《全等三角形的判定》教案

时间:2024-07-08 09:56:57 教案 我要投稿

《全等三角形的判定》教案

  作为一位兢兢业业的人民教师,时常需要编写教案,教案有助于顺利而有效地开展教学活动。来参考自己需要的教案吧!下面是小编为大家收集的《全等三角形的判定》教案,欢迎阅读与收藏。

《全等三角形的判定》教案

《全等三角形的判定》教案1

  1、理解、掌握两个三角形中具有三条边相等(简称为边边边即SSS)

  的两个三角形全等的判定。

  2、能应用“边边边”条件判定两个三角形全等;

  3、会作一个角等于已知角。

  “边边边”的理解

  探索三角形全等的条件

  复习旧知

  1、能够完全的两个三角形叫做全等三角形。

  2、全等三角形的相等,对应角。

  3、三角形全等中的六个条件是,。

  二、自主学习

  阅读课本P35-P37,完成下来问题

  1、任意画出一个ΔABC,再画一个ΔABC,使AB=AB,BC=BC,CA=CA。把画好的ΔABC剪下来,放到ΔABC上,它们全等吗?

  由探究1、2得到:满足两个三角形的六个条件中的一个或两个、这两个三角形

  重合,即,但满足三个条件中的相等、则这两个三角形是

  即是,因此有三边分别相等的两个三角形_______,简写成“_________”或“______”。

  在ΔABC与ΔABC中

  AB = AB

  ∵ BC=_____

  CA=______

  ∴ΔABC≌_________( )

  例1 如右图所示的'三角形钢架中,AB = AC,AD是连接点A与BC中点D的支架。

  求证:ΔABC≌ΔACD

  证明:∵D是BC的中点

  又∵在△和△中

  AB=

  BD=_______

  AD=_______

  ∴△ABD△ACD( )

  已知∠AOB,求作:∠DOF,使∠AOB=∠DOF,要求写出作法。

  三、

  一、选择题

  1、要使ΔABC≌ΔDEF,则ΔABC和ΔDEF应具备的条件是( )

  A、所有的角相等B、三条边分别对应相等

  C、面积相等 D、周长相等

  2、如图1所示,ΔABC中,AB=AC,D、E两点在BE上,且有AD=AE,BD=CE。

  若∠BAD=30,∠DAE=50,则∠BAC等于( )

  A、130 B、120 C、110 D、100

  图1 图2

  3、如图2所示,AD与BC相交于点O,且AC=BD,AD=BC,则下列结论错误的是( )

  A、∠C=∠D B、OA=OD C、∠AOC=∠BOD D、ΔABC≌ΔBAD

  二、填空题

  1、如图3,AB=AC,BD=CD,若∠B=62,则∠BAC=________。

  2、如图4,AC=AD,BC=BD,若∠2=32,∠3=28,则∠CBE=________。

  1、如图,点B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF,求证:AC//DF。

  2、如下图所示,AB=CD,AE=DF,CE=BF。

  (1)ΔABE能否与ΔDCF重合?说明理由

  (2)若∠B=30,AE⊥AB,则将ΔCDF从F点沿BC平移至________点,再沿顺时针方向旋转_________才能与ΔBAE重合。

  四、

  课后反思:_______________________________________________________

  (实际课时)

《全等三角形的判定》教案2

  教学目标

  1、知识目标:

  (1)熟记边角边公理的内容;

  (2)能应用边角边公理证明两个三角形全等。

  2、能力目标:

  (1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;

  (2) 通过观察几何图形,培养学生的识图能力。

  3、情感目标:

  (1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

  (2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

  教学重点:学会运用公理证明两个三角形全等。

  教学难点:在较复杂的图形中,找出证明两个三角形全等的'条件。

  教学用具:直尺、微机

  教学方法:自学辅导式

  教学过程

  1、公理的发现

  (1)画图:(投影显示)

  教师点拨,学生边学边画图。

  (2)实验

  让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)

  这里一定要让学生动手操作。

  (3)公理

  启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

  作用:是证明两个三角形全等的依据之一。

  应用格式:

  强调:

  1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。

  3、平面几何中常要证明角相等和线段相等,其证明常用方法:

  证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。

  证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质。

  2、公理的应用

  (1)讲解例1。学生分析完成,教师注重完成后的总结。

  分析:(设问程序)

  “SAS”的三个条件是什么?

  已知条件给出了几个?

  由图形可以得到几个条件?

