有理数的加法教案

时间:2024-08-08 14:01:49 教案 我要投稿

有理数的加法教案

  作为一名教职工,就难以避免地要准备教案,借助教案可以让教学工作更科学化。教案应该怎么写呢?下面是小编收集整理的有理数的加法教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

有理数的加法教案

有理数的加法教案1

  一、教学内容分析

  本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。

  二、学习者分析

  七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。

  三、教学目标

  1、使学生掌握有理数加法法则,并能运用法则进行计算;

  2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

  3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

  四、信息技术应用分析

  由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的'白板展示出来。

  五、教学过程

  1、复习提问,引入新知

  通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。

  2、出示问题情境、解决新知

  在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。

  3、探索发现,归纳新知

  利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。

  学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。

  4、展示例题、应用新知

  此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。

  5、达标训练,巩固新知

  本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。

  6、规律总结,升华新知

  本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。

  7、作业和运用,拓展新知

  通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。

有理数的加法教案2

  1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

  2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

  3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

  4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

  重点、难点分析

  重点:是依据有理数的加法法则熟练进行有理数的加法运算。

  难点:是有理数的加法法则的理解。

  (1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

  (2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

  (3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

  知识结构

  教法建议

  1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

  2.有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

  3.应强调加法交换律a+b=b+a中字母a、b的任意性。

  4.计算三个或三个以上的加法算式,应建议学生养成良好的.运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

  5.可以给出一些类似两数之和必大于任何一个加数的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

  6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

有理数的加法教案3

  教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

  非常高兴,能有机会和同学们共同学习

  昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)

  我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。

  同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。

  希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!

  我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)

  以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的.加法(板书课题)。

  刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)

  对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。

  前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)

  同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。

  (1) 同号两数相加,其和有何规律可循呢?大家观察这两个式子,回答两个问题。(师引导观察,得出答案),那位同学能填好这个空?

  (2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)

  (3) 一个数同0相加,其和有什么规律呢?(易得出结论)

  同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。

  同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)

  (活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)

  同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)

  看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。

  通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!

  同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。

有理数的加法教案4

  一、教学内容

  《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。

  在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

  二、设计理念

  七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

  三、教学目标与重难点

  目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;

  2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

  3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

  重点:会用有理数加法法则进行运算.

  难点:异号两数相加的法则.

  四、学情分析

  1.学生非常熟悉正数加正数,正数加零的情况。

  2.有理数的分类、数轴、绝对值的相关知识已经掌握。

  3.学生善于形象思维,思维活跃,能积极参与讨论。

  五、教学策略

  1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;

  2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;

  3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。

  六、教学流程

  1.回顾旧知,启发思维

  展示课件上的三个问题,请同学们思考并回答。

  (1)有理数是怎么分类的?

  (2)有理数的绝对值是怎么定义的?

  (3)下列各组数中,哪一个数的绝对值大?

  7和4; -7和4; 7和-4; -7和-4

  【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。

  2.创设情境 引入课题

  问题一:两个有理数相加,有多少种不同的情形?

  答:正+正,负+负,正+负,正+0,负+0,0+0.

  【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

  问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

  请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

  师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?

  (出示课题)

  【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的`信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

  (二)分析问题探究新知

  问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

  学生们各抒己见,总结法则。

  1、 同号两数相加,取相同的符号,并把绝对值相加。

  2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。

  3、 一个数同0相加,仍得这个数

  老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。

  【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力

  (三)运用新知深入体会

  例1计算(-3)+(-9).

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

  解:(-3)+(-9)=-12.

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

  解题时,先确定和的符号,后计算和的绝对值.

  课堂练习:

  1.计算(口答)

  (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

  (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

  2.计算

  (1)5+(-22); (2)(-1.3)+(-8)

  (3)(-0.9)+1.5; (4)2.7+(-3.5)

  3.用“>”或“<”填空:

  (1)如果a>0,b>0,那么a+b____0;

  (2) 如果a<0,b<0,那么a+b____0;

  (3) 如果a>0,b<0,|a|>|b|,那么a+b____0;

  (4) 如果a<0,b>0, |a|<|b|,那么a+b____0;

  【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。

  问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

  (1)如果a>0,b>0,那么a+b=+(|a|+|b|)

  (2) 如果a<0,b<0,那么a+b=-(|a|-|b|)

  (3) 如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)

  (4) 如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)

  (5)a+0=a.

  【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。

  (四)延伸拓展敢于挑战

  问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

  问题六:小学学过的运算律是否适用于有理数的加法?

