初中数学教案优秀

时间:2024-07-26 08:54:26 教案 我要投稿
  • 相关推荐

初中数学教案优秀

  作为一名为他人授业解惑的教育工作者,时常会需要准备好教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。如何把教案做到重点突出呢?下面是小编帮大家整理的初中数学教案优秀,希望对大家有所帮助。

初中数学教案优秀

初中数学教案优秀1

  4.1二元一次方程

  【教学目标】

  知识与技能目标

  1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是

  二元一次方程;

  2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

  3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。过程与方法目标经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

   情感与态度目标

  1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

  2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

  【重点、难点】

  重点:二元一次方程的概念及二元一次方程的解的概念。

  难点1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,

  但不是任意的两个数是它的解。

  2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  【教学方法与教学手段】

  1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一

  次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

  2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和

  空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

  3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

  【教学过程】

  一、创设情境导入新课

  1、一个数的3倍比这个数大6,这个数是多少?

  2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的.卡片上的数字之和为22?

  思考:这个问题中,有几个未知数?能列一元一次方程求解吗?

  如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

  3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

  二、师生互动探索新知

  1、推陈出新发现新知

  引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

  (板书:二元一次方程)

  根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

  2、小试牛刀巩固新知

  判断下列各式是不是二元一次方程

  (1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

  3、师生互动再探新知

  (1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)

  (2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未

  知数的值,叫做二元一次方程的一个解。)

  ?若未知数设为x,y,记做x?,若未知数设为a,b,记做

  ?y?

  4、再试牛刀检验新知

  (1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)

  a?4a?5a?0a?100

  b?3b??1020b??b?6033

  (2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

  5、自我挑战三探新知

  有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10

  请找出这个方程的一个解,并写出你得到这个解的过程。

  学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

  6、动动笔头巩固新知

  独立完成课本第81页课内练习2

  三、你说我说清点收获

  比较一元一次方程和二元一次方程的相同点和不同点

  相同点:方程两边都是整式

  含有未知数的项的次数都是一次

  如何求一个二元一次方程的解

  四、知识巩固

  1、必答题

  (1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2

  10?xx?10①x?5?4y②x?10?4y③y?④y?44

  (3x?7是方程2x?y?15的解。()(2)多选题:方程

  y?1

  x?7

  (4)判断题:方程2x?y?15的解是。()y?1

  2、抢答题

  是方程2x?3y?5的一个解,求a的值。(1)已知x??2

  y?a

  (2)写出一个解为x?3的二元一次方程。

  y?1

  3、个人魅力题

  写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?

  五、布置作业

初中数学教案优秀2

  一、教学目标

  1、了解推理、证明的格式,理解判定定理的证法。

  2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。

  3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。

  4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。

  二、学法引导

  1、教师教法:启发式引导发现法。

  2、学生学法:积极参与、主动发现、发展思维。

  三、重点?难点及解决办法

  (一)重点

  判定定理的推导和例题的解答。

  (二)难点

  使用符号语言进行推理。

  (三)解决办法

  1、通过教师正确引导,学生积极思维,发现定理,解决重点。

  2、通过教师指导,学生自行完成推理过程,解决难点及疑点。

  四、课时安排

  1课时

  五、教具学具准备

  三角板、投影仪、自制胶片。

  六、师生互动活动设计

  1、通过设计练习,复习基础,创造情境,引入新课。

  2、通过教师指导,学生探索新知,练习巩固,完成新授。

  3、通过学生自己总结完成小结。

  七、教学步骤

  (一)明确目标

  掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。

  (二)整体感知

  以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。

  (三)教学过程

  创设情境,复习引入

  师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的'问题(出示投影)。

  学生活动:学生口答第1、2题。

  师:你能说出有什么条件,就可以判定两条直线平行呢?

  学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。

  教师将第3题图形画在黑板上。

  学生活动:学生口答理由,同角的补角相等。

  师:要求学生写出符号推理过程,并板书。

  【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点。

  师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

  学生活动:同分内角。

  师:它们有什么关系。

  学生活动:互补。

  师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题。

初中数学教案优秀3

  一、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  三、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的`方向为负方向。

  ① 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  ② -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  ②积的绝对值等于 。

  ③任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

初中数学教案优秀4

  一、课题引入

  为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

  对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

  二、课题研究

  在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

  为了准确表达诸如此类的.一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

  我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

  在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

  于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

  利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

  借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

  三、巩固练习

  例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

  思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

  特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

  再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

  例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

  日期周二周三周四周五

  开盘+0.16+0.25+0.78+2.12

  收盘-0.23-1.32-0.67-0.65

  当日收盘价

  试在表中填写周二到周五该股票的收盘价.

  思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

  因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

  周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

  例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

初中数学教案优秀5

  教学目标

  理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程。

  复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程。

  重点

  求根公式的推导和公式法的'应用。

  难点

  一元二次方程求根公式的推导。

  一、复习引入

  1、前面我们学习过解一元二次方程的“直接开平方法”,比如,方程

  (1)x2=4 (2)(x-2)2=7

  提问1 这种解法的(理论)依据是什么?

  提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程。)

  2、面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。)

  (学生活动)用配方法解方程 2x2+3=7x

  (老师点评)略

  总结用配方法解一元二次方程的步骤(学生总结,老师点评)。

  (1)先将已知方程化为一般形式;

  (2)化二次项系数为1;

  (3)常数项移到右边;

  (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

  (5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根。

  二、探索新知

  用配方法解方程:

  (1)ax2-7x+3=0 (2)ax2+bx+3=0

  如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题。

  问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)

  分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去。

  解:移项,得:ax2+bx=-c

  二次项系数化为1,得x2+bax=-ca

  配方,得:x2+bax+(b2a)2=-ca+(b2a)2

  即(x+b2a)2=b2-4ac4a2

  ∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0

  ∴(x+b2a)2=(b2-4ac2a)2

  直接开平方,得:x+b2a=±b2-4ac2a

  即x=-b±b2-4ac2a

  ∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

  由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:

  (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根。

  (2)这个式子叫做一元二次方程的求根公式。

  (3)利用求根公式解一元二次方程的方法叫公式法。

  公式的理解

  (4)由求根公式可知,一元二次方程最多有两个实数根。

  例1 用公式法解下列方程:

  (1)2x2-x-1=0 (2)x2+1.5=-3x

  (3)x2-2x+12=0 (4)4x2-3x+2=0

  分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可。

  补:(5)(x-2)(3x-5)=0

  三、巩固练习

  教材第12页 练习1.(1)(3)(5)或(2)(4)(6)。

  四、课堂小结

  本节课应掌握:

  (1)求根公式的概念及其推导过程;

  (2)公式法的概念;

  (3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果。

  (4)初步了解一元二次方程根的情况。

  五、作业布置

  教材第17页 习题4

【初中数学教案优秀】相关文章:

初中数学教案12-13

初中数学教案05-20

【精】初中数学教案01-31

初中数学教案【推荐】03-27

【热门】初中数学教案03-27

初中数学教案【热门】02-04

【荐】初中数学教案02-04

初中数学教案【荐】02-04

初中数学教案【精】02-16