  解:(略)

  (2)讲解例2

  投影例2:

  例2如图2,AE=CF,AD∥BC,AD=CB,

  求证:

  学生思考、分析,适当点拨,找学生代表口述证明思路

  让学生在练习本上定出证明,一名学生板书。教师强调

  证明格式:用大括号写出公理的三个条件,最后写出

  结论。(3)讲解例3(投影)

  证明:(略)

  学生分析思路,写出证明过程。

  (投影展示学生的作业,教师点评)

  (4)讲解例4(投影)

  证明:(略)

  学生口述过程。投影展示证明过程。

  教师强调证明线段相等的几种常见方法。

  (5)讲解例5(投影)

  证明:(略)

  学生思考、分析、讨论,教师巡视,适当参与讨论。

  师生共同讨论后,让学生口述证明思路。

  教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

  3、课堂小结:

  (1)判定三角形全等的方法:SAS

  (2)公理应用的书写格式

  (3)证明线段、角相等常见的方法有哪些?

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

  6、布置作业

  a书面作业P56#6、7

  b上交作业P57B组1

  思考题:

  板书设计

  探究活动

《全等三角形的判定》教案3

  【教学目标】:

  1、知识与技能:

  1.三角形全等的条件:角边角、角角边.

  2.三角形全等条件小结.

  3.掌握三角形全等的“角边角”“角角边”条件.

  4.能运用全等三角形的条件,解决简单的推理证明问题.

  2、过程与方法:

  1.经历探究全等三角形条件的过程,进一步体会操作、?归纳获得数学规律的过程.

  2.掌握三角形全等的“角边角”“角角边”条件.

  3.能运用全等三角形的条件,解决简单的推理证明问题.

  3、情感态度与价值观:

  通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神

  【教学情景导入】:

  提出问题,创设情境

  复习:

  (1)三角形中已知三个元素,包括哪几种情况?

  三个角、三个边、两边一角、两角一边.

  (2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?

  三种:

  ①定义;

  ②SSS;

  ③SAS.

  2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?

  导入新课

  [师]三角形中已知两角一边有几种可能?

  [生]1.两角和它们的夹边.

  2.两角和其中一角的.对边.

  做一做:

  三角形的两个内角分别是60°和80°,它们的夹边为4cm,?你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?

  学生活动:自己动手操作,然后与同伴交流,发现规律.

  教师活动:检查指导,帮助有困难的同学.

  活动结果展示:

  以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.

  提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).

  [师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,?能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?

  [生]能.

  学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.

  [生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.

  ②画线段A′B′,使A′B′=AB.

  ③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.

  ④射线A′D与B′E交于一点,记为C′ 即可得到△A′B′C′.

  将△A′B′C′与△ABC重叠,发现两三角形全等.

  [师]

  于是我们发现规律:

  两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).

  这又是一个判定三角形全等的条件. [生]在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?

  [师]你提出的问题很好.温故而知新嘛,请同学们来验证这种想法.

  【教学过程设计】:

  如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?

  证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°

  ∠A=∠D,∠B=∠E

  ∴∠A+∠B=∠D+∠E

  ∴∠C=∠F

  在△ABC和△DEF中

  ∴△ABC≌△DEF(ASA).

  于是得规律:

  两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).

  [例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.

  求证:AD=AE.

  [师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.

  学生写出证明过程.

  证明:在△ADC和△AEB中

  所以△ADC≌△AEB(ASA)

  所以AD=AE.

  [师]到此为止,在三角形中已知三个条件探索三角形全等问题已全部结束.请同学们把三角形全等的判定方法做一个小结.

  学生活动:自我回忆总结,然后小组讨论交流、补充.

  有五种判定三角形全等的条件.

  1.全等三角形的定义

  2.边边边(SSS)

  3.边角边(SAS)

  4.角边角(ASA)

  5.角角边(AAS)

  推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.

  练习:图中的两个三角形全等吗?请说明理由.

  答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.

  【课堂作业】 1.如图,BO=OC,AO=DO,则△AOB与△DOC全等吗?

  小亮的思考过程如下.

  △AOB≌△DOC

  2、已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C?′全等的是( )

  A.AB=A′B′ AC=A′C′ BC=B′C′

  B.∠A=∠A′ ∠B=∠B′ AC=A′C′

  C.AB=A′B′ AC=A′C′ ∠A=∠A′

  D.AB=A′B′ BC=B′C′ ∠C=∠C′

  3、要说明△ABC和△A′B′C′全等,已知条件为AB=A′B′,∠A=∠A′,不需要的条件为( )

  A.∠B=∠B′ B.∠C=∠C′; C.AC=A′C′ D.BC=B′C′

  4、要说明△ABC和△A′B′C′全等,已知∠A=∠A′,∠B=∠B′,则不需要的条件是( A.∠C=∠C′ B.AB=A′B′; C.AC=A′C′ D.BC=B′C′

  5、两个三角形全等,那么下列说法错误的是( )

  A.对应边上的三条高分别相等; B.对应边的三条中线分别相等

  C.两个三角形的面积相等; D.两个三角形的任何线段相等

  6、如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.

