高中数学教案
作为一名优秀的教育工作者,通常会被要求编写教案,借助教案可以让教学工作更科学化。教案应该怎么写才好呢?以下是小编整理的高中数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学教案1
一、教学目标
【知识与技能】
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】
通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点
【重点】
掌握圆的'一般方程,以及用待定系数法求圆的一般方程。
【难点】
二元二次方程与圆的一般方程及标准圆方程的关系。
三、教学过程
(一)复习旧知,引出课题
1、复习圆的标准方程,圆心、半径。
2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?
高中数学教案2
教学目标:
1。了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。
2。会求一些简单函数的反函数。
3。在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。
4。进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。
教学重点:
求反函数的方法。
教学难点:
反函数的概念。
教学过程:
教学活动
设计意图一、创设情境,引入新课
1。复习提问
①函数的概念
②y=f(x)中各变量的意义
2。同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。
3。板书课题
由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。
二、实例分析,组织探究
1。问题组一:
(用投影给出函数与;与()的图象)
(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)
(2)由,已知y能否求x?
(3)是否是一个函数?它与有何关系?
(4)与有何联系?
2。问题组二:
(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(3)函数 ()的定义域与函数()的值域有什么关系?
3。渗透反函数的概念。
(教师点明这样的函数即互为反函数,然后师生共同探究其特点)
从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。
通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。
三、师生互动,归纳定义
1。(根据上述实例,教师与学生共同归纳出反函数的定义)
函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。
2。引导分析:
1)反函数也是函数;
2)对应法则为互逆运算;
3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;
4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;
5)函数y=f(x)与x=f(y)互为反函数;
6)要理解好符号f;
7)交换变量x、y的原因。
3。两次转换x、y的对应关系
(原函数中的自变量x与反函数中的函数值y 是等价的',原函数中的函数值y与反函数中的自变量x是等价的)
4。函数与其反函数的关系
函数y=f(x)
函数
定义域
A
C
值 域
C
A
四、应用解题,总结步骤
1。(投影例题)
【例1】求下列函数的反函数
(1)y=3x—1 (2)y=x 1
【例2】求函数的反函数。
(教师板书例题过程后,由学生总结求反函数步骤。)
2。总结求函数反函数的步骤:
1° 由y=f(x)反解出x=f(y)。
2° 把x=f(y)中 x与y互换得。
3° 写出反函数的定义域。
(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?
(2)的反函数是________。
(3)(x<0)的反函数是__________。
在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。
通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。
通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。
题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。
五、巩固强化,评价反馈
1。已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)
(1)y=—2x 3(xR) (2)y=—(xR,且x)
( 3 ) y=(xR,且x)
2。已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。
五、反思小结,再度设疑
本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。
(让学生谈一下本节课的学习体会,教师适时点拨)
进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。
六、作业
习题2。4 第1题,第2题
进一步巩固所学的知识。
教学设计说明
"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。
反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。
高中数学教案3
教学目标:
1.理解流程图的选择结构这种基本逻辑结构.
2.能识别和理解简单的框图的功能.
3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.
教学方法:
1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.
2. 在具体问题的.解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.
教学过程:
一、问题情境
1.情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为
其中(单位:)为行李的重量.
试给出计算费用(单位:元)的一个算法,并画出流程图.
二、学生活动
学生讨论,教师引导学生进行表达.
解 算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6.
在上述计费过程中,第二步进行了判断.
三、建构数学
1.选择结构的概念:
先根据条件作出判断,再决定执行哪一种
操作的结构称为选择结构.
如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.
2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判
断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;
(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;
(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执
行,但或两个框中可以有一个是空的,即不执行任何操作;
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和
两个退出点.
3.思考:教材第7页图所示的算法中,哪一步进行了判断?
高中数学教案4
1. 幽默风趣的你,平时在班里话语不多,也不张扬,但是,你在无意中的表现仍然赢得了很好的人际关系,学习上你认真刻苦,也能及时的完成作业,但是我觉得你总是没把全部的心思用在学习上,不然以你的聪明,应该保持在前三名才对啊,加油吧,也许关注学习成绩对你才是更有意义的事!