  【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。

  (五)归纳总结感受思想

  (1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

  (2)本节课你学习到了哪些数学思想方法?

  【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。

  (六)布置作业

  (1)P56 习题1、3

  (2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

  【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。

  七、设计说明

  1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;

  2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。

  3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。

  4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。

有理数的加法教案5

  一、课题

  略。

  二、教学目标

  1.结合具体例子,体会数学与我们的成长密切相关。

  2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

  3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。

  4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。

  三、教学重点和难点

  重点

  难点

  1.结合具体例子,体会数学与我们的成长密切相关。

  2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。

  结合具体例子,体会数学与我们的成长密切相关。

  四、教学手段

  现代课堂教学手段

  教学准备

  教师准备

  录音机、投影仪、剪刀、长方形纸片。

  学生准备

  预习、剪刀、长方形纸片

  五、教学方法

  启发式教学

  六、教学过程设计

  一、导入

  教师活动

  学生活动

  展示图片并播放录音。

  宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。

  观察图片,听录音。

  二、板书课题。

  三、导学

  教师活动

  学生活动

  1.现在让我们进入时空的隧道,回忆我们的成长历程:

  出生——学前——小学(板书),我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的.例子,试一试。(积极鼓励)

  (师、生共同讨论交流,从具体事例中分析并找出数学信息。)

  2.进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?

  3.指定若干名学生口答,师生共同系统归纳:

  数与式:认识、计算、方程、解应用题;

  图形:图形的认识、图形的画法、图形的计算;

  统计知识。

  4.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。发挥一下我们的聪明才智,尝试解决下面的2个问题:

  (1)投影或小黑板展示下列问题:

  ①计算并观察下列三组算式:

  ②已知25×25=625,则24×26=(不要计算)

  ③你能举出一个类似的例子吗?

  ④更一般地,若a×a=m,则(a+1)(a-1)= 。

  (老师点评、表扬)

  (2)投影或小黑板展示教材第13页第4题。

  通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,同学们课后可以阅读一下第1节第2点《人类离不开数学》,体会数学对促进人类社会发展的重大作用。

  布置作业:

  (1)谈一谈你对数学的兴趣、学习数学的方法以及学习中存在的困难等;

  (2)习题1.1第2、4题。

  1.回忆、交流、积极大胆发言。

  2.回忆、交流。

  3.观察、计算、思考、探索。

  4.学生取出剪刀和长方形纸片,小组合作,动手尝试解决。

  学生1

  学生2

  学生拼图(略)

  七、练习设计

  课堂基础练习

  1、下列图形中,阴影部分的面积相等的是.

  答案:A与B;C与D

  2、三个连续奇数的和是21,它们的积为

  答案:315

  3、计算:7+27+377+4777

  答案:5188

  课后延伸练习

  1、猜谜语(各打数学中常用字)

  千人分在北上下;②1人立在口上边

  答案:①乘;②倍

  2、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24?

  答案:[5-(1÷5)]×5

  3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这九个数字连成结果为100的算式:

  1 2 3 4 5 6 7 8 9 =100

  答案:123-(45+67-89)=100

  4、把长方形剪去一个角,它可能是几边形?

  答案:三边形,四边形,五边形.

  5、有一个正方形池塘如图1-1-2,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?

  答案:

  能力提高训练

  18

  19

  

  答案:7个,边长从大到

  小依次为11、8、

  7、5、3

  1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?

  2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?

  答案:36

  八、板书设计

  (一)知识回顾(四)例题解析(六)课堂小结

  (二)观察发现例1、例2

  (三)解方程(五)课堂练习练习设计

  九、教学后记

有理数的加法教案6

  【教学目标】

  1. 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。

  2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。

  3.掌握有理数加法法则,并能准确地进行有理数加法运算。

  【学习重点、难点】

  重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;

  难点:异号两数如何相加的法则。

  【学习过程】

  一、 预习自学:

  1.蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?

  2.蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?

  3.蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?

  4.蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?

  5.蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?

  6.蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?

  请你列式计算,并引导学生对前面的七个加法运算进行合理的分类探讨:和的.符号怎样确定?和的绝对值怎样确定?(小组讨论展示)

  二、 教师点拨

  知识点一:引导学生对前面的七个加法运算进行合理的分类

  同号两数相加: (+5)+(+3)= ______.(-5)+(-3)= ______

  异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;

  (+5)+(-5)=______

  一数与零相加: (-5)+0=______;

  知识点二:探讨:和的符号怎样确定?和的绝对值怎样确定?