《全等三角形的判定》教案4

  【教学目标】

  1.使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

  2.继续培养学生画图、实 验,发现新知识的能力.

  【重点难点】

  1.难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;

  2.重点:灵活运用SSS判定两个三角形是否全等.

  【教学过程 】

  一、创设问题情境,引入新课

  请问同学,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的.

  (同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等.)

  上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全

  等.满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究.

  二、实践探索,总结规律

  1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段 ,分别为 ,你能画出这个三角形吗?

  先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.

  步骤:

  (1)画一线段AB使 它的长度等于c(4.8cm).

  (2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.

  (3)连结AC、BC.

  △ABC即为所求

  把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

  换三条线段,再试试看,是否有同样的 结论

  请你结合画图、对比,说说你发现了什么?

  同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的. 这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为边边边,或简记为(S.S.S.).

  2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

  (我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)

  3、问题3、你用这个SSS三角形全等的判定法解释三角形具有稳定性吗?

  (只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)

  4、范例:

  例1 如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因为AC是公共边,由(S.S.S.)全等判定法,可知 △ABC≌△CDA

  5、练习:

  6、试一试:已知一个三角形的`三个内 角分别为 、 、 ,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?

  (所画出的三角形都是相似的 ,但大小不一定相 同).

  三个对应角相等的两个三角形不一定全等.

  三、加强练习,巩固知识

  1、如图, , ,△ABC≌△DCB全等吗?为什么?

  2、如图,AD是△ABC的中线, . 与 相等吗?请说明理由.

  四、小结

  本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用( SSS )来判定三角形全等.三个角对应相等的两个三角不一定会全等.

  五、作业

《全等三角形的判定》教案5

  教学建议

  直角三角形全等的判定

  知识结构

  重点与难点分析:

  本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

  (1)由“先教后学”转向“先学后教

  本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

  (2)在层次教学中培养学生的思维能力

  本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

  公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

  综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

  教法建议:

  由“先教后学”转向“先学后教”

  本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

  (2)在层次教学中培养学生的思维能力

  本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

  公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

  综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

  教学目标

  1、知识目标:

  (1)掌握已知斜边、直角边画直角三角形的画图方法;

  (2)掌握斜边、直角边公理;

  (3)能够运用HL公理及其他三角形全等的判定方法进行证明和计算.

  2、能力目标:

  (1)通过尺规作图使学生得到技能的训练;

  (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

  3、情感目标:

  (1)在公理的形成过程中渗透:实验、观察、归纳;

  (2)通过知识的纵横迁移感受数学的系统特征。

  教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

  教学难点:灵活应用五种方法(SAS、ASA、AAS、SSS、HL)来判定直角三角形全等。

  教学用具:直尺,微机

  教学方法:自学辅导

  教学过程

  1、新课引入

  投影显示

  问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?

  这个问题让学生思考分析讨论后回答,教师补充完善。

  2、公理的获得

  让学生概括出HL公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

  公理:有斜边和一条直角边对应相等的两个直角三角形全等。

  应用格式: (略)

  强调说明:

  (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  (2)、判定两个直角三角形全等的方法。

  (3)特殊三角形研究思想。

  3、公理的应用

  (1)讲解例1(投影例1)

  例1求证:有一条直角边和斜边上的`高对应相等的两个直角三角形全等。

  学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。

  分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。

  证明:(略)

  (2)讲解例2。学生分析完成,教师注重完成后的点评。)

  例2:如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.

  求证:BE=CF

  分析: BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF

  证明:(略)

  (3)讲解例3(投影例3)

  例3如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:

  (1)BD=DE+CE

  (2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;

  (3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明

  学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。

  4、课堂小结:

  (1)判定直角三角形全等的方法:5个(SAS、ASA、AAS、SSS、HL)在这些方法的条件中都至少包含一条边。

  (2)直角三角形判定方法的综合运用

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

  5、布置作业:

  a、书面作业P79#7、9

  b、上交作业P80#5、6

  板书设计

  探究活动

  直角形全等的判定

  如图(1)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,

  若AB=CD求证:BD平分EF。若将△DEC的边EC沿AC方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。

《全等三角形的判定》教案6

  教学目标:

  1、知识目标:

  (1)掌握已知三边画三角形的方法;

  (2)掌握边边边公理,能用边边边公理证明两个三角形全等;

  (3)会添加较明显的辅助线.