2. 身为纪律委员的你,认真负责,以身作则,生活上的你平易近人,与同学关系融洽,学习上你勤奋刻苦,尤其在英语的学习上,显示出了你的语言天赋,我觉得,假如你能把这份自信和兴趣用到其他的学科学习中,也一定会收获很多的'!加油吧!
3. 你能严格遵守校规,上课认真听讲,作业完成认真,乐于助人,愿意帮助同学,大扫除时你不怕苦,不怕累,但是英语方面还不够给力,所以,如果再投入一点,定会取得更好的结果,而且你还是一个愿意动脑筋的好学生,如果继续保持下去定会取得骄人的成绩!
4. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高,平时善于多动笔认真作好笔记,多开动脑筋,相信你一定能在下学期更得更大的进步! 你学习认真刻苦,也能善于思考,更十分活泼,并能严格遵守班级和宿舍纪律,上课你能认真听讲,做作业时你十分专注,常常愿意花功夫钻研难题,与同学相处也十分融洽,但若能在认真做作业的同时,将速度提上去,我相信你会做得更好。要多讲究学习方法,不能靠熬夜来完成学习任务,提高学习效率,老师相信你一定能通过自己的努力取得更好的成绩!
5. 虽然你个头小,但每次你领读时的那股认真劲儿,令老师暗暗称赞。你尊敬老师,和同学能和睦相处。甜美可爱的你,经过不断的努力,你会更出色的!
6. 你是个活泼可爱的孩子,课堂上,你非常投入地学习着,朗读课文时数你最有感情。中午你还主动给老师捶背,真是个会关心人的孩子,老师谢谢你。你十分喜爱读课外书,不过课上可不能偷看啊!愿书成为你的好朋友。
7. 学习中你能严格要求自己,这是你永不落败的秘诀。老师希望你能借助良好的学习方法,抓紧一切时间,笑在最后的一定是你!
8. 许丽君——你思想上进,踏实稳重,诚实谦虚,尊敬老师。黑板报中有你倾注的心血,集体荣誉簿里有你的功劳。但学习的主动精神不够,竞争意识不强,也很少看到你向老师请教,成绩进步不明显。请相信:世上没有比脚更长的路,也没有比心更高的山!望今后大胆进取,多思多问,发挥你的聪明才智,进一步激发活力,提高学习效率,持之以恒,美好的明天属于你!
9. 每天你都背着书包高高兴兴地来上学,学到了不少的知识,可惜只能记住很少的一部分。希望你改进学习方法,提高学习效率,在下学期有更大的进步!
10. 你言语不多,但待人诚恳、礼貌,作风踏实,品学兼优,热爱班级,关爱同学,勤奋好学,思维敏捷,成绩优秀。愿你扎实各科基础,坚持不懈,!一定能考上重点! 优秀的男生肯定是逗人喜欢的,老师希望你能一如既往的优秀,把这种优秀保持在你人生的每一阶段中。你的人生就是辉煌如意的!
高中数学教案5
【教学目标】
1.知识与技能
(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:
(2)账务等差数列的通项公式及其推导过程:
(3)会应用等差数列通项公式解决简单问题。
2.过程与方法
在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观
通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】
①等差数列的概念;
②等差数列的通项公式
【教学难点】
①理解等差数列“等差”的特点及通项公式的含义;
②等差数列的通项公式的推导过程.
【学情分析】
我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
【设计思路】
1、教法
①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.
③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.
2、学法
引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.
【教学过程】
一、创设情境,引入新课
1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?
2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?
3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?
教师:以上三个问题中的数蕴涵着三列数.
学生:
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.
二、观察归纳,形成定义
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述数列有什么共同特点?
思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?
思考3你能将上述的文字语言转换成数学符号语言吗?
教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.
教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.
(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)
三、举一反三,巩固定义
1、判定下列数列是否为等差数列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.
注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.
(设计意图:强化学生对等差数列“等差”特征的理解和应用).
2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?
