挖去了”.

  师生归纳:观察数轴可知,用“实心圆点”表示的数都落在3的左侧,3和3右侧的数都用空心圆圈表示,从而我们推断,小于3的每一个数都是不等式 的解,而大于或等于3的任何一个数都不是 的解.可以看出,不等式 有无限多个解,这无限多个解既包括小于3的正整数、正小数、又包括0、负整数、负小数;把不等式 的无限多个解集中起来,就得到 的解的集会,简称不等式 的解集.

  2.探索新知,讲授新课

  (1)不等式的解集

  一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.

  ①以方程 为例,说出一元一次方程的解的情况.

  ②不等式 的解的个数是多少?能一一说出吗?

  (2)解不等式

  求不等式的解集的过程,叫做解不等式.

  解方程 求出的是方程的解,而解不等式 求出的则是不等式的解集,为什么?

  学生活动:观察思考,指名回答.

  教师 归纳:正是因为一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有无限多个,无法一一列举出来,因而只能用不等式 或 揭示这些解的共同属性,也就是求出不等式的解集.实际上,求某个不等式的解集就是运用不等式的基本性质,把原不等式变形为 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .

  【教法说明】学生对一元一次方程的解印象较深,而不等式与方程的相同点较多,因而易将“不等式的解集”与“方程的解”混为一谈,这里设置上述问题,目的是使学生弄清“不等式的解集”与“方程的解”的关系.

  (3)在数轴上表示不等式的解集

  ①表示不等式 的解集:( )

  分析:因为未知数的取值小于3,而数轴上小于3的数都在3的左边,所以就用数轴上表示3的点的左边部分来表示解集 .注意未知数 的取值不能为3,所以在数轴上表示3的点的位置上画空心圆圈,表示不包括3这一点,表示如下:

  ②表示 的解集:( )

  学生活动:独立思考,指名板演并说出分析过程.

  分析:因为未知数的取值可以为-2或大于-2的数,而数轴上大于-2的数都在-2右边,所以就用数钢上表示-2的点和它的右边部分来表示.如下图所示:

  注意问题:在数轴上表示-2的点的位置上,应画实心圆心,表示包括这一点.

  【教法说明】利用数轴表示不等式解的解集,增强了解集的直观性,使学生形象地看到不等式的解有无限多个,这是数形结合的具体体现. 教学 时,要特别讲清“实心圆点”与“空心圆圈”的不同用法,还要反复提醒学生弄清到底是“左边部分”还是“右边部分”,这也是学好本节内容的关键.

  3.尝试反馈,巩固知识

  (1)不等式的解集 与 有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.

  (2)在数轴上表示下列不等式的解集.

  ①  ②  ③  ④

  (3)指出不等式 的解集,并在数轴上表示出来.

  师生活动:首先学生在练习本上完成,然后 教师 抽查,最后与出示投影的正确答案进行对比.

  【教法说明】 教学 时,应强调2.(4)题的正确表示为:

  我们已经能够在数轴上准确地表示出不等式的解集,反之若给出数轴上的某部分数集,还要会写出与之对应的不等式的解集来.

  4.变式训练,培养能力

  (1)用不等式表示图中所示的解集.

  【教法说明】强调“· ”“ °”在使用、表示上的区别.

  (2)单项选择:

  ①不等式 的解集是( )

  A.   B.   C.   D.

  ②不等式 的正整数解为( )

  A.1,2  B.1,2,3  C.1  D.2

  ③用不等式表示图中的解集,正确的是( )

  A.   B.   C.   D.

  ④用数轴表示不等式的解集 正确的是( )

  学生活动:分析思考,说出答案.( 教师 给予纠正或肯定)

  【教法说明】此题以抢答形式茁现,更能激发学生探索知识的热情.

  (四)总结、扩展

  学生小结, 教师 完善:

  1.? 本节重点:

  (1)了解不等式的解集的概念.

  (2)会在数轴上表示不等式的解集.

  2.注意事项:

  弄清“ · ”还是“ °”,是“左边部分”还是“右边部分”.

