(精)《圆的周长》教案15篇
作为一位兢兢业业的人民教师,总不可避免地需要编写教案,借助教案可以让教学工作更科学化。我们应该怎么写教案呢?下面是小编为大家整理的《圆的周长》教案,欢迎阅读,希望大家能够喜欢。
《圆的周长》教案1
【教学内容】
教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。
【教学目标】
1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。
2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。
【教学重、难点】
掌握并理解圆的周长计算公式及其推导过程。
【教具、学具准备】
圆规、直尺、课件、圆纸片、线。
【教学过程】
一、导入新课
出示情境图:谁的铁环滚一圈的距离长一些?为什么?
教师:铁环滚动一周的距离我们就叫做铁环的周长。
教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。
板书课题:圆的周长。
二、感知圆的周长与直径的关系
1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?
学生指出并回答。(略)
2.观察。
课件演示右图:
问题:这两个圆周长有什么关系?你是怎么知道的?
小结:直径相等,圆的周长就相等。
3.课件演示右图:
问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。
4.小结。
问题:通过刚才的观察,你有什么发现?
学生:圆的周长和直径有关系。
三、探究圆的周长与直径的倍数关系
圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。
1.小组讨论,制定探究步骤。
出示探究建议:
(1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。
2.说明活动要求。
每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。
圆的直径圆的周长周长除以直径的商(保留两位小数)
3.小组合作,进行探究。
4.汇报交流。
(1)交流测量的方法。
提问:谁来介绍一下,你们组是怎样测量圆的周长的?
学生汇报测量的方法。(绳绕法、滚动法……)
教师:在这些方法中,最欣赏哪个组的方法?
小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)
(2)交流计算方法和结论。
提问:观察这些计算结果,你有什么发现?你还有哪些了解?
学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。
5.介绍圆周率。
圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的`周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,1999年日本的两位科学家把π值精确到20xx亿位。
6.总结圆周长的计算方法。
问题:你怎样理解周长/直径=π?你还能知道什么?
结论:c=πd,d=c/π,c =2πr,r=c/2π。
说明:为了计算方便,我们把π近似的取为3.14。
7.教学例2。
让学生独立列式计算,提示用估算检查计算结果。
[评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]
四、巩固练习
(一)判断。
1.π=3.14。()
2.计算圆的周长必须知道圆的直径。()
3.只要知道圆的半径或直径,就可以求圆的周长。()
(二)选择。
1.较大的圆的圆周率()较小的圆的圆周率。
a.大于b.小于c.等于
2.半圆的周长()圆周长。
a.大于b.小于c.等于
(三)实践操作。
请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。
五、课堂小结
通过这堂课的学习,你有什么收获?你还有什么问题?
六、课堂作业
1.课堂活动第1、2题。
将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。
2.练习五第1~5题。
在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。
七、课后作业
1.求下面各圆的周长。
(1)d=2米(2)d=1.5厘米(3)d=4分米
2.求下面各圆的周长。
(1)r=6分米(2)r=1.5厘米(3)r=3米
[评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]
《圆的周长》教案2
【教学内容】
《义务教育课程标准实验教材 数学》六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义。
2.通过对比分析掌握圆周长的计算公式。
3.能用圆的周长的计算公式解决一些简单的数学问题。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:推导圆的周长的计算公式,准确计算圆的周长。
难点:理解圆周率的意义。
【教学过程】
一、情景引入
出示一块钟表
问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?
学生猜想。
教师演示小秒针的运动过程,证实学生的猜想是否正确。
问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?
生:先计算出走一圈的路程有多长,在计算出走60圈的长度。
师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)
(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
二、动手量一量
学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。
物品名称
周长
直径
1号圆
2号圆
3号圆
4号圆
教师评价学生小组合作的情况。
(设计目的:强调学生的小组合作意识)
师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。
学生展示小组的成果。
(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)
三、对比分析
师:观察一下我们得到的几组数据,你发现什么规律了吗?
学生自由谈。
学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。
师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。
课件展示圆的周长的测量方法。
(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)
课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。
(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)
小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。
你知道吗?我们的祖先在圆周率的`计算上可是有着辉煌的成绩的,你能讲给同学们听吗?
学生自由谈。
我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计目的:通过学生讲故事渗透爱国主义思想)
小结2:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
圆的周长(用字母C表示)计算公式:C=πd或C=2πr
四、动手做一做
下面我们来看看怎样应用圆的周长计算公式来解决问题。
1.计算圆的周长
实物投影展示学生的解题过程
(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)
2.一个圆形喷水池的半径是5m,它的周长是多少米?
(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)
3.小组交流错误原因。(可让其他学生避免同样的错误)
(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)
4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。
(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)
五.你能说说在这一节课中你有什么收获吗?