(设计意图:强化等差数列的证明定义法)
四、利用定义,导出通项
1、已知等差数列:8,5,2,…,求第200项?
2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?
教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.
(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)
五、应用通项,解决问题
1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?
2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差数列3,7,11,…的第4项和第10项
教师:给出问题,让学生自己操练,教师巡视学生答题情况.
学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的`首项和公差就可以求出其通项公式
(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)
六、反馈练习:教材13页练习1
七、归纳总结:
1、一个定义:
等差数列的定义及定义表达式
2、一个公式:
等差数列的通项公式
3、二个应用:
定义和通项公式的应用
教师:让学生思考整理,找几个代表发言,最后教师给出补充
(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)
【设计反思】
本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.
高中数学教案15
【教学目标】
1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2.能根据几何结构特征对空间物体进行分类。
3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
【教学重难点】
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
【教学过程】
1.情景导入
教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2.展示目标、检查预习
3、合作探究、交流展示
(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?
(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类
(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)
(2)棱柱的任何两个平面都可以作为棱柱的底面吗?
(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
(5)绕直角三角形某一边的几何体一定是圆锥吗?
5、典型例题
例1:判断下列语句是否正确。
⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。
⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。
答案 A B
6、课堂检测:
课本P8,习题1.1 A组第1题。
7.归纳整理
由学生整理学习了哪些内容
【板书设计】
一、柱、锥、台、球的结构
二、例题
例1
变式1、2
【作业布置】
导学案课后练习与提高
1.1.1柱、锥、台、球的结构特征
课前预习学案
一、预习目标:
通过图形探究柱、锥、台、球的结构特征
二、预习内容:
阅读教材第2—6页内容,然后填空
(1)多面体的概念: 叫多面体,
叫多面体的面, 叫多面体的棱,
叫多面体的顶点。
① 棱柱:两个面 ,其余各面都是 ,并且每相邻两个四边形的公共边都 ,这些面围成的几何体叫作棱柱
②棱锥:有一个面是 ,其余各面都是 的三角形,这些面围成的几何体叫作棱锥
③棱台:用一个 棱锥底面的平面去截棱锥, ,叫作棱台。
(2)旋转体的概念: 叫旋转体, 叫旋转体的轴。
①圆柱: 所围成的几何体叫做圆柱
②圆锥: 所围成的几何
体叫做圆锥
③圆台: 的部分叫圆台
. ④球的定义
思考:
(1)试分析多面体与旋转体有何去别
(2)球面球体有何去别
(3)圆与球有何去别
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
高中数学教案6
一、单元教学内容
(1)算法的基本概念
(2)算法的基本结构:顺序、条件、循环结构
(3)算法的基本语句:输入、输出、赋值、条件、循环语句
二、单元教学内容分析
算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的'基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力
三、单元教学课时安排:
1、算法的基本概念3课时
2、程序框图与算法的基本结构5课时
3、算法的基本语句2课时
四、单元教学目标分析
1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义
2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。
3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。
4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
五、单元教学重点与难点分析
1、重点
(1)理解算法的含义(2)掌握算法的基本结构(3)会用算法语句解决简单的实际问题
2、难点
(1)程序框图(2)变量与赋值(3)循环结构(4)算法设计
六、单元总体教学方法
本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。
七、单元展开方式与特点
1、展开方式
自然语言→程序框图→算法语句
2、特点
(1)螺旋上升分层递进(2)整合渗透前呼后应(3)三线合一横向贯通(4)弹性处理多样选择
八、单元教学过程分析
1.算法基本概念教学过程分析
对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。
2.算法的流程图教学过程分析
对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。
3.基本算法语句教学过程分析
经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,
4.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
九、单元评价设想
1.重视对学生数学学习过程的评价
关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。
2.正确评价学生的数学基础知识和基本技能
关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法
高中数学教案7
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程。
(3)掌握直线方程各种形式之间的互化。
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力。
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点。
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法。
教学建议
1、教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式。
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程。
解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线。本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用。
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头。学生对点斜式学习的效果将直接影响后继知识的学习。
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明。
2、教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显。教学中各部分知识之间过渡要自然流畅,不生硬。
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础。
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证。教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解。
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件。两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率。因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要。教学中应突出点斜式、两点式和一般式三个教学高潮。
