《三角形的面积》教案

时间:2024-06-13 10:16:57 教案 我要投稿

《三角形的面积》教案

  作为一位兢兢业业的人民教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么写教案需要注意哪些问题呢?下面是小编收集整理的《三角形的面积》教案,欢迎阅读,希望大家能够喜欢。

《三角形的面积》教案

《三角形的面积》教案1

  教学目标:

  1、让学生经历猜想、操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,推导出三角形面积公式。

  2、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣,发展学生的空间观念,培养学生的创新精神与实践能力。

  3、能运用三角形的面积计算公式解决简单的实际问题,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。

  教学重、难点:

  探究三角形面积公式的推导过程。

  教学准备:

  课件,2个完全一样的钝角、锐角、直角三角形,剪刀。

  教学方法:合作探究

  教学过程:

  一、谈话导入、揭示课题

  同学们穿着统一的校服,戴着鲜艳的红领巾,真精神。做这样一条红领巾需要多少布料呢?需要我们计算红领巾的什么?

  我们已经学过哪些图形的面积?

  红领巾是什么形状的?

  会求三角形的面积吗?这节课我们就学习三角形的面积。

  二、合作探究、汇报交流

  1、猜测:

  你想用什么方法求三角形的面积?

  平行四边形能转化成学过的图形求面积,三角形能转化成学过的图形求面积吗?

  用桌子上的材料(每人一个钝角三角形、每组一把剪刀)试试吧。

  转化成学过的'图形了吗?有难度吧。我们能不能换个思路、换种方法用两个三角形来拼呢?

  2、同桌合作动手操作。

  用两个同样的钝角三角形拼一拼。展示作品。

  3、小组合作。

  锐角三角形、直角三角形能拼成学过的图形吗?

  同学们想试试吗?根据提示板上的提示研究吧。

  提示:

  做一做:想办法把三角形转化成学过的图形。

  找一找:转化成的图形和原来的图形有什么关系。

  想一想:三角形的面积该怎么求呢?

  4、学生汇报。

  5、归纳小结。

  转化后的图形用一个名字概括,哪个比较合适?

  三、推导公式

  1、回顾

  课件演示:两个同样的三角形旋转、平移拼成了平行四边形。

  每个三角形与拼成的平行四边形有什么关系?

  三角形的底和高与拼成的平行四边形的底和高有什么关系?

  2、得出结论

  三角形的面积该怎样计算?

  为什么要除以2?

  三角形的面积计算公式用字母该怎样计算?

  3、小结方法

  刚才我们的研究过程正好体现了数学上常用的一种方法——转化法。

  4、拓展延伸

  介绍刘徽用一个三角形推导出了面积公式。

  四、运用公式解决问题

  1、解决红领巾的问题。

  2、解决底是8厘米、10厘米,高是6厘米的三角形的面积。

  体会底和高的对应性。

  3、三角形的面积是25平方厘米,底是10厘米,高是多少厘米?

  五、全课总结

  同学们,通过这节课的学习,你有收获吗?一起来分享吧!

  追问:

  三角形的面积为什么要除以2?

  怎样推导出三角形的面积计算公式的?

  只要大家勤动手、勤思考,就一定能学到更多的数学知识。

  板书设计:

  三角形的面积

  三角形的面积=平行四边形的面积÷2

  =底×高÷2

  S=ah÷2

《三角形的面积》教案2

  教学内容:课本第77页的例题,练习十八的第5-12题

  教学要求:

  1、使学生比较熟练地应用三角形面积的计算公式计算三角形的面积。

  2、能应用公式解答有关的实际应用问题。

  3、养成良好的审题,检验的习惯,提高正确率。

  教学重点:能比较熟练地应用公式计算三角形的面积,解答有关的实际应用问题。

  教学过程:

  一、复习

  1、三角形的面积计算公式是什么?为什么公式中有一个“÷2”?

  2、有关计算的错因分析:

  下面的结答,问题出在哪里?

  一个三角形,底是1.8米,高是1.2米,求它的面积。

  解一:1.8×1.2=16(平方米)

  解二:1.8×1.2÷2=2.16(平方米)

  3、导入新课:掌握了计算公式,我们就可以着手解决许多有关的实际应用问题。(板书课题:三角形面积的`计算)

  二、新授

  1、例题教学

  (1)读题后,让学生尝试练习,并指定两名学生板演,再集体订正。

  (2)注意“÷2”这一环节是否有人失误。

  2、应用练习

  完成课本第80页第8题的填表计算,把它化为4小题来处理,解答完成后填空。

  教师简评:求图形的面积,首先应确定所求的是什么图形,其次考虑运用什么公式计算。

  三、巩固练习

  1、课本第80页的第7题。

  先独立思考,再交流。

  议一议:(1)这所有的以涂色三角形底边为底,顶点落在对面那条平行线上的两个三角形的面积与涂色三角形面积有什么关系?为什么存在这种关系?

  (2)再画出一个与之等面积的三角形,只要怎么取顶点就可以了?

  (3)你能联想到什么?