  2、能力目标:

  (1)通过尺规作图使学生得到技能的训练;

  (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

  3、情感目标:

  (1)在公理的形成过程中渗透:实验、观察、归纳;

  (2)通过变式训练,培养学生“举一反三”的学习习惯.

  教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

  教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

  教学用具:直尺,微机

  教学方法:自学辅导

  教学过程:

  1、新课引入

  投影显示

  问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

  这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

  2、公理的获得

  问:通过上面问题的分析,满足什么条件的两个三角形全等?

  让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

  公理:有三边对应相等的两个三角形全等。

  应用格式: (略)

  强调说明:

  (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

  (3)、此公理与前面学过的公理区别与联系

  (4)、三角形的稳定性:演示三角形的稳定性与四边形的.不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

  (5)说明AAA与SSA不能判定三角形全等。

  3、公理的应用

  (1) 讲解例1。学生分析完成,教师注重完成后的点评。

  例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

  求证:AD⊥BC

  分析:(设问程序)

  (1)要证AD⊥BC只要证什么?

  (2)要证∠1= 只要证什么?

  (3)要证∠1=∠2只要证什么?

  (4)△ABD和△ACD全等的条件具备吗?依据是什么?

  证明:(略)

  (2)讲解例2(投影例2 )

  例2已知:如图AB=DC,AD=BC

  求证:∠A=∠C

  (1)学生思考、分析、讨论,教师巡视,适当参与讨论。

  (2)找学生代表口述证明思路。

  思路1:连接BD(如图)

  证△ABD≌△CDB(SSS)先得∠A=∠C

  思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

  (3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

  例3如图,已知AB=AC,DB=DC

  (1)若E、F、G、H分别是各边的中点,求证:EH=FG

  (2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

  学生思考、分析,适当点拨,找学生代表口述证明思路

  让学生在练习本上写出证明,然后选择投影显示。

  证明:(略)

  说明:证直线垂直可证两直线夹角等于 ,而由两邻补角相等证两直线的夹角等于 ,又是很重要的一种方法。

  例4 如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,

  求证:AC=2AE.

  证明:(略)

  学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

  5、课堂小结:

  (1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

  在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

  (2)三种方法的综合运用

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

  6、布置作业:

  a、书面作业P70#11、12

  b、上交作业P70#14 P71B组3

《全等三角形的判定》教案7

  课程内容

  边边边判定定理

  选用教材

  人教版数学八年级上册

  授课人

  崔志伟

  授课章节

  第十二章第二节

  学 时

  1

  教学重点

  掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。

  教学难点

  探索三角形全等的条件,以及运用边边边定理画一角等于已知角

  教学方法

  学生合作探究法、教师讲解结合谈话法等综合教学方法

  教学手段

  黑板板书教学

  课 堂 教 学 设 计

  阶段

  教学内容

  导入部分

  采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。

  学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。

  阶段

  课堂教学设计

  课程新授

  教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。

  但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的情况。

  接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的.同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。

  学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。

  首先引导学生对三组对应关系相等进行分类。

  预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。

  本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即SSS,教师解释S为英文边,side的首字母。

  接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。

  由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。

  学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。

  之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。

  作业

  作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。

  板书设计

  采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。

  小结

  本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。

《全等三角形的判定》教案8

  教学目标

  1。 通过实际操作理解“学习三角形全等的四种判定方法”的必要性。

  2。 比较熟练地掌握应用边角边公理时寻找非已知条件的方法和证明的分析法,初步培养学生的逻辑推理能力。

  3。 初步掌握“利用三角形全等来证明线段相等或角相等或直线的平行、垂直关系等”的方法。

  4。 掌握证明三角形全等问题的规范书写格式。

  教学重点和难点

  应用三角形的边角边公理证明问题的分析方法和书写格式。

  教学过程设计

  一、 实例演示,发现公理

  1。 教师出示几对三角形模板,让学生观察有几对全等三角形,并根据所学过的全等三角形的知识动手操作,加以验证,同时写出全等三角形的数学表达式。

  2。 在此过程当中应启发学生注意以下几点:

  (1) 可用移动三角形使其重合的方法验证图3-49中的三对三角形分别全等,并根据图中已知的三对对应元素分别相等的条件,可以证明结论成立。如图3-49(c)中,由AB=AC=3cm,可将△ABC绕A点转到B与C重合;由于∠BAD=∠CAE=120°,保证AD能与AE重合;由AD=AE=5cm,可得到D与E重合。因此△BAD可与△CAE重合,说明△BAD≌△CAE。