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程。根据两个条件运用待定系数法和方程思想求直线方程。
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数)。
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力。
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用。教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力。
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上。
教学设计示例
直线方程的一般形式
教学目标:
(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化。
(2)理解直线与二元一次方程的关系及其证明
(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点。
教学重点、难点:直线方程的一般式。直线与二元一次方程(不同时为0)的对应关系及其证明。
教学用具:计算机
教学方法:启发引导法,讨论法
教学过程:
下面给出教学实施过程设计的简要思路:
教学设计思路:
(一)引入的设计
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是,属于二元一次方程,因为未知数有两个,它们的次数为一次。
肯定学生回答,并纠正学生中不规范的表述。再看一个问题:
问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的次数为一次。
肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的次数为一次”。
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。
学生或独立研究,或合作研究,教师巡视指导。
经过一定时间的'研究,教师组织开展集体讨论。首先让学生陈述解决思路或解决方案:
思路一:…
思路二:…
……
教师组织评价,确定方案(其它待课下研究)如下:
按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。
当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。
当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于直线的二元一次方程。
至此,我们的问题1就解决了。简单点说就是:直线方程都是二元一次方程。而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式。
这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。
启发:任何一条直线都有这种形式的方程。你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?
不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面。这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论。那么如何研究呢?
师生共同讨论,评价不同思路,达成共识:
回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即
(1)当时,方程可化为
这是表示斜率为、在轴上的截距为的直线。
(2)当时,由于、不同时为0,必有,方程可化为
这表示一条与轴垂直的直线。
因此,得到结论:
在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线。
为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的。
【动画演示】
演示“直线各参数。gsp”文件,体会任何二元一次方程都表示一条直线。
至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系。
(三)练习巩固、总结提高、板书和作业等环节的设计在此从略
高中数学教案8
一、教学目标
(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能。
二、教学重点难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解。
三、教学过程
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。
初一平面几何中曾学过命题,请同学们举一个命题的例子。(板书:命题。)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识。)
(同学议论结果,答案是肯定的)
教师提问:什么是命题?
(学生进行回忆、思考。)
概念总结:对一件事情作出了判断的`语句叫做命题。
(教师肯定了同学的回答,并作板书。)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题。
(教师利用投影片,和学生讨论以下问题。)
例1 判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题。
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识。
2.讲授新课
大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
(片刻后请同学举手回答,一共讲了四个问题。师生一道归纳如下。)
(1)什么叫做命题?
可以判断真假的语句叫做命题。
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题。有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”。
“或”、“且”、“非”这些词叫做逻辑联结词。逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式。
对“或”的理解,可联想到集合中“并集”的概念。 中的“或”,它是指“ ”、“ ”中至少一个是成立的,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能。
对“且”的理解,可联想到集合中“交集”的概念。 中的“且”,是指“ ”、“ 这两个条件都要满足的意思。
对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .
命题可分为简单命题和复合命题。
不含逻辑联结词的命题叫做简单命题。简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题。
(4)命题的表示:用 , , , ,……来表示。
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开。)
我们接触的复合命题一般有“ 或 ”、“ 且 ”、“非 ”、“若 则 ”等形式。
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题。
对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”。例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题。
3.巩固新课
例2 判断下列命题,哪些是简单命题,哪些是复合命题。如果是复合命题,指出它的构成形式以及构成它的简单命题。
(1) ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若 ,则 .
(让学生有充分的时间进行辨析。教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充。)
例3 写出下表中各给定语的否定语(用课件打出来).
若给定语为
等于
大于
是
都是
至多有一个
至少有一个
至多有个
其否定语分别为
分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
“至多有 个”的否定语是“至少有 个”。
(如果时间宽裕,可让学生讨论后得出结论。)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开。)
4.课堂练习:第26页练习1
5.课外作业:第29页习题1.6
高中数学教案9
教学准备
教学目标
熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。
掌握两角和与差的正、余弦公式,能用公式解决相关问题。
教学重难点
熟练两角和与差的'正、余弦公式的正用、逆用和变用技巧。
教学过程
复习
两角差的余弦公式
用- B代替B看看有什么结果?