  2、练习十八第5、6、9、10题(做在课作本上)

  ⑼一块三角形的玻璃,量得它的底是12.5分米,高是7.8分米。这块玻璃的面积是多少?如果每平方分米玻璃的价钱是0.9元,买这块玻璃要用多少钱?

  ⑽右图是人民医院包扎用的三角巾。现在有一块长18米,宽0.9米的白布,

  可以做多少块三角巾?

  (1)学生独立作业,教师巡视,作个别辅导,并及时反馈。

  (2)提取典型错例,进行评讲。

  (3)第10题有下列各种解法,哪些是对的,哪些有毛病?

  解一、14×0.9÷(0.9×0.9)

  解二、14×0.9÷(0.9×0.9÷2)

  解三、14×0.9÷(0.9×0.9)÷2

  解四、14×0.9÷(0.9×0.9)×2

  学生充分议后,教师简评:(作全课)

  板书设计:

  三角形面积的计算

  教后感:

  4、实际测量在地面上测量距离第课时总第课时

《三角形的面积》教案3

  教学内容:

  人教版第九册第三单元的《三角形面积的计算》。

  教学目的:

  (一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

  (二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。

  教学重点:

  掌握三角形面积的计算方法。

  教学难点:

  理解三角形面积计算公式的推导过程。

  教具准备:

  用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。

  教学过程():

  一、复习:

  提问:同学们,上节课我们学习了平行四边形面积的计算,谁能说说它的面积计算公式是怎样的?你知道它是通过什么方法推导出来的?

  二、导入新课:

  你们看,(屏幕出示三个三角形)这些是什么图形?那谁来说说看,哪个三角大?哪个三角小?(到底哪个大,哪个小呢?)要比较它们的大小,必须要知道这三个三角形的面积。那可以用什么方法知道这三个三角形的面积呢?

  三、新课:

  (一)好,我们就用数方格的方法来求这三个三角形的面积。同样每个方格表示1平方厘米。

  下面,就请同学们拿出老师发给你们的方格纸,请你数出这三个三角形的面积,看谁数的又对又快。

  小结:通过数方格,我们得到了这三个三角形的面积都是12平方厘米,因此,它们的面积是相等的。

  那你们觉得用数方格的方法计算三角形的面积,方便吗?既不方便,又不精确。

  像一块大的三角形土地,你能用数方格的方法求出它们的面积吗?那有没有更好的方法呢?(把三角形转化成已经学过的图形来计算面积)你真聪明

  师:这才是最科学的方法。今天,我们继续用这种方法研究三角形的面积。板书:三角形面积的计算

  师:在研究之前,请同学们仔细观察,张老师把这一张长方形纸这样对折,对折出来的是什么图形?那么,折出的其中一个直角三角形是不是这张长方形纸的一半呢?(老师把它剪开,重叠)我们会发现这2个直角三角形是完全一样的.,所以其中一个直角三角形就是这张长方形纸的一半。

  (二)下面老师就请同学们拿出给你们准备的2个直角三角形 、2个钝角三角形,请分别把它们叠起来,发现什么?(重合)说明了什么?(2个直角三角形完全一样的,2个……)

  那就请同学们想一想:用2个完全一样的三角形可以拼成哪些已学过的图形?

  1、先用2个完全一样的直角三角形拼拼看?

  (长方形、平行四边形、形状不同的三角形)的面积我们会计算吗?我们只会计算长方形和平行四边形的面积,那我们就请拼成平行四边形的同学来演示,说说你是怎样拼的?(同学演示)

  我们一起来看一下电脑是怎样清楚地操作的?

  2、看清楚了吗?好,我们可以用这种方法想一想,能把2个完全一样的锐角三角形、钝角三角形拼成一个平行四边形吗?开始操作,同桌可互相说说我是怎样拼的?分别请2个同学上台演示。(能吗?)说得真好

  3、小结:通过刚才的操作我们把2个完全一样的直角三角形、锐角三角形、钝角三角形,都可以拼成一个什么图形?(平行四边形)谁能把这句话再概括一下,也就是,只要是(2个完全一样的三角形都可以拼成一个平行四边形)齐读 回答真好

  4、接下来,老师要请同学们仔细观察,你们用2个完全一样的三角形拼成的一个平行四边形。

  想一想:1、每个三角形的面积与拼成的平行四边形的面积有什么关系? 2、这个平行四边形的底和高分别与三角形的底和高有什么关系?

  开始观察,观察好,同桌互相交流,后回答,屏幕演示。

  反馈提问:“为什么要除以2?”