  (2) 每次判断全等,若都根据定义检查是否重合是不便操作的,需要寻找更实用的判断方法——用全等三角形的性质来判定。

  (3) 由以上过程可以说明,判定两个三角形全等,不必判断三条边、三个角共六对对应元素均相等,而是可以简化到特定的三个条件,引导学生归纳出:有两边和它们的夹角对应相等的两个三角形全等。

  3。画图加以巩固。

  教师照课本上所叙述的过程带领学生分析画图步骤并画出图形,理解“已知两边及夹角画三角形”的.方法,并加深对结论的印象。

  二、 提出公理

  1。板书边角边公理,指出它可简记为“边角边”或“SAS”,说明记号“SAS’的含义。

  2。强调以下两点:

  (1)使用条件:三角形的两边及夹角分别对应相等。

  (2)使用时记号“SAS”和条件都按边、夹角、边的顺序排列,并将对应顶点的字母顺序写在对应位置上。

  3。板书定理证明应使用标准图形、文字及数学表达式,正确书写证明过程。

  如图3-50,在△ABC与△A’B’C’中,(指明范围)

  三、应用举例、变式练习

  1。充分发挥一道例题的作用,将条件、结论加以变化,进行变式练习,

  例1已知:如图 3-51, AB=CB,∠ABD=∠CBD。求证:△ABD≌△CBD。

  分析:将已知条件与边角边公理对比可以发现,只需再有一组对应边相等即可,这可由公共边相等 BD=BD得到。

  说明:(1)证明全等缺条件时,从图形本身挖掘隐含条件,如公共边相等、公共角相等、对顶角相等,等等。

  (2)学习从结论出发分析证明思路的方法(分析法)。

  分析:△ABD≌△CBD

  因此只能在两个等角分别所在的三角形中寻找与AB,CB夹两已知角的公共边BD。

  (3)可将此题做条种变式练习:

  练习1(改变结论)如图 3-51,已知 AB=CB,∠ABD=∠CBD。求证:AD=CD,BD平分∠ADC。

  分析:在证毕全等的基础上,可继续利用全等三角形的性质得出对应边相等,即AD=CD;对应角相等∠ADB=∠CDB,即BD平分∠ADC。因此,通过证明两三角形全等可证明两个三角形中的线段相等或和角相关的结论,如两直线平行、垂直、角平分线等等。

  练习2(改变条件)如图 3-51,已知 BD平分∠ABC, AB= CB。求证: ∠A=∠C。

  分析:能直接使用的证明三角形全等的条件只有AB=CB,所缺的其余条件分别由公共边相等、角平分线的定义得出。这样,在证明三角形全等之前需做一些准备工作。教师板书完整证明过程如下:

  以上四步是证明两三角形全等的基本证明格式。

  (4)将题目中的图形加以有规律地图形变换,可得到相关的一组变式练习,使刚才的解题思路得以充分地实施,并加强例题、习题之间的有机联系,熟悉常见图形,同时让学生总结常用的寻找所缺边、缺角条件的方法。

  练习 3如图 3-52(c),已知 AB=AE, AD=AF,∠ 1=∠2。求证: DB=FE。

  分析:关键由∠1=∠2,利用等量公理证出∠BAD=∠EAF。

  练习 4如图 3-52(d),已知 A为 BC中点, AE//BD, AE=BD。求证: AD//CE。

  分析:由中点定义得出 AB=AC;由 AE//BD及平行线性质得出∠ABD=∠CAE。

  练习 5已知:如图 3-52(e), AE//BD, AE=DB。求证: AB//DE。

  分析:由 AE//BD及平行线性质得出∠ADB=∠DAE;由公共边 AD=DA及已知证明全等。

  练习6已知:如图3-52(f),AE//BD,AE=DB。求证:AB//DE,AB=DE。

  分析:通过添加辅助线——连结AD,构造两个三角形去证明全等。

  练习 7已知:如图 3-52(g), BA=EF, DF=CA,∠EFD=∠CAB。求证:∠B=∠E。

  分析:由DF=CA及等量公理得出DA=CF;由∠EFD=∠CAB及“等角的补角相等”得出∠BAD=∠EFC。

  练习8已知:如图3-52(h),BE和CD交于A,且A为BE中点,EC⊥CD于C,BD⊥CD于 D, CE=⊥BD。求证: AC=AD。

  分析:由于目前只有边角边公理,因此,必须将角的隐含条件——对顶角相等转化为已知两边的夹角∠B=∠E,这点利用“等角的余角相等”可以实现。

  练习 9已知如图 3-52(i),点 C, F, A, D在同一直线上, AC=FD, CE=DB, EC⊥CD,BD⊥CD,垂足分别为 C和D。求证:EF//AB。