高中数学教案10
一、向量的概念
1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的
2、叫做单位向量
3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行
4、且的向量叫做相等向量
5、叫做相反向量
二、向量的表示方法:
几何表示法、字母表示法、坐标表示法
三、向量的加减法及其坐标运算
四、实数与向量的乘积
定义:实数 λ 与向量 的积是一个向量,记作λ
五、平面向量基本定理
如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底
六、向量共线/平行的充要条件
七、非零向量垂直的充要条件
八、线段的定比分点
设是上的 两点,p是上xx的任意一点,则存在实数,使xxx,则为点p分有向线段所成的比,同时,称p为有向线段的定比分点
定比分点坐标公式及向量式
九、平面向量的数量积
(1)设两个非零向量a和b,作oa=a,ob=b,则∠aob=θ叫a与b的'夹角,其范围是[0,π],|b|cosθ叫b在a上的投影
(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ
(3)平面向量的数量积的坐标表示
十、平移
典例解读
1、给出下列命题:①若|a|=|b|,则a=b;②若a,b,c,d是不共线的四点,则ab= dc是四边形abcd为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c
其中,正确命题的序号是xx
2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=xxxx
3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为xx
4、下列算式中不正确的是( )
(a) ab+bc+ca=0 (b) ab-ac=bc
(c) 0·ab=0 (d)λ(μa)=(λμ)a
5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )
?函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )
(a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1
7、平面直角坐标系中,o为坐标原点,已知两点a(3,1),b(-1,3),若点c满足oc=αoa+βob,其中a、β∈r,且α+β=1,则点c的轨迹方程为( )
(a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5
(c)2x-y=0 (d)x+2y-5=0
8、设p、q是四边形abcd对角线ac、bd中点,bc=a,da=b,则 pq=xx
9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分线长
10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )
(a)-5 (b)5 (c)7 (d)-1
11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )
(a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|
(c)(a·b)·c-(b·c)·a与b垂直 (d)(a·b)·c-(b·c)·a=0
12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )
(a)2 (b)0 (c)1 (d)2
16、利用向量证明:△abc中,m为bc的中点,则 ab2+ac2=2(am2+mb2)
17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一个内角为直角,求实数k的值
18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc边上的高为ad,求点d和向量
高中数学教案11
一.教材分析:
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
二.目标分析:
教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3.情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
三.教法分析
1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.
四.过程分析
(一)创设情景,揭示课题
1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流.与此同时,教师对学生的活动给予评价.
2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;(2)我国古代的四大发明;
(3)所有的安理会常任理事国; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,
高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果a是集合A的元素,就说a属于集合A,记作a?A.
如果a不是集合A的元素,就说a不属于集合A,记作a?A.
(2)如果用A表示“所有的安理会常任理事国”组成的'集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合A?{x?N|1?x?8}
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:1.课后书面作业:第13页习题1.1A组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种
呢?如何表示?请同学们通过预习教材.
五.板书分析
高中数学教案12
教学目标:
1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.
2.会求一些简单函数的反函数.
3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.
4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.
教学重点:求反函数的方法.
教学难点:反函数的概念.
教学过程:
教学活动
设计意图一、创设情境,引入新课
1.复习提问
①函数的概念
②y=f(x)中各变量的意义
2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.
3.板书课题
由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.
二、实例分析,组织探究
1.问题组一:
(用投影给出函数与;与()的图象)
(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)
(2)由,已知y能否求x?
(3)是否是一个函数?它与有何关系?
(4)与有何联系?
2.问题组二:
(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(3)函数 ()的定义域与函数()的值域有什么关系?
3.渗透反函数的概念.
(教师点明这样的函数即互为反函数,然后师生共同探究其特点)
从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.
通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.
三、师生互动,归纳定义
1.(根据上述实例,教师与学生共同归纳出反函数的定义)
函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.