  七、布置作业

初中数学教案7

  一、教学任务分析

  1、教学目标定位

  根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:

  (1).知识技能目标

  让学生掌握多边形的内角和的公式并熟练应用。

  (2).过程和方法目标

  让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

  (3).情感目标

  激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。

  2、教学重、难点定位

  教学重点是多边形的内角和的得出和应用。

  教学难点是探索和归纳多边形内角和的过程。

  二、教学内容分析

  1、教材的地位与作用

  本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

  2、联系及应用

  本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此

  多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

  三、教学诊断分析

  学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

  四、教法特点及预期效果分析本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:

  1、教学方法的设计

  我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

  2、活动的.开展

  利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

  3、现代教育技术的应用

  我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

  以上是我对《多边形的内角和》的教学设计说明。

初中数学教案8

  这节课的内容是义务教育课程标准教材数学九年级下册锐角三角函数——正弦。我将从以下几个方面来就本节课的教学进行解说。

  一、教材分析

  教材所处的地位及作用:

  本章是在学生已学了一次函数、反比例函数、二次函数以及相似形的基础上进行的,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,这对学生来说是个全新的领域。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础.

  二、学情分析

  1、九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的'意识。

  2、学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础,学生要得出锐角与比值之间的对应关系,这种对应关系不同于以前学习的数值与数值之间的对应关系,因此对学生而言建立这种对应关系有一定困难。

  三、教学目标

  1、理解锐角正弦的意义,了解锐角与锐角正弦值之间的一一对应关系,进一步体会函数的变化与对应的思想;

  2、会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题;

  3、经历锐角正弦意义的探索过程,体会从特殊到一般的研究问题的思路和数形结合的思想方法;

  4、经历由实际问题引发出对正弦函数讨论的过程,培养学生观察生活、发现问题、研究问题的能力。

  四、重点、难点

  1、重点:锐角正弦的定义及应用;

  2、难点:理解锐角正弦是锐角与边的比值之间的函数关系.

  3、难点突破方法:由特殊角入手开展讨论,自然过度到一般角;从具体情境抽象出正弦的概念,并结合多个实例从不同角度深化理解。

  五、教法及学法

  本节课采用情境引导和探究发现教学法,通过适宜的问题情境引发新的认知冲突,建立知识间的联系。同时采用多媒体辅助教学,以直观生动地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  六、教学过程

  为了实现本节的教学目标,教学过程分为以下六个环节:

  (一)复习旧知,情境引入(二)合作探究,获得新知:(三)巩固训练,落实双基

  (四)强化提高,培养能力(五)小结归纳,拓展深化(六)反馈练习,自主评价。

  下面就几个主要环节进行解说

  (一)复习旧知,情境引入

  (二)先让学生回顾直角三角形知识,再从铺设水管引入30°的直角三角形中的边与角的关联。

  (二)合作探究,获得新知:

  先让学生猜想,再利用几何画板演示,在直角三角形中,任意角度的锐角的对边和斜边的比和这个角的关系。得出结论:

  当∠A的度数一定时,∠A的对边和斜边的比值是一个定值。这个比值随着角度的变化而变化,当角度一定时,有唯一和它对应的比值。所以∠A的对边和斜边的比值是关于∠A度数的函数。

  再引出课题和正弦概念,给出正弦的含义和表示方法。认识几个特殊角的正弦值。

  (三)巩固训练

  讲解一道求正弦值的例题。

  (四)强化提高,培养能力

  出示三道提高题,第一道是关于直接利用正弦值求斜边的题,然后进行变式,第二题是关于不是直角三角形中求正弦的题,第三题是关于用不同的方法求一个锐角的正弦值。

  (五)小结归纳,拓展深化

初中数学教案9

  教学目的

  知识技能使学生会用列一元二次方程的方法解决有关面积、体积方面和经济方面的问题。

  数学思考

  提高将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想。

  解决问题通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关面积、体积方面和经济方面的问题。

  情感态度

  通过探究性学习,抓住问题的关键,揭示它的规律性,展示解题的简洁性的数学美。

  教学难点

  审题,从文字语言中挖掘有价值的信息。

  知识重点

  会用列一元二次方程的方法解有关面积、体积方面和经济方面的问题。

  教学过程设计意图

  教学过程

  问题一:列方程解应用题的一般步骤?