可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。
六、课外合作:
小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。
(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
《圆的周长》教案3
教学目标:
用“直接尝试法”探究“已知圆的周长求圆的直径”的方法,培养学生解决问题的能力。
教学过程:
一、探究解决问题的方法。
⑴出示情境图。
⑵介绍解决方法。
1:251.2÷3.14=80(米),因为c=πd,所以只要用周长除以3.14,就可以算出直径了。
2:解:设花坛的直径是x米。X×3.14=251.2,然后解方程。
⑶沟通两种方法间的联系。
师生一起解方程:x=251.2÷3.14,x=80。
观察解方程的第二步“x=251.2÷3.14”和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。
⑷联想。
想:算出圆的直径有什么价值。
可以算出半径,80÷2=40米;还可以算圆的'面积;根据圆的直径找出圆心;画出圆。
二、多种练习,内化知识。
⑴独立完成试一试和练一练。
⑵解答练习十八第6题。
独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。
⑶解答练习十八第8题。
学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。
三、作业,练习十八第7题。
《圆的周长》教案4
学材分析
教学重点:
周长公式的推导过程。
教学难点:
灵活地运用圆的周长公式。
学情分析
学生对一些组合图形的周长概念比较模糊。
学习目标
1.通过动手操作,引导学生发现圆的周长与直径之间的关系,推导出圆周长的计算公式,并能运用公式解决一些简单的实际问题。
2.理解圆周率的意义,掌握圆周率的近似值,并介绍我国数学家对圆周率的研究史实,向学生进行民族自豪感的教育。
3.理解、掌握圆周长的计算公式,能正确地计算圆的周长。
导学策略
导练法、迁移法、例证法
教学准备
圆形铁丝、圆的模型、画圆工具
导学流程设计:导入--探究新知--巩固练习--总结
教 师预设
学 生活动
一.引入
1.实践引题。
画圆,指出圆的周长。如果第二个圆一周长度(周长)要求比刚才这个圆的周长大,画的时候该怎么办?(半径变大,直径变大。)圆周长的.大小与什么有关呢?
2.揭示课题。
二.展开
1.按课本P11问题中的插图和讨论题,分4人小组进行讨论。
2.出示P11活动中铁丝围成的圆,求它的周长,有什么办法?(绳子绕一周,量绳子;铁丝剪断,化曲为直。)
出示一个圆形,求它一周的长度,还有什么办法?(引出在尺上滚动周长的方法。)在滚时要注意什么?(滚动时很容易原地打转,测量时容易有误差,所以要多次测量求平均值)
3.分组操作:用滚动(将圆片拿起,放在尺上滚)或用绳子绕一周,测绳子长度的方法,分别测出直径是2㎝,3㎝,4㎝,5㎝的圆的周长,填表计算,观察直径与圆周长的关系。(然后分小组汇报,由多组汇报都得到周长是直径的3倍多一点,让学生深刻体验到周长与直径的关系从而引出圆周率)
4.通过实验认识圆周率。各组汇报测量结果,汇报观察结果。经实验得出:不管多大的圆,它的周长除以直径的值是一个常数。我们把它叫做圆周率,用字母π表示。
π=
因此:圆的周长=直径×圆周率
C=πd或C=2πr
最后要向学生说明,大家实验结果不统一,是由于滚动时有磨擦力等因素干扰,无法很精确。
5.介绍数学家祖冲之,认识圆周率。
为了计算圆周率的更精确的值,数学家们花费了不知多少精力,终于得到了一个比一个更精确的近似值。
三.巩固
1.请生复述圆周长公式的推导过程。
2.运用圆周长的计算公式进行计算。
3、同桌互相编题给对方做,可以求周长也可以求直径,还可以求半径。
练一练
四.总结
五.作业
画圆,指出圆的周长。
4人小组进行讨论
六年级
分组操作
同桌互相编题给对方做,可以求周长也可以求直径,还可以求半径
教学反思
教后记:新课程重视学习的过程是非常正确,圆周长的计算公式由学生自己动手操作,推导出来印象特别深刻,根据直径求周长学生很轻松的掌握了;而根据周长求直径或半径的逆向思维的题目对于学生也变得简单了。
《圆的周长》教案5
教学内容:
义务教育课程标准实验教科书数学六年级上册第62~64页的内容。
教学目标:
1、知识与技能目标:使学生直观认识圆的周长,知道圆的周长的含义,通过对圆周长的测量方法和圆周率的探索、圆的周长计算公式的推导等教学活动,培养学生观察、猜测、分析、抽象、概括、动手操作的能力和解决简单的实际问题的能力。
2、过程与方法目标:通过摸一摸,动手操作,猜想验证等方法使学生亲历整个探寻知识的过程,从而掌握圆周长计算的由来和相关知识。
3、情感态度与价值观:通过介绍我国古代数学家祖冲之在圆周率方面的伟大成就,对学生进行爱国主义教育,激发民族自豪感,培养创新精神以及团结合作精神。
教学重难点:
教学重点:通过测量、计算、猜测、验证等过程,理解圆的周长计算公式的推导过程及其实践运用。
教学难点:理解圆周率的意义。
教具准备:圆形纸片、直尺、计算器、记录单
教学过程:
一 课始预习,初步了解
看书完成前置作业:
1、什么叫圆的周长?并举例说明。圆的周长可以怎样测量?
2、什么叫圆的半径和直径?二者之间有什么关系?
3、你认为圆的周长的
大小跟什么有关?为什么?你能想出办法证明圆的周长跟它有什么样的关系吗?
4、哪个数学家对圆的周长有关的知识做出了卓越的贡献
(设计意图:学生通过看书自学,对本课知识点有个初步了解,在完成前置作业的.过程中对本课知识的重难点进行思考,带着问题和疑惑走进课堂,使学生产生学习的动力和积极性)
二、互动交流,探究新知
1、认识圆的周长
⑴让学生根据自己的理解说说什么叫圆的周长
⑵学生通过摸一摸圆形学具,感受围成圆的线是曲线,完善圆的周长的概念。 ⑶谁能用一句话来概括一下圆的周长?