  结论:有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3.一个数同0相加,仍得这个数。

  三.例题精讲;例1(学生自学,教师示范。注意解题步骤)

  四、课堂练习;36页随堂练习与习题(小组展示交流)

  五、当堂检测;

  1.用生活中的事例说明下列算是的意义,并计算出结果:

  (-2)+(-3);(-3)+2

  2.有理数加法法则:

  绝对值不相等的两数相加,取绝对值的加数的符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得.

  3.计算:(+15)+(-7);(-39)+(-21);

  (-37)+22;(-3)+(+3)

有理数的加法教案7

  【教学目标】

  1、理解有理数加法的实际意义;

  2、会作简单的加法计算;

  3、感受到原来用减法算的问题现在也可以用加法算。

  【对话探索设计】

  〖探索1〗

  (1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?

  (2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的'结果一共运进多少吨?

  (3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥,两天一共运进多少吨?

  (4)把第(3)题的算式列为300+(-200),有道理吗?

  (5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?

  〖探索2〗

  如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?

  假设原点为运动起点,用下面的数轴检验你的答案。

  在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?

  〖小游戏〗

  (请一位同学到黑板前)前进5步,又前进-3步,那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?

  〖练习〗

  1、登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?

  2、第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?

  〖补充作业〗

  1、分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):

  (1)温度由下降;

  (2)仓库原有化肥200t,又运进-120t;

  (3)标准重量是,超过标准重量;

  (4)第一天盈利-300元,第二天盈利100元。

  2、借助数轴用加法计算:

  (1)前进,又前进,那么两次运动后总的结果是什么?

  (2)上午8时的气温是,下午5时的气温比上午8时下降,下午5时的气温是多少?

  3、某潜水员先潜入水下,他的位置记为。然后又上升,这时他处在什么位置?

有理数的加法教案8

  教学目标

  1. 会把有理数的加减法混合运算统一为加法运算;

  2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;

  3.进一步感悟“转化”的思想.

  教学重点

  把有理数的加减法混合运算统一为加法运算.

  教学难点

  省略负数前面的`加号的有理数加法,运用运算律交换加数位置时,符号不变.

  教学过程

  根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算.

  1.完成下列计算:

  (1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).

  归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算;

  (2)式统一成加法是________________________________;

  省略负数前面的加号和( )后的形式是______________________;

  读作____________________ 或 _______________________.

  展示交流

  1.把下列运算统一成加法运算:

  (1)(-12)+(-5)-(-8)-(+9)=_____________________________;

  (2)(-9)-(+5)-(-15)-(+9)=_____________________________;

  (3) 2+5-8=_________________________________;

  (4) 14-(-12)+(-25)-17=_____________________________________.

  2. 将下列有理数加法运算中,加号省略:

  (1)12+(-8)=________________;

  (2)(-12)+(-8)=_________________________________;

  (3)(-9)+(-5)+(+15)+(-20)= ____________________________.

  3.将下列运算先统一成加法,再省略加号:

  (-15)-(+63)-(-35)-(+24)+(-12)=_________________________

  =_________________________.

  4. 仿照本P37例6,完成下列计算:

  (1) -4-5+6 ; (2) -23+41-24+12-46.

  5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?

  盘点收获

  个案补充

  课堂反馈

  1.计算:

  2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?

  迁移创新

  一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?

  课堂作业

  本P39 习题2 .5第6题(1)、 (3)、(5), 第7题 .

有理数的加法教案9

  教学目标

  1,在现实背景中理解有理数加法的意义。

  2,经历探索有理数加法法则的过程,理解有理数的加法法则。

  3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。

  4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。

  5,在教学中适当渗透分类讨论思想

  教学难点

  异号两数相加

  知识重点

  和的符号的确定

  教学过程

  (师生活动)设计理念

  设置情境

  引入课题回顾用正负数表示数量的实际例子;

  在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?

  师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。

  (出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。

  分析问题

  探究新知如果是球队在某场比赛中上半场失了两个球,下

  半场失了3个球,那么它的得胜球是几个呢?算式应该

  怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?

  (学生思考回答)

  思考:请同学们想想,这支球队在这场比赛中还可

  能出现其他的什么情况?你能列出算式吗?与同伴交流。

  学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。

  2,借助数轴来讨论有理数的加法。I

  一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。

  (1)(小组合作)把我们已经得出的几种有理数相加的.情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。

  (2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)

  (3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?