  师生共同回忆

  列方程解应用题的步骤:

  (1)审题;(2)设未知数;

  (3)列方程;(4)求解;

  (5)检验;(6)答。

  问题二:矩形的周长和面积?长方体的体积?

  问题三:如图,某小区内有一块长、宽比为1:2的'矩形空地,计划在该空地上修筑两条宽均为2m的互相垂直的小路,余下的四块小矩形空地铺成草坪,如果四块草坪的面积之和为312m2,请求出原来大矩形空地的长和宽。

  教师活动:引导学生读题,找到题目中的关键语句。

  学生活动:在关键语句中找到反映相等关系的语句,探究解决办法。

  教师活动:用多媒体演示分析,解题方法。

  做一做

  如图,有一块长80cm,宽60cm的硬纸片,在四个角各剪去一个同样的小正方形,用剩余部分做成一个底面积为1500cm2的无盖的长方体盒子。求剪去的小正方形的边长。

  课堂练习:将一个长方形的长缩短5cm,宽增长3cm,正好得到一个正方形。已知原长方形的面积是正方形面积的,求这个正方形的边长。

  问题四:某商场销售一种服装,平均每天可售出20件,每件赢利40元。经市场调查发现:如果每件服装降价1元,平均每天能多售出2件。在国庆节期间,商场决定采取降价促销的措施,以达到减少库存、扩大销售量的目的。如果销售这种服装每天赢利1200元,那么每件服装应降价多少元?

  学生活动:在众多的文字中,找到关键语句,分析相等关系。

  教师活动:用多媒体帮助学生分析试题。提示学生检验解的合理性。

  课堂练习:1、经销商以每双21元的价格从厂家购进一批运动鞋,如果每双鞋售价为a元,那么可以卖出这种运动鞋(350-10a)双。物价局限定每双鞋的售价不得超过进价的120%、如果商店要赚400元,每双鞋的售价应定为多少元?需要卖出多少双鞋?

  2、某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价、据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出(320-10a)件,但物价部门限定每件商品加价不能超过进货价25%的、如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价进货价)

  复习列方程解应用题的一般步骤。

  本题为后面解决有关面积、体积方面问题做铺垫。

  提高学生的审题能力。使学生会解决有关面积的问题。

  解决体积问题的问题

  培养学生用数学的意识以及渗透转化和方程的思想方法。

  强调对方程的解进行双重检验。

  小结与作业

  课堂

  小结利用一元二次方程解决实际问题时,要注意通过实际要求检验根的合理性,要注意审题能力的培养。

  本课

  作业课本第43页习题2

  课后随笔(课堂设计理念,实际教学效果及改进设想)

初中数学教案10

  一、素质教育目标

  (一)知识教学点

  1.掌握的三要素,能正确画出.

  2.能将已知数在上表示出来,能说出上已知点所表示的数.

  (二)能力训练点

  1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.

  2.对学生渗透数形结合的思想方法.

  (三)德育渗透点

  使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.

  (四)美育渗透点

  通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.

  二、学法引导

  1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.

  2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.

  三、重点、难点、疑点及解决办法

  1.重点:正确掌握画法和用上的点表示有理数.

  2.难点:有理数和上的点的对应关系。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片.

  六、师生互动活动设计

  师生同步画,学生概括三要素,师出示投影,生动手动脑练习

  七、教学步骤

  (一)创设情境,引入新课

  师:大家知识温度计的用途是什么?

  生:温度计可以测量温度

  (出示投影1)

  三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

  师:三个温度计所表示的温度是多少?

  生:2℃,-5℃,0℃.

  我们能否用类似温度计的图形表示有理数呢?