⑷课件演示圆的周长,并出示圆的周长概念。
围成圆的曲线的长,叫做圆的周长。
(设计意图:学生通过看书自学,对圆的周长概念有了初步认识,再通过摸一摸的感知活动对圆周长的曲线特点有了深刻体会,课件演示让学生对圆的周长的直观形象进行感知,从而对圆周长概念有了深刻理解)
2、实验、探究圆的周长与直径的关系
⑴认识圆的半径和直径
学生通过折圆纸片,找出半径和直径,通过观察,测量明确d﹦2r
⑵猜测圆的周长与什么有关系
师:长方形的周长和什么有关系正方形呢?那么圆的周长究竟与什么有关系呢?谁来说一说?你觉得可以用什么办法来证明?
预设:
学生1出示大小不一的圆,分别比较它们的直径和周长,得出直径大的周长就大。
引导小结:①圆的直径越长,它的周长也就越长,圆的直径越短,它的周长也就越短。
②我们发现了圆的周长与直径的比值都是三点几,也就是说圆的周长都是直径的3倍多一些。
(设计意图:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情。)
3、学习圆周率的有关知识
⑴引入圆周率
师:其实,很早就有人研究了圆的周长与直径的关系,发现任意一个圆的周长与它的直径的比值都是一个固定的数,我们把它叫做圆周率。(板书: =圆周率)
⑵介绍圆周率的资料,并对学生进行爱国主义教育
师:关于圆周率的知识,你知道哪个数学家在这方面做出了什么样的卓越贡献?(学生通过预习有一些初步的印象。)
课件播放圆周率的资料完善学生的记忆。
在当时,祖冲之所算的圆周率的值要比外国科学家早多少年?听完刚才的这些资料介绍,你有什么感想?
师:我们真为我们国家能出现这样一伟大的数学家感到骄傲和自豪,老师也希望同学们长大以后,能成为一个了不起的人,对国家有用的人。
⑶教学圆周率的读写法及数值
师:对于圆周率,我们用希腊字母л来表示。(板书л)
①让学生跟老师读,并用手指在桌子上边写边读。
②经过数学家们研究发现圆周率是一个什么样的小数呢?
学生回忆预习的内容,师提醒学生明确圆周率是一个无限不循环小数它的数值是л=3.1415926……(板书:л=3.1415926……)圆的周长是它直径的∏倍,是一个固定不变的数。 ③圆周率的近似值。
师:随着现代科技的发展,借助超级计算机,人们算出的圆周率,小数点后面已经达到了万亿位。但是在实际生活中,我们并不需要这么多的小数,一般保留两位小数。(板书:л≈3.14)
④学生看书,再次阅读圆周率的知识点介绍
(设计意图:圆周率是新出现的一个概念,让学生从预习的初步感知,到探索中对圆周率的理解,到再次的看书完善对圆周率概念的陈述,了解近似值的大小取值,让学生对圆周率有了深刻的认识,为圆周长的公式推导打下了基础,学生在这个过程中体会到攻破难关的喜悦。)
4、圆周长计算公式的推导
提问:圆的周长一般用字母什么来表示?圆的直径呢?
那么根据周长与直径的关系我们可以得到一个什么样的公式
引导学生回答并板书:C÷d=Л,
那么C=?(板书:C=лd)
让学生互相说说出公式所代表的意义,并汇报。
想一想,直径和半径的关系,已知半径r,圆的周长C又等于什么?学生推导教师板书:C=2лr
三、解决实际问题
1计算下面各圆的周长
《圆的周长》教案6
【本课内容在教材中的地位和作用】
学生以前已经学过直线图形,上节课又学习了“圆的认识”,这些知识为本课教学打下了扎实的基础。教材通过一系列问题情境、实践操作,让学生在观察、分析、归纳中理解圆的周长的含义以及圆周长与直径的关系。通过圆周率的形成过程,圆周长公式的推导、应用,让学生掌握圆周长的计算。从而为下节课学习利用圆的周长公式,反求圆的直径或半径,作好了理论上的准备。应该说,这堂课起承前启后作用。
【教学目标】
1.学生通过动手绕一绕、滚一滚,找出圆的周长与直径的倍数关系。知道什么是圆的周长、什么是圆周率。掌握圆的周长公式,并会运用公式进行简单的计算。
2. 通过对圆周率π值的探求,培养学生科学的和实事求是的探索精神及数学的概括能力和逻辑思维能力,增强学生的动手操作能力。
3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、10厘米、15厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备课件、带绳小球,圆规,尺子,保温杯。
【教学过程】
(一)复习旧知、创设情境、引出新知
1、复习:圆心、半径、直径、直径与半径的关系(略去)
2、课件出示问题情境:龟兔赛跑
师评价:你们对圆的认识很到位,下面我要问同学们一个问题,你听说过龟兔赛跑的故事吗?哪个同学愿意说说故事的大概意思?(学生说)
师:兔子因骄傲自大输了比赛,过后很不服气,于是想出一个办法,进行第二次比赛(课件出示),你们猜,这次谁会输?
提问引导:
(1).沿着正方形路线跑实际就是求正方形的什么?(正方形的周长)
(2).正方形的周长怎么求?用字母怎样表示?
(3).正方形的周长与谁有关?有什么关系?
生:正方形的周长与边长有关。周长是边长的4倍。
(4).兔子沿着圆形的路线跑实际上就是求圆的什么?(圆的周长)
3引出课题:
那到底什么是圆的周长,怎样求圆的周长?圆的周长和正方形的周长到底哪个长?这节课我们就一起来研究圆的周长。上完这节课后,我相信同学们都会解答这个问题了。(板书:圆的周长)
[设计意图:设置问题情景,引发求知欲望,引出新课,同时为后面圆的周长与直径的关系教学做好铺垫。]
(二)教学新课
1.认识圆的周长。
(1)请同学们拿出学具中最大的圆用手摸一摸哪个是圆的周长?指一名到前面摸一摸。注意起点、终点。
(2)同桌互相说一说:什么是圆的周长?