2.引导分析:
1)反函数也是函数;
2)对应法则为互逆运算;
3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;
4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;
5)函数y=f(x)与x=f(y)互为反函数;
6)要理解好符号f;
7)交换变量x、y的原因.
3.两次转换x、y的对应关系
(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)
4.函数与其反函数的关系
函数y=f(x)
函数
定义域
A
C
值 域
C
A
四、应用解题,总结步骤
1.(投影例题)
【例1】求下列函数的反函数
(1)y=3x-1 (2)y=x 1
【例2】求函数的反函数.
(教师板书例题过程后,由学生总结求反函数步骤.)
2.总结求函数反函数的步骤:
1° 由y=f(x)反解出x=f(y).
2° 把x=f(y)中 x与y互换得.
3° 写出反函数的定义域.
(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?
(2)的反函数是________.
(3)(x<0)的反函数是__________.
在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.
通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.
通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.
题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.
五、巩固强化,评价反馈
1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)
(1)y=-2x 3(xR) (2)y=-(xR,且x)
( 3 ) y=(xR,且x)
2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.
五、反思小结,再度设疑
本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.
(让学生谈一下本节课的学习体会,教师适时点拨)
进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的.心脏"学生带着问题走进课堂又带着新的问题走出课堂.
六、作业
习题2.4第1题,第2题
进一步巩固所学的知识.
教学设计说明
"问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.
反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。
高中数学教案13
教学目标:
1、理解并掌握曲线在某一点处的切线的概念;
2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;
3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化
问题的能力及数形结合思想。
教学重点:
理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。
教学难点:
用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。
教学过程:
一、问题情境
1、问题情境。
如何精确地刻画曲线上某一点处的变化趋势呢?
如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。
如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的`所有直线中最逼近曲线的一条直线。
因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。
2、探究活动。
如图所示,直线l1,l2为经过曲线上一点P的两条直线,
(1)试判断哪一条直线在点P附近更加逼近曲线;
(2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?
(3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?
二、建构数学
切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。
思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
三、数学运用
例1 试求在点(2,4)处的切线斜率。
解法一 分析:设P(2,4),Q(xQ,f(xQ)),
则割线PQ的斜率为:
当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;
当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。
从而曲线f(x)=x2在点(2,4)处的切线斜率为4。
解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。
练习 试求在x=1处的切线斜率。
解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。
小结 求曲线上一点处的切线斜率的一般步骤:
(1)找到定点P的坐标,设出动点Q的坐标;
(2)求出割线PQ的斜率;
(3)当时,割线逼近切线,那么割线斜率逼近切线斜率。
思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
解 设
所以,当无限趋近于0时,无限趋近于点处的切线的斜率。
变式训练
1。已知,求曲线在处的切线斜率和切线方程;
2。已知,求曲线在处的切线斜率和切线方程;
3。已知,求曲线在处的切线斜率和切线方程。
课堂练习
已知,求曲线在处的切线斜率和切线方程。
四、回顾小结
1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。
2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。
五、课外作业
高中数学教案14
一、教学目标
知识与技能:
理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:
1、提高学生的推理能力;
2、培养学生应用意识。
二、教学重点、难点:
教学重点:
任意角概念的理解;区间角的集合的书写。
教学难点:
终边相同角的集合的表示;区间角的.集合的书写。
三、教学过程
(一)导入新课
1、回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课
1、角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:
注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?
2、象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?
高中数学教案15
教学目的:
掌握圆的标准方程,并能解决与之有关的问题
教学重点:
圆的标准方程及有关运用
教学难点:
标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:⒈说出下列圆的方程
⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3
⒉指出下列圆的圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
⒊判断3x-4y-10=0和x2+y2=4的`位置关系
⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
【高中数学教案】相关文章:
高中数学教案08-28
【热】高中数学教案01-26
高中数学教案【热门】01-10
【精】高中数学教案01-25
【荐】高中数学教案01-22
高中数学教案范文05-01
高中数学教案【精】01-10
【热门】高中数学教案01-10
【推荐】高中数学教案01-25
高中数学教案【热】01-21