  这种表示数的图形就是今天我们要学的内容—(板书课题).

  【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.

  (二)探索新知,讲授新课

  1.的`画法

  与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

  第一步:画直线定原点原点表示0(相当于温度计上的0℃).

  第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

  第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).

  【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.

  让学生观察画好的直线,思考以下问题:

  (出示投影1)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示-1的点在什么位置?

  (4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。

  学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充。

初中数学教案11

  一、素质教育目标

  (一)知识教学点:

  使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题

  (二)能力训练点:

  进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识

  二、教学重点、难点

  1.教学重点:

  会用列一元二次方程的方法解有关面积、体积方面的应用题

  2.教学难点:

  找等量关系列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解.例如线段的长度不为负值,人的个数不能为分数等

  三、教学步骤

  (一)明确目标

  (二)整体感知

  (三)重点、难点的学习和目标完成过程

  1.复习提问

  (1)列方程解应用题的步骤?

  (2)长方形的周长、面积?长方体的体积?

  2.例1?现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?

  解:设需要剪去的`小正方形边长为xcm,则盒底面长方形的长为(19—2x)cm,宽为(15—2x)cm,

  据题意:(19—2x)(15—2x)=77

  整理后,得x2—17x+52=0,

  解得x1=4,x2=13

  ∴当x=13时,15—2x=—11(不合题意,舍去)

  答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子

  练习1章节前引例.

  学生笔答、板书、评价

  练习2教材P。42中4

  学生笔答、板书、评价

  注意:全面积=各部分面积之和

  剩余面积=原面积—截取面积

  例2要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0。1cm)?

  分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程

  解:长方体底面的宽为xcm,则长为(x+5)cm,

  解:长方体底面的宽为xcm,则长为(x+5)cm,

  据题意,6x(x+5)=750,

  整理后,得x2+5x—125=0

  解这个方程x1=9。0,x2=—14。0(不合题意,舍去)

  当x=9。0时,x+17=26。0,x+12=21。0.

  答:可以选用宽为21cm,长为26cm的长方形铁皮

  教师引导,学生板书,笔答,评价

  (四)总结、扩展

  1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系

  2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负

  3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力

  四、布置作业

  教材P42中A3、6、7

  教材P41中3、4

  五、板书设计

初中数学教案12

  一、教材分析:

  反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

  二、教学目标分析

  根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

  因此把教学目标确定为:1。掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2。在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3。通过学习培养学生积极参与和勇于探索的精神。

  三、教学重点难点分析

  本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

  难点则是如何抓住特征准确画出反比例函数的图象。

  为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

  四、教学方法

  鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法

  和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

  五、学法指导

  本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、

  对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  六、教学过程

  (一)复习引入——反函数解析式

  练习1:写出下列各题的关系式:

  (1)正方形的周长C和它的一边的长a之间的关系

  (2)运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系

  (3)矩形的面积为10时,它的长x和宽y之间的关系

  (4)王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系

  问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?

  问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。

  问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?

  通过问题2来引出反比例函数的解析式,请学生对比正比例函数的定

  义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。

  例题1:已知变量y与x成反比例,且当x=2时,y=9

  (1)写出y与x之间的函数解析式

  (2)当x=3.5时,求y的值

  (3)当y=5时,求x的值

  通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在

  解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为,再把相应的x,y值代入求出k,k值的确定,函数解析式也就确定了。

  课堂练习:已知x与y成反比例,根据以下条件,求出y与x之间的函数关系式

  (1)x=2,y=3(2)x=,y=

  通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。

  (二)探究学习1——函数图象的画法

  问题3:如何画出正比例函数的图象?

  通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。

  问题4:那反比例函数的图象应该怎样去画呢?