生:围成圆的曲线的长叫做圆的周长。
(3)电脑出示圆的周长概念 ,读一遍。
[设计意图:让学生动手摸,动画看,动嘴说,引出圆周长概念。]
2.化曲为直,引发求知欲。
(1)我们想知道你课桌的周长怎么办?
生:用直尺量出课桌的长和宽。
(2) 实物演示:老师这有一个杯子,用它喝水有时烫手,我想编一个隔热套, 用直尺测量它的周长方便吗?
生:不方便,因为直尺是直的,而圆的周长是曲线围成的。
(3)用什么办法化曲为直测量出圆的周长呢?(学生讨论)。谁来说一说?
①用围的方法。指名演示。(板书:围)
问:要注意什么?
生:先拉直后,只能量围的一周的长度。
②用滚的方法。指名演示。(板书:滚)
问:要注意什么?
生:在圆上先作了记号,沿直尺滚动一周。
师:你们棒极了。用围和滚的办法可以把圆的周长转化为直线来测量。是不是所有圆的周长都可以用这两种方法测量呢?
(4)谁能用围的方法量一量黑板上圆的周长?
两名学生量。说一说自己的感觉。
(5)老师拿一条绳子,在绳的一端拴上一个小球,甩动绳子使小球转动起来。
问:小球转动时走过的路线成什么图形?这个圆的周长能用围、滚的办法测量吗?这说明不是什么样的圆都可以用围、滚的办法测量。因此我们需要探讨出一种计算圆的周长的方法。(比如像正方形)
[设计意图:通过一系列操作,如:量桌面周长,测量保温杯隔热带,如何测量黑板圆的周长,如何测量带绳小球绕成的圆等,将问题一步步引向深入,在教给学生围、滚的方法同时,引起学生思维冲突吗,激发求知欲。]
3寻找关系,创设情景,测量圆的周长
(1)出示探究:a:正方形的周长和谁有关?有什么关系?
(板书:c=4a)
b、那圆的周长与谁有关呢?有怎样的关系?(课件出示验证)
c、根据学生回答,教师板书:圆的周长 直径
(2) 问题情景:是不是圆的周长与直径之间也像正方形的周长与边长之间那样存在着固定不变的倍数关系呢?同学们今天也当一次数学家,看看我们能不能发现什么规律,下面我们进行一组实验,看看圆的周长与直径之间到底又怎样的关系。
(3)小组合作,测量数据。
①拿出你们的学具圆,汇报一下,直径分别是几厘米?(5cm、10cm、15cm)
②下面以小组为单位用围或滚的方法量一量圆的周长,并算一算,周长与直径有怎样的'关系?请小组长负责分工,看哪一组量得准,算得快。结果填在表格中。
(4)比较验证,揭示规律:
①汇报交流:通过测量和计算,你发现什么规律?
生:直径不同,周长也不同,但周长总是直径的三倍多一些。
②问:是不是所有圆的周长都是直径的3倍多一些呢?
电脑演示围、滚的过程和结果,让学生看看圆的周长是直径的几倍。
[设计意图:通过学生探究圆的周长与直径的关系、小组实验操作与计算、电脑演示验证等,让学生发现圆周长与直径的关系。]
4.介绍圆周率,推导公式,探求新知(重点和难点)。
(1)引导得出圆周率概念:
师:看来圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。(师质疑:为什么我们测量和计算的结果会不一样?解释:测量误差)。数学上我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。用式子表示是:
补充板书:圆的周长÷直径=圆周率π(固定)
教师讲解:π=3.141592653 ‥‥(无限不循环小数)
π≈3.14
(2)引导自学圆周率小资料:其实,很早以前,人们就开始研究圆周率这个问题了,关于这方面知识,我们可以在课后自学书上p63表后相关介绍。
师:现在,我们根据这个规律能否探究出圆的周长公式呢?
(3)公式推导:
师指圆周率公式:刚才我们通过自学知道圆周率是圆的周长与直径的比值,用字母表示是:
板书:C÷d=π
师:已知圆的直径怎样求圆的周长呢?同桌互相说一说。
板书:C=πd
师:已知半径怎么求圆的周长呢?
板书:C=2πr
问:知道什么条件就可以计算圆的周长?(强调:d、r)
师:这样,今后我们要知道圆的周长不但可以用围或滚的测量,现在我们还可以用公式计算了,下面我们就应用这两个公式解决一些实际问题。
5、应用公式解决实际问题。
(1)解决龟兔赛跑问题:
问:学了周长公式,现在你们会解决龟兔赛跑问题了吗?
? 学生尝试解答
? 指名板演,
? 集体订正,问:这位同学是利用什么公式做的?需要什么条件?
? 教师课件演示规范步骤。
(2)实际应用:汽车车轴距离地面0.4米,车轮滚动一周是多少米?如果车轮滚动了1000周,那么汽车行了多少路程?
[学习知识的目的是为了应用,在应用环节设计了两个例题,一是解决课前的问题,是已知d求c。二是小车轮胎问题,是已知r求c。这是两个学生经常接触的数学问题,具有代表性。]
(三)课堂小结
这堂课你有什么收获?(出示填空)
1、基础练习:(略)
2、知识延伸:(略)
3、课后思考:(略)
[巩固练习设计三个层次:基础题是解决当堂重要知识和易错点;提高题是让学生能综合利用;课后思考是为下节课承前启后.]