  在下一课时中,可在图中连结EA及BF,进一步统习证明两次全等。

  小结:在以上例1及它的九种变式练习中,可让学生归纳概括出目前常用的证明三角形全等时寻找非已知条件的途径。

  缺边时:①图中隐含公共边;②中点概念;③等量公理④其它。

  缺角时:①图中隐含公共角;②图中隐含对顶角;③三角形内角和及推论④角平分线定义;

  ⑤平行线的性质;⑥同(等)角的补(余)角相等;⑦等量公理;⑧其它。

  例2已知:如图3-53,△ABE和△ACD均为等边三角形。求证:BD=EC。

  分析:先选择BD和EC所在的两个三角形△ABD与△AEC,已知没有提供任一证两个三角形全等所需的直接条件,均需由等边三角形的定义提供。

  四、师生共同归纳小结

  1。证明两三角形全等的条件可由定义的六条件减弱到至少几个?边角边公理是哪三个

  条件?

  2。在遇到证明两三角形全等或用全等证明线段、角的大小关系时,最典型的分析问题的思路是怎样的?你体会这样做有些什么优点?

  3。遇到证明两个三角形全等而边、角的直接条件不够时,可从哪些角度入手寻找非已知条件?

  五、练习与作业

  练习:课本第28页中第1题,第30页中1,3题。

  作业:课本第32页中第6,7,8,9,10题。

  课堂教学设计说明

  本教学设计需2课时完成。

  1。课本第3。5节内容安排3课时,前两课时学习三角形全等的边角边公理,重点练习直接应用公理及证明格式,初步学习寻找证明全等所需的非已知条件的方法,以及利用性质证明边角的数量关系及直线的位置关系,第3课时加以巩固并学习解决应用题和两次全等的问题。

  2。本节将“理解全等三角形的判定方法的必要性“列为教学目标之一,目的是引起教师和学生的重视,只有学生真正认识到了研究判定方法的必要性,才能从思想上接受判定方法,并发挥出他们的学习主动性。

  3。本节课将“分析法和寻找证明全等三角形时非已知条件的方法”作为教学目标之一,意在给学生归纳一些常用的解题思路,以便将它作为证明全等三角形的一种技能加以强化。

  4。教材中将“利用证明两个三角形全等来证明线段或角相等”的方法做为例5出现,为时过晚,达不到训练的目的,因此教师应提前到第一、二课时,就教给学生分析的方法,并从各种角度加以训练。

  5。教师可将例题1和几种变式练习制成投作影片(图3-52)提高课堂教学效率。教学使用时,重点放在题目的分析上,并体现出题目之间图形的变化和内在联系。

  6。本节教学内容的两课时既教会学生分析全等问题的思路——分析法和寻找非已知条件的方法,又要求他们落实证明的规范步骤——准备条件,指明范围,列齐条件和得出结论,使学生遇到证明三角形全等的题目既会快速分析,又会正确表达。学生学生遇到证明三角形全等的题目既会快速分析,又会正确表达。节教学

《全等三角形的判定》教案9

  〖教学目标〗

  ◆1、探索两个直角三角形全等的条件.

  ◆2、掌握两个直角三角形全等的条件(hl).

  ◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.

  〖教学重点与难点〗

  ◆教学重点:直角三角形全等的判定的方法“hl”.

  ◆教学难点:直角三角形判定方法的说理过程.

  〖教学过程〗

  一、 创设情境,引入新课:

  教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?

  二、 合作学习:

  (1) 回顾:判定两个直角三角形全等已经有哪些方法?

  (2) 有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的'判定方法,可充分让学生想象。不限定方法。

  教师归纳出方法后,要学生注意两点:<1>“hl”是仅适用于rt△的特殊方法。

  (3) 教师引导、学生练习 p47

  三、 应用新知,巩固概念

  例题讲评

  例:已知:p是∠aob内一点,pd⊥oa,pe ⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。

  分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop

  小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)

  角的内部,到角的两边距离相等的点,在这个角的平分线上。

  四、学生练习,巩固提高

  练一练:p48 1. 2. p49 3

  五、小结回顾,反思提高

  (1)本节内容学的是什么?你认为学习本节内容应注意些什么?

  (2)学习本节内容你有哪些体会?

  (3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)

  (4)你现在知道的有关角平分线的知识有哪些?