  在教学过程中可以引导学生仿照正比例函数图象的的画法。

  设想的教学设计是:

  (1)引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数和的图象;

  (2)老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;

  (3)随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。

  初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:

  (1)在“列表”这一环节

  在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的'函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。

  (2)在“连线”这一环节

  学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。

  从而引导学生画出正确的函数图象。

  (3)图象与x轴或y轴相交

  在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。

  需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第学画反比例函数图象的过程中,老师还是应该在黑板上认真示范画出图象的每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。

  巩固练习:画出函数和的图象

  通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。

  (三)探究学习2——函数图象性质

  1、图象的分布情况

  问题5:请大家回忆一下正比例函数的分布情况是怎么样的呢?

  提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础。

  问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?

  在这一环节中的设计:

  (1)引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;

  (2)充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;

  (3)组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k<0时,函数图象的两支分别在第二、四象限内。

  2、图象的变化情况

  问题7:正比例函数图象的变化情况是怎么样的呢?

  提出问题7主要是起到巩固复习,为引导学生学习反比例函数图象的变化情况打下基础。

  问题8:那反比例函数的图象,是否也具有这样的性质呢?

  在这一环节的教学设计是:

  (1)回顾反比例函数和的图象,通过实际观察;

  (2)根据解析式对x取值,比较x在取不同值时函数值的变化情况;

  (3)电脑演示及学生小组讨论,请学生给出结论。即这个问题必须分成两种情况讨论即当k>0时,自变量x逐渐增大时,y的值则随着逐渐减小;当k<0时,自变量x逐渐增大时,y的值也随着逐渐增大。

  (4)对于学生做出的结论,老师应该要给予肯定,同时可以提出:有没有同学需要补充的呢?若没有,则可以举例:当k>0,分别比较在第三象限x=—2,第一象限x=2时的y的值的大小,则以上性质是否依然成立?学生的回答应该是:不成立。这时老师再请学生做小结:必须限定在每一个象限内,才有以上性质成立。

  问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什么?

  在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性。

  (四)备用思考题

  1、反比例函数的图象在第一、三象限,求a的取值范围

  2、

  (1)当m为何值时,y是x的正比例函数

  (2)当m为何值时,y是x的反比例函数

  (五)小结:

  初中数学二元一次方程组的解法—代入法

  教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页

  教学目标

  (1)基础知识与技能目标:会用代入消元法解简单的二元一次方程组。

  (2)过程与方法目标:经历探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法。

  (3)情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。

  教学重、难点关键

  教学重点:用代入消元法解二元一次方程组

  教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。

  教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。学生分析授课对象为少数民族地区的七年级学生,基础知识薄弱,特别是对一元一次方程内容掌握的不够透彻,再加上厌学现象严峻,团结协作的能力差,本节课设计了他们感兴趣的篮球比赛和常用的消毒液作为题材来研究二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。

  教学内容分析:本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。通过实际问题中二元一次方程组的应用,进一步增强学生学习数学、用数学的意识,体会学数学的价值和意义。初中阶段要掌握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。

  教具准备教师准备:ppt多媒体课件投影仪

  教学方法本节课采用“问题引入——探究解法——归纳反思”的教学方法,坚持启发式教学。

  教学过程

  (一)创设情境,导入新课篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

  (二)合作交流,探究新知第一步,初步了解代入法1、在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演①设胜的场数是x,负的场数是y

  x+y=22

  2x+y=40

  ②设胜的场数是x,则负的场数为22—x

  2x+(22—x)=40

  2、自主探究,小组讨论那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

  3、学生归纳,教师作补充上面的解法,第一步是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

  第二步,用代入法解方程组把下列方程写成用含x的式子表示y的形式(1)2x—y=5(2)4x+3y—1=0学生活动:尝试自主完成,教师纠正思考:能否用含y的式子来表示x呢?