(五)作业:
1、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?
2、钟面分针长10厘米,求针尖一天走过多少厘米?
3、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?
(六)板书设计(略)
《圆的周长》教案7
第一单元圆的周长和面积
一.本单元的基础知识
本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。
二.本单元的教学内容
P2~22.本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。
三.本单元的教学目标
1.认识圆,掌握圆的.特征,知道是轴对称图形,会用工具画圆。
2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的周长与面积。
四.本单元重难点和关键
1.教学重点:求圆的周长与面积。
2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。
3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。
五.本单元的教学课时
13课时
《圆的周长》教案8
教学素材:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。
教学目标:
1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。
2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。
3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。
教学设计思想:
复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的'认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。
教学过程:
一、创设情境,揭示课题。
二、回顾整理,讨论交流。
1、怎样求圆的周长?求圆的面积有几种情况?
2、圆的周长和面积公式是怎样推导出来的?
3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)
4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)
5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?
三、发现生活中的数学问题
教师结合图片演示,让学生提出有关圆的周长和面积的问题。
图片内容:农村的喷灌、碾子、拴在木桩上的小羊。
四、走进美丽的图形世界
教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。
五、开心词典
以开心词典的形式,让学生做六道选择题。
六、走进生活,解决问题
1、小猴子骑独轮车走钢丝。求车轮要转多少周。
2、用绳子绕树干10周,求横截面的直径。
3、一个圆形餐桌的直径是2米,如果一个人需要0.5米宽的位置就餐,这张餐桌大约能坐多少人?
4、刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场.这个养鸡场的面积是多少平方米?
七、思考生活中的数学问题
1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?
2、阅读关于400米标准跑道的小资料。
课后思考题:一块正方形草地,边长是20米,在两个相对的角上各有一棵树,树上各拴一只羊,拴羊的绳长与草地边长相等,两只羊都能吃到草的草地面积是多少平方米?(提示:先根据题意画出图再解答
《圆的周长》教案9
教学目标:
⑴通过对比让学生理解计算圆周率的必要性;通过合作交流计算圆周率,并推导出圆周长的计算公式;会利用公式解决简单的数学问题。
⑵通过学生的合作操作交流活动,培养学生的精确操作能力,培养学生的探索意识。
教学流程:
一、揭示课题
⑴猜测这节课的学习内容。
⑵揭示课题--圆的周长。
二、确定探索新知的方向。
⑴观察课前画在黑板上的两幅图。
分别指出正方形、圆形和正六边形的周长。
⑵沟通联系。
找出正方形和圆形联系的地方(圆的直径就是正方形的边长);找出正六边形和圆形联系的地方(圆的`半径就是正六边形的边长,圆的直径就是2个正六边形的边长)。
⑶比较周长的长短。
以直径为基准,正方形的周长相当于直径的4倍,圆形的周长比它小;正六边形的周长相当于直径的3倍,圆形的周长比它长;所以,圆形的周长在直径的3倍与4倍之间。
⑷确定探究方向。
量出圆的周长和直径,算出它们之间的倍数。
⑸准备数据采集。
序号
周长(c)cm
直径(d)cm
周长是直径的几倍
三、合作探究新知。
⑴学生操作活动。
小组合作:量出所带圆形物体周长和直径,采集数据,填入上表。
教师观察:各组量周长和直径的情况,量周长有用线围的,用圆片滚的;量直径不成问题,上一节课的知识已经迁移、内化为学生的技能。
教师在分组活动中采集到的数据。(是后加的,时加的)
序号
周长(c)cm
直径(d)cm
周长是直径的几倍
1
15.5
5
3.10
2
8.9
2.9
3.07
3
14
4.3
3.26
4
7.6
2.5
3.04
5
8.9
2.7
3.30
⑵合理,得出公式,
看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。
⑶介绍祖冲之。
四、利用新知解决简单的数学问题。
⑴说出计算周长的算式。
⑵口答练习十八1~2。
⑶作业练习十八3~4。
《圆的周长》教案10
教学目标:
⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。
⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。
⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。
教学重点、难点
教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。
教学过程设计
一、创设情境,引发探究
⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。
⒉揭示课题
⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?
⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?
板书课题:圆的周长
二、人人参与,探究新知
(一)教具演示,直观感知,认识圆周长。
教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?
(二)理解圆周率的意义
活动一:测量圆的周长
⒈教师提问:你能不能想出一个好办法来测量它的周长呢?
①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。
然后各组分工同桌合作,量出圆片的周长。
②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。
⒉用"几何画板"《小球的轨迹》演示形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?
⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?
活动二:探究圆周长与直径的关系,认识圆周率。
⒈圆的周长与什么有关。
⑴启发思考
正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?
⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?
得出结论:圆的周长与它的直径有关。
⒉圆的周长与直径有什么关系。
⑴学生动手测量,验证猜想。
学生分组实验,并记下它们的周长、直径,填入书中的表格里。
⑵观察数据,对比发现。
提问:观察一下,你发现了什么呢?
(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
⑶出示"几何画板"《周长与直径的关系》演示。
⑷比较数据,揭示关系。
正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的'商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。
⒊认识圆周率
⑴揭示圆周率的概念。
这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率
现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π
⑵介绍π的读写法
⑶指导阅读,了解中国人引以为自豪的历史。
提问:你知道了什么?
(三)推导圆的周长计算公式。
⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd
请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?
⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。
提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?
学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?