  六、布置作业

《全等三角形的判定》教案10

  【教学目标】:

  1、帮助学生总结一般三角形全等的判定条件,使他们自觉运用各种全等判定法进行说理;

  2、通过一般三角形全等判定条件的归纳,帮助学生认识事物间存在着的因果关系和制约的关系。

  【重点难点】:

  1、重点:让学生识别三角的哪些元素能用来确定三角形的形状与大小,因而可用来判定三角形全等。

  2、难点:灵活应用各种判定法识别全等三角形。

  【教学准备】:

  卡纸剪出的图1、2中的六个三角形。

  (图1)(图2)

  【教学过程】:

  一、复习

  1、判定两个三角形全等的条件有哪些?

  (有SAS、ASA、AAS、SSS。HL)

  2、一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种判定法,还有其他的三角形全等判定法吗?比如说“SSA”、“AAA”能成为判定两个三角形全等的条件吗?

  二、新授

  1、演示

  (1)演示图1中的I、II三角形,它们间有两边及一对角对应相等,这两个三角形能完全重合,是全等形。但再取出III的三角形与I叠在一起后,发现它们不重合不是全等形,因此我们进一点证实了:有两边和其中一边的对角对应相等的两个三角形不一定全等。“SSA”不是判定三角形全等的方法。

  (2)演示图2中的I、II三角形,它们间有三个角对应相等,这两个三角形能完全重合,是全等形,但再取出III的三角形与I叠在一起后,发现它们不重合,不是全等形。因此我们进一步证实了:三个角对应相等的两个三角形不一定全等“AAA”也不是判定三角形全等的方法。

  2、填下表(挂出小黑板,让学生思考、讨论,共同填答)。

  两个三角形中对应相等的元素两个三角形是否全等依据的判定法反例

  SSS√SSS

  SAS√SAS

  SSAX可举反例

  ASA√ASA

  AAS√AAS

  AAAX可举反例

  3、范例

  例:如图,,,点F是CD的中点,吗?试说明理由。

  教学要点:

  (1)分析题目结论假定,可转化为,需证它们所在的两个三角形全等;

  (2)观察图形,、中,并不在三角形中,为此添辅助线AC、AD;

  (3)在△ACF与△ADF中,已知AF是公共边,CF= FD,尚缺一条件,它只能是AC与AD相等;

  (4)为证AC与AD相等。又要找它们分别在的△ACB与△ADE;

  (5)△ACB与△ADE,由已知条件可由SAS证它们全等;

  (6)书写范例。

  解:连结AC、AD,由已知AB=AE,,BC=DE

  由SAS三角形全等判定法可知:

  △ABC≌△AED

  根据全等三角形的.对应相等可知

  由,,(公共边),根据SSS可知△ACF≌△ADF

  根据全等三角形的对应角相等可知

  又由于F在直线CD上,可得,即。

  你们可有其他方法吗?

 三、巩固练习

  1、如图,在△ABC中,,,试说明△AED是等腰三角形。

  2、如图,AB∥CD,AD∥BC,与,与相等吗?说明理由。

  四、小结由学生对本节的学习过程进行总结。

  五、作业

  (一)、填空题:

  1、有一边对应相等的两个三角形全等;

  2、有一边和对应相等的两个三角形全等;3、有两边和一角对应相等的两个三角形全等;

  4、如图,AB∥CD,AD∥BC,AC、BD相交于点O。

  (1)由AD∥BC,可得=,由AB∥CD,可得=,又由,于是△ABD ≌△CDB;

  (2)由,可得AD=CB,由,可得△AOD≌△COB;

  (3)图中全等三角形共有对。

  (二)、选择题:

  1、若△ABC≌△BAD,A和B、C和D是对应顶点,如果,,,则BC的长是()

  A、 B、 C、 D、无法确定

  2、下列各说法中,正确的是()

  A、有两边和一角对应相等的两个三角形全等;

  B、有两个角对应相等且周长相等的两个三角形全等;

  C、两个锐角对应相等的两个直角三角形全等;

  D、有两组边相等且周长相等的两个三角形全等。

  (三)、解答题:

  1 、如图,,,AC、BD交于点,图中共有几对长度相等的线段,你是通过什么办法找到的?

  2、如图,,,(1)等于多少度?

  (2)图中有哪几组平行线?

  (3)与的和是定值吗?

《全等三角形的判定》教案11

  教学目标:

  1、知识目标:

  (1)熟记角边角公理、角角边推论的内容;

  (2)能应用角边角公理及其推论证明两个三角形全等。

  2、能力目标:

  (1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;

  (2)通过观察几何图形,培养学生的识图能力。

  3、情感目标:

  (1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

  (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

  教学重点:

  学会运用角边角公理及其推论证明两个三角形全等。

  教学难点:

  sas公理、asa公理和aas推论的综合运用。

  教学用具:

  直尺、微机

  教学方法:

  探究类比法

  教学过程:

  1、新课引入

  投影显示

  这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”。于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案。

  2、公理的获得

  问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?