  例1用代入法解方程组x—y=3①3x—8y=14②

  思路点拨:先观察这个方程组中哪一项系数较小,发现①中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入②消元。

  解:由①变形得X=y+3③

  把③代入②,得3(y+3)—8y=14

  解这个方程,得y=—1

  把y=—1代入③,得X=2

  所以这个方程组的解是X=2y=—1

  如何检验得到的结果是否正确?学生活动:口答检验。

  第三步,在实际生活中应用代入法解方程组

  例2根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5。某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?思路点拨:本题是实际应用问题,可采用二元一次方程组为工具求解,这就需要构建模型,寻找两个等量关系,从题意可知:大瓶数:小瓶数=2:5;大瓶所装消毒液+小瓶所装消毒液=总生产量(解题过程略)教师活动:启发引导学生构建二元一次方程组的模型。学生活动:尝试设出:这些消毒液应该分装:x个大瓶和y个小瓶,得到5x=2y500x+250y=22500000并解出x=0y=50000

  第四步,小组讨论,得出步骤学生活动:根据例1、例2的解题过程,你们能不能归纳一下用代入法解二元一次方程组的步骤呢?小组讨论一下。学生归纳,教师补充,总结出代入法解二元一次方程组的步骤:

  ①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;

  ②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);

  ③解这个一元一次方程,求出未知数的值;

  ④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;

  ⑤用“{”联立两个未知数的值,就是方程组的解;

  ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

  (三)分组比赛,巩固新知为了激发学生的兴趣,巩固所学的知识,我把全班分成4个小组,把书本P98页练习设计成必答题、抢答题和风险题几个集知识性、趣味性于一体的独立版块,练习是由易到难、由浅到深,以小组比赛的形式呈现出来,这样既提高了学生的积极性,培养了团队精神,也使各类学生的能力都得到不同的发展。

  (四)归纳总结,知识回顾

  1、通过这节课的学习活动,你有什么收获?

  2、你认为在运用代入法解二元一次方程组时,应注意什么问题?

  (五)布置作业

  1、作业:P103页第1、2、4题

  2、思考:提出在日常生活中可以利用二元一次方程组来解决的实际问题。设计说明代入消元法体现了数学学习中“化未知为已知”的化归思想方法,化归的原则就是将不熟悉的问题化归为比较熟悉的问题,用于解决新问题。基于这点认识,本课按照“身边的数学问题引入—寻求一元一次方程的解法—探索二元一次方程组的代入消元法—典型例题—归纳代入法的一般步骤”的思路进行设计。在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学。教师创设有趣的情境,引发学生自觉参与学习活动的积极性,使知识发现过程融于有趣的活动中。重视知识的发生过程。将设未知数列一元一次方程的求解过程与二元一次方程组相比较,从而得到二元一次方程组的代入(消元)解法,这种比较,可使学生在复习旧知识的同时,使新知识得以掌握,这对于学生体会新知识的产生和形成过程是十分重要的

初中数学教案13

  教学目标

  (1)认知目标

  理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

  (2)技能目标

  经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

  (3)情感态度与价值观

  教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。

  教学重难点

  重点:运用分式的乘除法法则进行运算。

  难点:分子、分母为多项式的分式乘除运算。

  教学过程

  (一)提出问题,引入课题

  俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:

  问题1:求容积的高是,(引出分式乘法的学习需要)。

  问题2:求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。

  从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。

  (二)类比联想,探究新知

  从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。

  解后总结概括:

  (1)式是什么运算?依据是什么?

  (2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导,学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。

  (分式的乘除法法则)

  乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

  除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  (三)例题分析,应用新知

  师生活动:教师参与并指导,学生独立思考,并尝试完成例题。

  P11的.例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。

  (四)练习巩固,培养能力

  P13练习第2题的(1)、(3)、(4)与第3题的(2)。

  师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。

  通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。

  (五)课堂小结,回扣目标

  引导学生自主进行课堂小结:

  1、本节课我们学习了哪些知识?

  2、在知识应用过程中需要注意什么?

  3、你有什么收获呢?

  师生活动:学生反思,提出疑问,集体交流。

  (六)布置作业

  教科书习题6.2第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。

  板书设计

  在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。

初中数学教案14

  教学目的

  1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

  2、使学生能了解实数绝对值的意义。

  3、使学生能了解数轴上的点具有一一对应关系。

  4、由实数的分类,渗透数学分类的思想。

  5、由实数与数轴的一一对应,渗透数形结合的思想。

  教学分析

  重点:无理数及实数的概念。

  难点:有理数与无理数的区别,点与数的一一对应。

  教学过程

  一、复习

  1、什么叫有理数?