三、应用新知,解决问题
1、和自己的伙伴一起解答例1和做一做
2、说出这两题用哪个公式比较好?
四、实践应用,拓展创新。
⒈基础性练习:
(1)求下列各圆的周长(几何画板)
r=3厘米 d=4厘米
(2)、我们现在有办法求唐老鸭跑的路程吗?
⒉、判断
①圆的周长是直径的π倍。( )
②大圆的圆周率小于小圆圆周率。( )
3、提高练习
在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?
五、总结评价,体验成功
1、你学到了什么? 2、你是怎么学到的?
《圆的周长》教案11
教学内容
人教版《义务教育课程标准实验教科书数学》六年级上册
教学目标
1.使学生通过绕一绕、滚一滚等活动,自主探索圆的周长与直径的倍数关系。知道圆周率的含义,并能推导出圆的周长公式,学会运用公式解决简单的求圆周长的实际问题。
2.使学生在活动中培养初步的动手操作能力和空间观念。
3.结合圆周率的教学,使学生感受数学的文化价值,激发学习数学的兴趣。
教学过程
一、 复习导入
师:这一节课我们来研究有关周长的问题。
出示正方形
师:看屏幕,认识吗?
师:这是一个(正方形)
师:谁来指一指它的周长
生上台指。
师完整指:正方形4条边的总长就是它的周长。
出示圆
师:继续看,这是。。。。
生:圆
师:圆 的.周长你能指一指吗?
生上台指
师:我们一起来指一指! 从一点开始,绕一圈,回到这一点里结束。看清楚了吗?(出示动画)
师:围成圆一周曲线的长度就是圆 的周长
【板书:圆的周长】
二、感知化曲为直
1、师:2个图形,分别为1号和2号。(给图形标号。)
师:给你 一把直尺,(慢慢的拿出来)。让你通过测量得到它们的周长,【板书:量】你愿意测量几号?
师: 想想,用手势1 或者2 告诉老师……怎么想的?
……
师:对,正方形是由线段围成的,可以用直尺直接测量。
而围成圆的——是一条曲线【板书:曲】,直接量确实不太方便。
师:不过呢,老师今天就是要为难一下你们,要求用直尺直接量出圆的周 长,这可是要想办法的哦! 敢不敢挑战?
2、用直尺测量圆的周长
(1)荧光圈
师:看,什么?(圆形的荧光圈) 怎样量 它的周长?
生:把接头拔下来,拉直了量。
师:像这样!断开,拉直测量!
把接头部分去掉,这一段的长就是荧光圈的周长。
这个方法很不错哦!
(2)飞镖盘
师:继续 挑战!第二样,什么?(圆形的飞镖盘)能拉直量吗?
怎么办呢?
生:用线绕。
课件演示:线贴紧圆绕一周,多余部分 去掉 或者做上记号,然后把线 拉直测量,这一段线的长就是圆的周长。
师:还有其他办法吗?
生:滚
《圆的周长》教案12
设计说明
圆的周长是在学生认识了圆,了解半径和直径关系的基础上进行教学的,是学生初步研究曲线图形的基本方法的开始。鉴于本课时的教学属于计算公式的教学,在设计上突出了以下两点:
1.循序渐进,逐层展开。
教师是学生学习的组织者、引导者、合作者,根据这一理念,我遵循激、导、探、放的原则,引导学生思考、操作,鼓励学生概括、交流。学生运用知识去大胆尝试,在尝试中培养学生自主探究、合作交流、动手操作的能力。
2.动手实验,突破关键。
理解和认识圆周率是推导圆的周长计算公式的关键。教学时用较多的`时间组织学生动手实验,探究和认识圆周率,让学生在猜测、实验、验证、计算、交流中发现和认识圆周率,理解周长计算公式的来龙去脉。
课前准备
教师准备
PPT课件
学生准备
直尺、圆形硬纸板、圆规
教学过程
第1课时
认识圆的周长
⊙创设情境,导入新课
1.课件出示两辆车,车轮的大小不一样。
师:明明和刚刚分别骑着自行车和踏板车,如果轮子只滚动一圈,哪个滚得远?
学生讨论、交流,得出车轮越大,滚一圈就越远。
2.引入:在课前,我们通过学情检测卡的内容,已经了解了车轮滚一圈的长度就是它的周长。这节课我们一起来探究圆的周长。
《圆的周长》教案13
教学内容:
教材第56~57页例1
教学目标
1、引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。
2、培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。
教学重点和难点
重点:理解圆的曲线特征
突破方法:通过实物只管演示,自主探索元的特征。
难点:用圆的特征解释生活中的相关现象。
教学过程设计
一、创设情景,引入新课
教师多媒体课件出示主题图
(1)主题图呈现的是什么地方的生活场景?
(2)图上画了些什么?你了解到哪些信息?有何感想?
(3)根据画面情景,你能说出一些带图形的物体吗?
(4)这些图形物体我们以前都学过吗?我们以前学过哪些图形?
(5)今天我们来研究一中新的图形,大家想认识它吗?
(板书课题:圆的认识)
二、探究新知
(1)探究新知(一)。
1)教师用课件出示下面的图形。
a让学生说一说各是什么图形。
b引导学生回顾这些图形都是由什么围成的?
c自己在练习本上画一画。
2)教师出示圆形纸片。
a这是什么图形?
b让学生举例说明周围哪些物体上有圆?
c学生自由展示自己的物品,并指出哪里有圆。
d让学生亲自摸一摸圆,同桌互相交流讨论圆是不是也是由线段围成?