  (4)在学生归纳的基础上,教师出示有理数加法法则。

  有理数加法法则:

  1,同号两数相加,取相同的符号,并把绝对值相加。

  2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  3,一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。

  估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。

  但不能把它归的为同号异号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。

  ①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。③让学生感受“数学模型”的思想。④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律

  解决问题解决问题

  例1计算:

  (1)(—3)+(—9);(2)(—5)+13;

  (3)0十(—7);(4)(—4。7)+3。9。

  教师板演,让学生说出每一步运算所依据的法则。

  请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)

  例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。

  (让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)

  学生活动:请学生说一说在生活中用到有理数加法的例子。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过

  程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。

  拓宽学生视野,让学

  生体会到数学与生活的密切联系。

  课堂练习教科书第23页练习

  小结与作业

  课堂小结通过这节课的学习,你有哪些收获,学生自己总结。

  本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。

  2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。

  3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听

  别人的意见和建议。

  附板书:1。3。1有理数的加法(一)

有理数的加法教案10

  一、学情及学习内容分析

  “有理数的加法与减法”是基于规则为主的新授课型。

  有理数的加法与减法是在引入“负数”的基础上,将数的范围扩展到“有理数”范围内的加、减法运算。本节课从学生的生活经历和经验出发,创设情境,通过分析生活情境中的事理和观察温度计刻度的操作,得到了一些有理数减法的算式,用“化归”的思想方法归纳出有理数减法法则,并应用所学的有理数减法解决实际问题,整节课的设计流程和总体思路可以用下图表示:生活情境,动手操作——有理数减法算式———有理数减法法则———有理数减法的应用。

  二、教学目标及教学重(难)点

  教学目标:

  1、知识与技能:会根据减法的法则进行有理数减法的运算。

  2、过程与方法:经历分析生活情境中的数学事例,提炼其中的数学算式,并从中归纳有理数减法法则;经历将法则应用于解题的这一由一般到特殊的过程。

  3、情感态度与价值观:在由实际情境提炼数学算式的过程中,感受数学在我们的生活中;在这一过程中,渗透转化的思想方法,感受数学思想方法的导航作用。

  教学重点:有理数减法法则与运用

  教学难点:从实际情境到数学算式,从数学算式到法则的提炼,在法则的总结中体现化的思想方法的渗透。

  教学方法:观察探究、合作交流。

  三、教学过程设计:

  在课前让学生玩有理数加法中的扑克牌游戏。

  1、情境引入:

  师:同学们,大家都看过天气预报,有没有注意到里面有“温差”之说呢?

  有效性分析:通过设计“温差”这一问题情境,进而顺利的进入课题,并从列算式角度加以认识,得到一些有理数减法算式,为后面的化归思想方法归纳出有理数减法法则做好素材和算式上的准备。

  2、建构活动

  活动1:计算温差

  师:有理数加减

  生1:利用温度计的刻度直观得到算式5 + 3 = 8

  生2:利用日温差的定义可得到算式:5-(-3)= 8

  师:比较两式,我们有什么发现吗?

  生:“-”变“+”,(-3)变3。

  活动2:通过举例子验证刚才的变化过程,加深对有理数减法算式的理解。

  有效性分析:从生活情境中,学生获取了丰富的素材和有理数减法运算的算式,为下面观察算式特点,总结运算方法做好准备。这种由算式到法则的过程,使学生从心理上更易接受,令算式更有实际背景和说服力,为有理数减法运算法则的提炼和数学化打下了良好的基础。

  3、数学化认识

  5-(-3)=5 + 3(-3)-(-5)=(-3)+ 5

  3-(-5)=3 +5(-3)-5=(-3)+(-5)

  师:综合上面算式的共同特点即被减数不变,减号变加号,减数变成它的相反数,我们就得到了有理数减法法则:减去一个数,等于加上这个数的相反数。

  有效性分析:“化归”的思想和方法是初中数学中最重要的方法之一,本节课的数学化过程正是通过观察已有的算式来发现和总结“有理数的减法法则”的,在教学中渗透了“化归”思想。此外,在化归为加法运算时,进一步复习加法法则,强化了有理数的减法与小学学的减法之间的'联系和区别:即小学的减法是有理数减法中的一种特例,即减数比被减数小,;当减数比被减数大时,小学无法解决的问题现在可以解决了。

  4、基础性训练

  例1计算下列各题

  ①0-(-22)

  ②8.5-(-1.5)

  ③(+4)-16

  ④(?1

  2)?1

  4

  ⑤15-(-7)

  ⑥(+2)-(+8)

  基础练:

  1、课本p 322、3、4

  2、求出数轴上两点之间的距离:

  (1)表示数10的点与表示数4的点;