  2、有理数可以如何分类?

  (按定义分与按大小分。)

  二、新授

  1、无理数定义:无限不循环小数叫做无理数。

  判断:无限小数都是无理数;无理数都是无限小数;带根号的`数都是无理数。

  2、实数的定义:有理数与无理数统称为实数。

  3、按课本中列表,将各数间的联系介绍一下。

  除了按定义还能按大小写出列表。

  4、实数的相反数:

  5、实数的绝对值:

  6、实数的运算

  讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

  例2,判断题:

  (1)任何实数的偶次幂是正实数。( )

  (2)在实数范围内,若| x|=|y|则x=y。( )

  (3)0是最小的实数。( )

  (4)0是绝对值最小的实数。( )

  解:略

  三、练习

  P148 练习:3、4、5、6。

  四、小结

  1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

  2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

  五、作业

  1、P150 习题A:3。

  2、基础训练:同步练习1。

初中数学教案15

  1.初中数学教案模板

  1.课题

  填写课题名称(初中代数类课题)

  2.教学目标

  (1)知识与技能:

  通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

  (2)过程与方法:

  通过......(讨论、发现、探究)的过程,提高......(分析、归纳、比较和概括)的能力;

  (3)情感态度与价值观:

  通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

  3.教学重难点

  (1)教学重点:本节课的知识重点

  (2)教学难点:易错点、难以理解的知识点

  4.教学方法(一般从中选择3个就可以了)

  (1)讨论法

  (2)情景教学法

  (3)问答法

  (4)发现法

  (5)讲授法

  5.教学过程

  (1)导入

  简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

  (2)新授课程(一般分为三个小步骤)

  ①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的解法和步骤)。

  ②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。

  ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。

  (3)课堂小结

  教师提问,学生回答本节课的收获。

  (4)作业提高

  布置作业(尽量与实际生活相联系,有所创新)。

  6.教学板书

  2.初中数学教案格式

  课程编码:______________________________________

  总学时 / 周学时: /

  开课时间: 年 月 日 第 周至第 周

  授课年级、专业、班级:___________________________

  使用教材:_______________________________________

  授课教师:_______________________________________

  1.章节名称

  2.教学目的

  3.课时安排

  4.教学重点、难点

  5.教学过程(包括教学内容、教师活动、学生活动、教学方法等)

  6.复习巩固与作业要求

  7.教学环境及教具准备

  8.教学参考资料

  9.教学后记

  3.初中数学教案范文

  教学目的

  1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

  2.使学生会列一元一次方程解决一些简单的应用题。

  3.会判断一个数是不是某个方程的解。

  重点、难点

  1.重点:会列一元一次方程解决一些简单的应用题。

  2.难点:弄清题意,找出“相等关系”。

  教学过程

  一、复习提问

  一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得1.2x=6

  因为1.2×5=6,所以小红能买到5本笔记本。

  二、新授

  问题1:某校初中一年级328名 师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的.客车多少辆?(让学生思考后,回答,教师再作讲评)

  算术法:(328-64)÷44=264÷44=6(辆)

  列方程:设需要租用x辆客车,可得44x+64=328

  解这个方程,就能得到所求的结果。

  问:你会解这个方程吗?试试看?

  问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  通过分析,列出方程:13+x=(45+x)

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

  因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  三、巩固练习

  教科书第3页练习1、2。

  四、小结

  本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  五、作业

  教科书第3页,习题6.1第1、3题。

【初中数学教案】相关文章:

初中数学教案05-20

初中数学教案12-13

初中数学教案优秀07-26

初中数学教案模板05-16

初中数学教案最新09-12

【热】初中数学教案02-04

初中数学教案【荐】02-04

初中数学教案【推荐】03-27

【热门】初中数学教案03-27

初中数学教案【热】03-31