教师板书:圆是由曲线围成。
(2)探究新知(二)。
1)画一画,剪一剪。
a你会用手中的`图形物体画圆吗?
b比一比,看谁的方法最多?
c动手画一画,展示并交流你是用什么物体画出圆的?
d将自己画的圆,剪下来,试着在桌面上滚一滚,你看到了什么?硬圆形物体呢?
e通过大家的的操作,你知道了什么?
教师板书:圆易滚动。(图)
2)课件出示下面图形。
a引导学生看图,获取信息。
b你喜欢这些图形吗?它们是怎样得到的?
c通过大家的观察,你又发现了什么?
教师板书:圆的外形美观。
3)讨论:用实物画出的圆,圆的大小能不能随意变化?为什么?
三、应用反馈
完成教材第58页的“做一做”第4题的第一问。
四、课堂小结
在今天的活动中,你最大的收获是什么?
五、课堂作业
用不同的实物画出三个圆
板书设计:
《圆的周长》教案14
第一课时 圆周长计算
教学内容:
圆周长计算公式的推导、周长计算(课本第62——64页的内容、练习十五第1题)。
教学目标:
1、认识圆的周长,理解圆周率的意义。
2、掌握圆周长的计算公式,会用公式正确计算圆的周长。
3、介绍祖冲之在圆周率方面的成就,进行爱国主义教育。
教学重难点:
1、圆的周长公式推导及运用公式计算圆周长是重点。
2、通过实验找出圆的周长与直径的关系—圆周率是难点。
3、关键是让学生动手操作测周长与直径。
教学准备:
学生准备:大小不同的圆柱物体,光盘。直尺或三角板、绳子。
老师准备:小黑板
教学过程:
一、复习铺垫(5分钟)
1、小黑板出示
(1)
(2)
10厘米 6分米
2、提出问题:
同学们,老师要用铁丝分别做成上面两个图形的框架,
(1)请同学们帮助老师算一算每个图形需要用多长的铁丝?
(2)、每个图形需要用多长的铁丝,是求什么的?
(3)什么是周长?周长的单位有哪些?
(4)、要求图(1)、图(2)的周长应该知道什么条件?
二、探索新知(25分钟)
(一)认识圆的周长(3
1、出示:圆的图形 和其他实物圆。
2、提问:
(1)这是一个什么形实物?
(2)老师要用铁丝给它箍紧,需要用多长的铁丝,是求什么的?圆周长指哪儿?
3、感知圆的周长: 让学生拿出光盘或其它实物圆摸一摸,进行感知。
4、怎样才能知道一个圆的周长呢?让学生猜一猜,说一说,。
(二)提示课题
在现实生活中,有很多的圆形物体的周长测着很不方便。我们能不能也像计算长方形、正方形周长一样找到计算圆周长的计算公式呢,今天我们一起来探讨如何找到圆周长的计算公式,来计算圆的周长。
板书课题------圆周长计算
(三)圆的公式推导
1、猜一猜,想一想,动手操作(8分钟)
(1) 提问:通过前面复习,我们知道长方形的周长与它的长和宽有关,正方形的周长与它的边长有关。那么请同学们想一想:
圆的周长与它的什么条件有关?
、独立思考后,前后桌四人交换意见。
、学生汇报:圆的周长和直径(或半径)有关。
继续提问:它们之间到底有什么的关系呢?
故事激趣
我国古代有一位伟大的数学家和文学家祖冲之就发现了圆的周长与它的直径之间的关系,这个发现是在1500年前。今天我们各位同学也当一回科学家,进行一次研究,来发现圆周长与直径之间到底有什么关系。
(2)、动手实验:(四人一组,合作完成) (一组测一个)
a、取出圆形纸板,量出圆形纸板的直径。
b、用绳子绕圆形纸板一周,绕圆一周的绳子长度,就是这个圆形的周长,然后测出绳子长度。 c、填到书中表内。
d、算出周长和直径的比值。
e、 汇报,老师把表画在小黑板上,并填表。
2、观查数据,发现规律:(5分钟)
观察表中数据,说一说你有什么发现?(四人一组,共同讨论,)
小组汇报:
同一个圆,它的周长是它的直径的3倍多一些。
3、认识圆周率(2分钟)
(1)、在学生发现圆周长与它的直径关系的基础上,老师明确:
刚才每一组同学测的圆大小都不同,但发现:任意一个圆的周长与它的直径的比是一个固定的数。即一个圆的周长是它的直径的3倍多一点。我们把这个比值,即这个固定的数(不变的数)给它起个名字叫圆周率。用字母π表示。 板书:圆周长=π 或 圆周长:它的直径=π 它的直径
(2)、让学生读一读( Pài )写一写。
(3)了解π的值。
A、π是一个无限不循环小数,π=3.1415926535..........
B、在实际应用中一般只取它的近似值,即π≈3.14.
4、圆周长公式推导:(5分钟)
老师:如果已知圆的直径,如何计算圆的周长。
圆周长= π×直径
如果周长用C表示:字母公式C=πd
知道半径,怎样求周长C=2πr
( 四)应用公式(2分钟)
教学例1:
(1)出示例题:圆形花坛的直径是20米,它的周长是多少米?