  (2)表示数2的点与表示数-4的点;

  (3)表示数-1的点与表示数-6的点。

  有效性分析:基础性训练中安排了典型例题,着重训练学生利用刚学过的“有理数的减法法则”进行计算的正确性和熟练度,并规范了计算题目的格式,在格式中进一步熟悉法则,正确运用法则,让学生明确有理数的减法的一般步骤是(1)变符号;(2)用加法法则进行计算

  3、拓展延伸

  巧用扑克牌进行有理数简单运算练习

  有效性分析:通过扑克牌的两个活动,进一步调动学生学习有理数减法运算法则的积极性和主动性,寓教于乐,在活动中通过小组带动班上所有学生学习的热情,同时在活动中更加明确运算法则,做到熟练而准确地运用法则,感受并思考:“两个有理数相减,差一定比两个减数小吗?”的问题,以区别于学生在小学中熟知的减法运算,更好的完成本节课的教学目标。

  四、教学反思

  “有理数的加法与减法”的教学,可以有多种不同的设计方案,但大体上可以分为两类:一类是由老师较快的给出法则,用较多的时间组织学生练习,以求熟练的掌握法则;另一类是适当的加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应的适当压缩法则的练,如本教学设计。本节课注重学生自我学习的能力,学生在学习了有理数加法后,再学习有理数的减法,教师把学习的主动权归还学生,不再是教师讲,学生听,现在变为学生讲,教师听,由学生自己发现问题,分析问题,解决问题。学生与教师分享彼此的思考,经验和知识,交流彼此的情感,体验与感悟,丰富教学内容,求的新的发展,从而达到共识,共享,共进。

有理数的加法教案11

  【目标预览】

  知识技能:

  1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;

  2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。

  数学思考:

  1、正确地进行有理数的加法运算;

  2、用数形结合的思想方法得出有理数加法法则。

  解决问题:能运用有理数加法解决实际问题。

  情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。

  【教学重点和难点】

  重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;难点:异号两数如何相加的法则。

  【情景设计】

  我们来看一个大家熟悉的实际问题:

  足球比赛中进球个数与失球个数是相反意义的量、若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:—2,它们的和为净胜球数:(+3)+(—2)学校足球队在一场比赛中的胜负情况如下:

  (1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(—2)

  (2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(—1)

  这里,就需要用到正数与负数的加法。

  下面,我们利用数轴一起来讨论有理数的加法规律。

  【探求新知】

  一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?

  (1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?利用数轴演示(如图1),把原点假设为运动起点。

  两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①

  利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:

  (2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

  (3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

  (4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?

  (5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?

  (6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?

  (7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?

  总结:依次可得

  (1)(—5)+(—3)=—8②

  (2)5+(—3)=2③

  (3)3+(—5)=—2④

  (4)5+(—5)=0⑤

  (5)(—5)+5=0⑥

  (6)5+0=5或(—5)+0=—5⑦

  观察上述7个算式,自己归纳出有理数加法法则:

  1、同号两数相加,取相同的符号,并把绝对值相加;

  2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3、一个数同0相加,仍得这个数。

  【范例精析】

  例1计算下列算式的结果,并说明理由:

  (1)(+4)+(+7);

  (2)(—4)+(—7);

  (3)(+4)+(—7);

  (4)(+9)+(—4);

  (5)(+4)+(—4);

  (6)(+9)+(—2);

  (7)(—9)+(+2);

  (8)(—9)+0;

  (9)0+(+2);

  (10)0+0、

  学生逐题口答后,教师小结:

  进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的.具体情况,选用某一条加法法则、进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值、

  解:(1)(—3)+(—9)(两个加数同号,用加法法则的第2条计算)

  =—(3+9)(和取负号,把绝对值相加)

  =—12、

  例3足球循环比赛中,红队胜黄队4s1,黄队胜蓝队1s0,蓝队胜红队1s0,计算各队的净胜球数。

  解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。

  三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2)=2;

  黄队共进2球,失4球,净胜球数为(+2)+(—4)= —2;

  蓝队共进1球,失1球,净胜球数为(+1)+(—1)=0;

  【一试身手】

  下面请同学们计算下列各题:

  (1)(—0.9)+(+1.5);(2)(+2.7)+(—3);(3)(—1.1)+(—2.9);

  全班学生书面练习,四位学生板演,教师对学生板演进行讲评、

  【总结陈词】

  1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则、今后我们经常要用类似的思想方法研究其他问题。

  2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。

  【实战操练】

  1、计算:

  (1)(—10)+(+6);

  (2)(+12)+(—4);

  (3)(—5)+(—7);

  (4)(+6)+(+9);

  (5)67+(—73);

  (6)(—84)+(—59);

  (7)33+48;

  (8)(—56)+37、

  2、计算:

  (1)(—0.9)+(—2.7);

  (2)3.8+(—8.4);

  (3)(—0.5)+3;

  (4)3.29+1.78;

  (5)7+(—3.04);

  (6)(—2.9)+(—0.31);

  (7)(—9.18)+6.18;

  (8)4.23+(—6.77);

  (9)(—0.78)+0、

  3、计算:

  4、用“>”或“<”号填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0|a|>|b|,那么a+b ______0、

  5、分别根据下列条件,利用|a|与|b|表示a与b的和:

  (1)a>0,b>0;(2)a<0,b<0;

  (3)a>0,b<0|a|>|b|;(4)a>0,b<0|a|<|b|。

有理数的加法教案12

  授课教师:xx(连云港市灌云县伊山中学)

  教材:苏科版七年级上册

  一、学情及学习内容分析

  “有理数的加法与减法”是基于规则为主的新授课型

  有理数的加法与减法是在引入“负数”的基础上,将数的范围扩展到“有理数”范围内的加、减法运算。本节课从学生的生活经历和经验出发,创设情境,通过分析生活情境中的事理和观察温度计刻度的操作,得到了一些有理数减法的算式,用“化归”的思想方法归纳出有理数减法法则,并应用所学的有理数减法解决实际问题,整节课的设计流程和总体思路可以用下图表示:生活情境,动手操作——————有理数减法算式———————有理数减法法则———————有理数减法的应用

  二、教学目标及教学重(难)点

  教学目标:

  1、知识与技能:会根据减法的法则进行有理数减法的运算。

  2、过程与方法:经历分析生活情境中的数学事例,提炼其中的数学算式,并从中归纳有理数减

  法法则;经历将法则应用于解题的这一由一般到特殊的过程。

  3、情感态度与价值观:在由实际情境提炼数学算式的过程中,感受数学在我们的生活中;在这

  一过程中,渗透转化的思想方法,感受数学思想方法的导航作用。

  教学重点:有理数减法法则与运用

  教学难点:从实际情境到数学算式,从数学算式到法则的提炼,在法则的总结中体现化归

  的思想方法的渗透。

  教学方法:观察探究、合作交流。

  三、教学过程设计:

  在课前让学生玩有理数加法中的扑克牌游戏。

  1、情境引入:

  师:同学们,大家都看过天气预报,有没有注意到里面有“温差”之说呢?

  有效性分析:通过设计“温差”这一问题情境,进而顺利的进入课题,并从列算式角度加以认识,得到一些有理数减法算式,为后面的化归思想方法归纳出有理数减法法则做好素材和算式上的准备。

  2、建构活动

  活动1:计算温差

  师:有理数加减3

  生1:利用温度计的刻度直观得到算式5 + 3 = 8

  生2:利用日温差的定义可得到算式:5-(-3)= 8

  师:比较两式,我们有什么发现吗?

  生:“-”变“+”,(-3)变3、

  活动2:通过举例子验证刚才的变化过程,加深对有理数减法算式的理解。

  有理数加减3

  有效性分析:从生活情境中,学生获取了丰富的素材和有理数减法运算的算式,为下面观察算式特点,总结运算方法做好准备。这种由算式到法则的过程,使学生从心理上更易接受,令算式更有实际背景和说服力,为有理数减法运算法则的提炼和数学化打下了良好的基础。

  3、数学化认识

  5-(-3)=5 + 3(-3)-(-5)=(-3)+ 5

  3-(-5)=3 +5(-3)-5=(-3)+(-5)

  师:综合上面算式的共同特点即被减数不变,减号变加号,减数变成它的相反数,我们就得到了有理数减法法则:减去一个数,等于加上这个数的相反数。有理数减法概念_百度知道

  有效性分析:“化归”的思想和方法是初中数学中最重要的方法之一,本节课的数学化过程正是通过观察已有的算式来发现和总结“有理数的减法法则”的,在教学中渗透了“化归”思想。此外,在化归为加法运算时,进一步复习加法法则,强化了有理数的减法与小学学的减法之间的联系和区别:即小学的减法是有理数减法中的一种特例,即减数比被减数小,;当减数比被减数大时,小学无法解决的问题现在可以解决了。

  4、基础性训练

  例1计算下列各题

  ①0-(-22)