  让学生粗略地概括出角边角的公理。然后和学生一起做实验,根据三角形全等定义对公理进行验证。

  公理:有两角和它们的夹边对应相等的两个三角形全等。

  应用格式:(略)

  强调:

  (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)

  所以找条件归结成两句话:已知中找,图形中看。

  (3)、公理与前面公理1的区别与联系。

  以上几点可运用类比公理1的模式进行学习。

  3、推论的获得

  改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?

  学生分析讨论,教师巡视,适当参与讨论。

  4、公理的应用

  (1)讲解例1。学生分析完成,教师注重完成后的总结。

  注意区别“对应边和对边”

  解:(略)

  (2)讲解例2

  投影例2:

  学生思考、分析,适当点拨,找学生代表口述证明思路

  让学生在练习本上定出证明,一名学生板书。教师强调

  证明格式:用大括号写出公理的三个条件,最后写出

  结论。

  (3)讲解例3(投影)

  例3已知:如图4△abc≌△a1b1c1,ad、a1d1分别是△abc和△a1b1c1的.高。

  求证:ad=a1d1

  证明:(略)

  学生分析思路,写出证明过程。

  (投影展示学生的作业,教师点评)

  (4)讲解例4(投影)

  例4如图5,已知:ac∥bd,ea、eb分别平分∠cab、∠dba而交cd于e。

  求证:ab=ac+bd

  证明:(略)

  学生口述过程。投影展示证明过程。

  学生思考、分析、讨论,教师巡视,适当参与讨论。

  师生共同讨论后,让学生口述证明思路。

  教师强调证明线段之间关系的常见方法:截长法或补短法。

  5、课堂小结:

  (1)判定三角形全等的方法:sas、asa、aas

  (2)三种方法的综合运用

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

  6、布置作业

  a书面作业p68#1、2、3

  b上交作业p71b组2

  思考题:

  如图,已知:ad是a的平分线,ab<ac,求证:ac-ab>oc-ob

  板书设计:

  探究活动

  要测量河两岸相对的两点a、b的距离,可以在ab的垂线bf上取两点c、d,使cd=bc,再作bf的垂线de,使a、c、e在一条直线上,这时测得de的长就是ab的长,如图,写出已知、求证、并且进行证明。

《全等三角形的判定》教案12

  一、教学目标

  1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式、

  2、使学生掌握化简一个二次根式成最简二次根式的方法、

  3、使学生了解把二次根式化简成最简二次根式在实际问题中的应用、

  二、教学重点和难点

  1、重点:能够把所给的二次根式,化成最简二次根式、

  2、难点:正确运用化一个二次根式成为最简二次根式的方法、

  三、教学方法

  通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法、

  四、教学手段

  利用投影仪、

  五、教学过程

  (一)引入新课

  提出问题:如果一个正方形的面积是0.5m 2,那么它的边长是多少?能不能求出它的近似值?

  了、这样会给解决实际问题带来方便、

  (二)新课

  由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

  这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

  总结满足什么样的条件是最简二次根式、即:满足下列两个条件的二次根式,叫做最简二次根式:

  1、被开方数的因数是整数,因式是整式、

  2、被开方数中不含能开得尽方的因数或因式、

  例1?指出下列根式中的最简二次根式,并说明为什么、

  分析:

  说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、

  例2?把下列各式化成最简二次根式:

  说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的.因数或因式开出来,从而将式子化简、

  例3?把下列各式化简成最简二次根式:

  说明:

  1.引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简、

  2.要提问学生

  问题,通过这个小题使学生明确如何使用化简中的条件、

  通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题、

  注意:

  ①化简时,一般需要把被开方数分解因数或分解因式、

  ②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化、

  (三)小结

  1、满足什么条件的根式是最简二次根式、

  2、把一个二次根式化成最简二次根式的主要方法、

  (四)练习

  1、指出下列各式中的最简二次根式:

  2、把下列各式化成最简二次根式:

  六、作业

  教材P、187习题11、4;A组1;B组1、

  七、板书设计

【《全等三角形的判定》教案】相关文章:

三角形全等的判定教案12-28

全等三角形的判定教学反思03-03

三角形全等的判定说课稿11-19

全等三角形教案05-25

全等三角形教案优秀11-21

《探索三角形全等的条件》教案设计08-25

《全等三角形》的教学反思05-15

全等三角形的识别说课稿11-03

全等三角形的识别说课稿3篇11-03

《相似三角形的判定》教学反思(通用10篇)10-28