(2)学生读题并尝试列式计算。
(3)学生板演:3.14×20=62.8(米)
说明:、解题时可以不写计算公式
、π取两位小数3.14,计算中不必使用 ≈ ,直接用 = 号。
三、巩固练习(8分钟)
1、 完成课本64页做一做。
2、完成练习十五第1题。
3、补充作业。判断题:
(1)圆的周长刚好是直径的3.14倍。
(2)大圆的圆周率大,小圆的圆周率就小。
(3)、π是两位小数。
(4)、圆的周长等于它的半径的2π倍。
(5)、求周长,直径是唯一条件。
四、课堂小结(2分钟)
本节课我们认识了圆的周长,并且通过实验知道,圆有大小,但每一个圆周长与它的直径的比的比
值都相等,并且是一个固定的数,这个数叫圆周率,用π表示。从而找到了计算圆周长的公式,周长=直径 × π或半径×2×π。
五、布置作业:课堂作业
六、板书设计圆周长计算
圆周长=π(圆周率) 周长是直径的3倍多一点 (即 周长是直径的π倍 ) 它的直径, 圆周长= π×直径
因为d=2r 圆周长=π×半径 ×2
π是一个无限不循环小数,π=3.1415926535 C=πd C=2πr
注:(1)在实际计算中,π取近似值保留两位小数约等于3.14 。
(2)π在计算的应用中,结果不用“≈”号,而用“=”号。
3.14×20=62.8(米)
答:圆形花坛的周长是68.2米
七、课后记
《圆的周长》是在学生学习了正方形周长的基础上进行教学的。由复习老知识引入课题,目的是激发学生的探究积极性,然后我让学生自己推导出圆的周长公式,让学生以小组为单位进行操作:用“化曲为直”的绕线法测量圆的周长,并做好相应记录,填好表,为下一步探究奠定基础,接下来让学生猜一猜、想一想圆的周长与直径有什么关系,进而找到圆的周长与直径的关系,推出圆周率,得出圆的周长公式。最后让学生把得出的圆的.周长公式应用到练习中。
本节课中,我觉得比较成功的是:
首先,在创设情境时,我用旧知引新知导入新课,以学生的兴趣为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我想学生提出质疑测量、学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,再回到课前情境中,使学生在掌握新知识的基础上,解决实际问题,培养学生的应用意识。 在本节的教学中,我发现情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣,由于前面“正方形周长及圆的认识”知识的成功铺垫,因此本节课学生通过动手操作、自主探究、合作交流‘展示等活动,理解了“化曲为直”的数学思想方法。在推导公式过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。
本节课中也存在一些不足之处:比如:在对学生的表达进行评价是艺术性略显不足,应多鼓励,使学生获得成功的体验;另外,我对课堂的掌控和把握能力还需提高,虽然对教材进行了较为深入的分析,但还没有做到不彻底,小组合作要求不到位。
在今后的教学工作中,我将弥补以上不足之处,提高个人的理论修养,使自己的教学趋于完美。
《圆的周长》教案15
【教学目标】:
1、知道什么是圆的周长。通过绕一绕、滚一滚等活动找出圆的周长与直径的关系,理解圆周率的意义,合作推导出圆的周长计算公式。
2、能运用圆的周长的计算公式解决一些简单的数学问题。
3、初步体会转换思想,学到一些解决实际问题的数学方法。
【教学重点】: 通过自己动手找出圆的周长和直径之间的关系;探究圆的周长的计算公式,准确计算圆的周长。
【教学难点】:理解圆周率的意义
【教学难点】:教师:课件(U盘)、表格、卷尺。
学生:线或卷尺、计算器。
【教学过程】:
(1)教学准备:
1、根据“8里面有几个2,8就是2的几倍。8里面有4个2,
8就是2的4倍,要求8是2的几倍,用8÷2。”填空。
6是3的( )倍。 20是5的( )倍。
22是7的( )倍。
2、把倍数关系句改写成等式。
①6是3的2倍 ( )
②20是5的4倍。 ( )
③22是7的22/7 倍。( )
④C是d的a倍。( )
3、 数学是一门关系学
正方形的周长与边长的关系
C=4a
正方形的周长 是 边长的4倍
(2)新授过程。
自学课本第62页,思考
1、什么是圆的周长?
答:围成圆的曲线的长是圆的周长。
2、直观认识圆的周长。演示动画。
3、你认为 圆的周长与正方形的周长最大的不同在哪里?
4、课本里介绍了几种度量圆的周长的方法?
围绳法 滚动法
5、动画演示滚动法
6、哪个圆大?哪个圆的周长大?圆的大小由什么决定圆周长
的大小与什么有关系?
7、猜想、判断。周长与直径比哪个长?周长是直径几倍?
8、动手操作验证猜想
其实,很早就有人研究了周长与直径的'关系,发现任意一个圆的周长与它的直径的比值是一个固定的数。我们把它叫做圆周率,用字母π 表示。
π是一个无限不循环小数。
π=3.141592653……
在实际应用中常常只取它保留两位小数的近似值,π≈3.14。
9、投影展示π的前900位,体会π的小数数位的庞大。
10、圆周率前6位谐音记忆
π=3.14159…… 山 巅一寺一壶酒 巅 diān
11、得出结论:圆的周长是它的直径的π倍。写成等式是:c=πd
c=2πr。
12、对比 : c=4 a c=πd
(三)知识应用。求下面圆的周长
(四)课堂作业。《课本》P65 练习十四 1题、2题
【《圆的周长》教案】相关文章:
关于圆的周长教案圆的周长教案稿05-12
圆的周长教案07-05
《圆的周长》教案11-21
小学数学圆的周长教案05-15
圆的周长教案15篇03-25
实用的圆的周长教案4篇06-29
《圆的周长》的说课稿05-16
圆的周长说课稿01-24
《圆的周长》说课稿03-21