  ②8.5-(-1.5)

  ③(+4)-16

  ④(12)14

  ⑤15-(-7)

  ⑥(+2)-(+8)

  基础练习:

  1、课本p 32

  2、求出数轴上两点之间的距离:

  (1)表示数10的点与表示数4的点;

  (2)表示数2的点与表示数-4的点;

  (3)表示数-1的点与表示数-6的点。

  有效性分析:基础性训练中安排了典型例题,着重训练学生利用刚学过的“有理数的减法法则”进行计算的`正确性和熟练度,并规范了计算题目的格式,在格式中进一步熟悉法则,正确运用法则,让学生明确有理数的减法的一般步骤是:

  (1)变符号;

  (2)用加法法则进行计算

  3、拓展延伸

  [原创]巧用扑克牌进行有理数简单运算练习初中数学论坛—中学数学教育论坛—人教论坛— powered by discuz!

  有效性分析:通过扑克牌的两个活动,进一步调动学生学习有理数减法运算法则的积极性和主动性,寓教于乐,在活动中通过小组带动班上所有学生学习的热情,同时在活动中更加明确运算法则,做到熟练而准确地运用法则,感受并思考:“两个有理数相减,差一定比两个减数小吗?”的问题,以区别于学生在小学中熟知的减法运算,更好的完成本节课的教学目标。

  四、教学反思

  “有理数的加法与减法”的教学,可以有多种不同的设计方案,但大体上可以分为两类:一类是由老师较快的给出法则,用较多的时间组织学生练习,以求熟练的掌握法则;另一类是适当的加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应的适当压缩法则的练习,如本教学设计。本节课注重学生自我学习的能力,学生在学习了有理数加法后,再学习有理数的减法,教师把学习的主动权归还学生,不再是教师讲,学生听,现在变为学生讲,教师听,由学生自己发现问题,分析问题,解决问题。学生与教师分享彼此的思考,经验和知识,交流彼此的情感,体验与感悟,丰富教学内容,求的新的发展,从而达到共识,共享,共进。

有理数的加法教案13

  教学目标

  1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

  3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  教学建议

  (一)重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

  (二)知识结构

  (三)教法建议

  1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

  3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

  4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

  教学设计示例:

  有理数的减法

  一、素质教育目标

  (一)知识教学点

  1、掌握有理数的减法法则。

  2、进行有理数的减法运算。

  (二)能力训练点

  1、通过把减法运算转化为加法运算,向学生渗透转化思想。

  2、通过有理数减法法则的推导,发展学生的逻辑思维能力。

  3、通过有理数的减法运算,培养学生的运算能力。

  (三)德育渗透点

  通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  (四)美育渗透点

  在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

  二、学法引导

  1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

  2、学生学法:探索新知→归纳结论→练习巩固。

  三、重点、难点、疑点及解决办法

  1、重点:有理数减法法则和运算。

  2、难点:有理数减法法则的推导。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片。

  六、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

  七、教学步骤

  (一)创设情境,引入新课

  1、计算(口答)(1);(2)-3+(-7);

  (3)-10+(+3);(4)+10+(-3)。

  2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?

  教师引导学生观察:

  生:10℃比-5℃高15℃。

  师:能不能列出算式计算呢?

  生:10-(-5)。

  师:如何计算呢?

  教师总结:这就是我们今天要学的'内容。(引入新课,板书课题)

  【教法说明】

  1、题目既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。

  (二)探索新知,讲授新课

  师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?

  生:(+10)-(+3)=+7。

  师:计算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7。

  师:让学生观察两式结果,由此得到:

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。

  师:是如何转化的呢?

  生:减去一个正数(+3),等于加上它的相反数(-3)。

  【教法说明】

  教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

  2、再看一题,计算(-10)-(-3)。

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。

  生:(-10)+(+3)=-7。

  教师引导、学生观察上述两题结果,由此得到:

  教师进一步引导学生观察(2)式;你能得到什么结论呢?

  生:减去一个负数(-3)等于加上它的相反数(+3)。

  教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

有理数的加法教案14

  教学目标

  1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数. 2、能力目标:能应用正负数表示生活中具有相反意义的量. 3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点

  重点:

  理解有理数的意义.

  难点:

  能用正负数表示生活中具有相反意义的量.教学过程

  一、创设情境、提出问题

  某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.

  二、分析探索、问题解决

  分组讨论扣的分怎样表示?

  用前面学的数能表示吗?

  数怎么不够用了?

  引出课题.

  讲授正数、负数、有理数的定义.

  用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.三、巩固练习

  1、用正数或负数表示下列各题中的数量:

  (1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;

  (2)球赛时,如果胜2局记作+2,那么-2表示______;

  (3)若-4万表示亏损4万元,那么盈余3万元记作______;

  (4)+150米表示高出海平面150米,低于海平面200米应记作______.分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的'高度用正数表示,低于海平面的高度用负数表示;

  完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

  2、下面说法中正确的是().

  a.“向东5米”与“向西10米”不是相反意义的量;

  b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

  c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

  d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.

  三、小结回顾、纳入体系

  学生交流回顾、讨论总结,教师补充如下:

  概念:正数、负数、有理数.

  分类:有理数的分类:两种分法.

  应用:有理数可以用来表示具有相反意义的量.

有理数的加法教案15

  教学目的:

  经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。

  教学重点:

  有理数的加法法则

  教学难点:

  异号两数相加的法则

  教学教程:

  一、复习提问:

  1、如果向东走5米记作+5米,那么向

  西走3米记作__.

  2、已知a=-5,b=+3,

  ︱a︳+︱b︱=_

  已知a=-5,b=+3,

  ︱a︱-︱b︱=__

  -1012345678

  二、授新课

  小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的'方向为正方向

  提问:这题有几种情况?

  小结:有以下四种情况

  (1)两次都向东走,

  (2)两次都向西走

  (3)先向东走,再向西走

  (4)先向西走,再向东走

  根据小结,我们再分析每一种情况:

  (1)向东走5米,再向东走3米,一共向东走了多少米?

  +5+3(+5)+(+3)=+8

  (2)向西走-5米,再向西走-3米,一共向东走了多少米?

  -5-3(-3)+(-5)=-8

  (3)先向东走5米,再向西走3米,两次一共向东走了多少米?

  +3+5(+5)+(-3)=2

  (4)先向西走5米,再向东走3米,两次一共向东走了多少米?

  -5+3(-5)+(+3)=-2

  下面再看两种特殊情况:

  (5)向东走5米,再向西走5米,两次一共向东走了多少米

  -5+5(+5)+(-5)=0

  (6)向西走5米,再向东走0米,两次一共向东走了多少米?

  -5(-5)+0=-5

  小结:总结前的六种情况:

  同号两数相加:(+5)+(+3)=+8

  (-5)+(-3)=-8

  异号两数相加:(+5)+(-3)=2

  (-5)+(+3)=-2

  (+5)+(-5)=0

  一数与零相加:(-5)+0=-5

  得出结论:有理数加法法则

  1、同号两数相加,取相同的符号,并把绝对值相加

  2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零

  3、一个数与零相加,仍得这个数

  例如:

  (-4)+(-5)(同号两数相加)

  解:=-()(取相同的符号)

  =-9(并把绝对值相加)

  (-2)+(+6)(绝对值不等的异号两数相加)

  解:=+()(取绝对值较大的符号)

  =+4(用较大的绝对值减去较小的绝对值)

  练习:

  口答:

  1、(-15)+(-32)=

  2、(+10)+(-4)=

  3、7+(-4)=

  4、4+(-4)=

  5、9+(-2)=

  6、(-0.5)+4.4=

  7、(-9)+0=

  8、0+(-3)=

  计算:

  (1)(-3)+(-9)(2)(-1/2)+(+1/3)

  解略

  练习:

  (1)15+(-22)=

  (2)(-13)+(-8)=

  (3)(-0·9)+1·5=

  (4)2·7+(-3·5)=

  (5)1/2+(-2/3)=

  (6)(-1/4)+(-1/3)=

  练习三:

  1、填空:

  (1)+11=27(2)7+=4

  (3)(-9)+=9(4)12+=0

  (5)(-8)+=-15(6)+(-13)=-6

  2、用“<”或“>”号填空:

  (1)如果a>0,b>0,那么a+b0;

  (2)如果a<0,b<0,那么a+b0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b0

  小结:

  1、掌握有理数的加法法则,正确地进

  行加法运算。

  2、两个有理数相加,首先判断加法类

  型,再确定和的符号,最后确定和的绝对值。

  作业:课本第38页2、3

  第40页1、2

【有理数的加法教案】相关文章:

有理数加法教案04-26

《有理数的加法》教案优秀11-03

《有理数的加法》说课稿03-27

有理数的加法说课稿11-20

《有理数的加法》说课稿11-20

有理数的加法说课稿07-02

有理数的加法教学反思07-16

《有理数的加法》说课稿(优选)05-27

有理数的加法说课稿14篇06-07