  5、翻书P76,填充,齐读,同样我们也可以用字母面积公式

  板书:

  等底等高

  三角形的面积=平行四边形的面积÷2 表示什么意思

  =底×高÷2

  s=ah÷2

  (三)要求三角形的面积必须知道哪几个条件?然后根据(三角形的面积=底×高÷ 2)计算,注意千万不能忘记÷2,下面就利用三角形面积的计算公式来计算三角形的面积。

  1、出示“想一想”:学生读要求,个别回答,校正,一样的举手,不一样的举手。

  2、同样我们还可以利用三角形面积计算公式来计算物体表面是三角形的面积。

  出示例:求的是什么?我们应根据什么?请同学们做在自备本上。

  3、同学们做得真认真,下面老师就要考考同学们有没有掌握今天所学的知识。

  请看第1个题目:

  1、下面平行四边形的面积是12平方厘米,求出涂黄色部分的面积。

  2、判断,说明理由:(请用手势表示)

  2个三角形都可以拼成一个平行四边形。

  三角形底是6cm,高是3cm,面积是18cm。

  三角形底是8分米,高是40cm,面积是16平方分米。

  三角形底是9米,高是4米,面积是18米。

  从以上练习,你认为我们在计算三角形面积时应该注意些什么? 1、÷2

  2、单位统一

  3、面积单位

  3、选择:

  下列哪个三角形是4×3÷2=6平方cm。

  单位:厘米

  3 3

  4 4

  小结:我们在做求三角形面积时一定要注意……

  一个三角形的底是20厘米,高是2.5分米,它的面积是( )

  1、20×2.5÷2 2、20×2.5 3、20×25÷2

  小结:你认为在做作业时注意( )

  4、求每个三角形的面积(只列式不计算)

  底是4.2米,高是2米。

  底是3分米,高是20厘米。

  高是6米,高比底短2米。

  底是12米,高是底的一半。

  四、总结:今天,同学们学得非常认真。谁来说说看,这节课,我们一起学习了什么?它的面积计算公式是怎样的?我们在计算它的面积时一定要注意别忘了÷2。

  你们知道吗,大约在2000年前,我国数学名著《九章算术》就论述了“圭田术日,半广的乘正从”我们的祖先老早就研究出三角形的面积=底×高÷2你们说,他们是不是很了不起呀。

  三角形的土地 一半 底 高

  学了这些知识,有没有不懂的问题问老师了?或有什么想法问老师的?

  出示思考:

《三角形的面积》教案4

  第五册平行四边形、三角形面积公式

  教学过程

  师:小朋友们,今天刘老师带来一个信封,谁来猜猜里面藏着什么?

  生1:卡片。

  生2:奖品。

  ……

  师:同学们的想象力真丰富!我请小朋友上来把它揪出来,但你每拿出一件物品得向小朋友们介绍,你打算用它干什么?

  (学生逐个上台从信封中拿出物品)

  生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)

  生2:我拿出的是一格格的东西,打算用它来量。

  师: 我们给它一个名字,透明方格纸,用它量什么呢?

  生2:我想用它量书本。

  师: 书本的 ……(停顿)

  生2:书面有几格?

  师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)

  生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。

  师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它

  这节课我们就用刚才这些学具来研究平行四边形的面积。

  教学反思

  这是一个展示学具的片段。它们都是为学生研究平形四边形、三角形的 面积公式服务的。分别有:剪刀一把、塑料透明方格一张、平行四边形、三角形模型各二张。何必如此耗费时间呢?直接出示学具,学生不也能知道呢?

  不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的`重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的面积公式无法推导。

  ……

  教学过程

  师:我们已研究出平行四边形的面积公式,成为了发现者。这可是一项了不起的创举。让我们再接再厉,发现更多的数学奥秘。如果我只给你一把剪刀、一张平行四边形的学具,你还能发现其他图形的面积公式吗?

  (学生动手操作,不久就纷纷举手)

  生1:老师,我把对角一剪就变成了两个三角形。

  生2:老师,我剪出的三角形两个一样的。

  师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的

  面积公式推导出三角形的面积公式吗?

  (学生小组讨论)

  生3:就是除以2。

  师: 你能完整的说一说什么除以2吗?

  生3:平行四边形的面积除以2。用字母表示:S=ab2。

  生4:我能把它剪成两个梯形教后反思

  教材编排中平形四边形、三角形的面积公式推导各安排了二个课时,三角形的面积公式又重新推导一次。而在本堂课上在平行四边形后学生仅用了5分钟就推导并掌握了三角形的面积公式。花最少的时间掌握一节课的内容,何乐而不为呢?

  现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”

《三角形的面积》教案5

  重点难点

  使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积

  教学准备(含资料辑录或图表绘制)

  教和学的过程

  一、练习

  二、总结

  一、第5题

  可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。

  二、第6题

  要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

  三、第9题

  测量红领巾高时,可以启发学生把红领巾对折后再测量。

  四、第10题

  要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

  五、思考题

  每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

  通过今天的.练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以致用的目的。

  做练习

《三角形的面积》教案6

  教学理念:

  数学学习不应是简单的个体受动过程,更是一个主体对自己感兴趣的且是现实的生活性主题的探索与发现的过程。而这种探索与发现过程,就是儿童自己去观察,思考,讨论,试验,亲身体验了知识的建构过程,使其终身收益。

  教学目标:

  1.通过练习使学生进一步熟悉三角形的面积的计算公式,能够比较熟练地计算三角形的面积。

  2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的'能力。

  3.多元评价学生,并培养学生初步的几何知识。

  教学重点与难点:

  学生难灵活三角形面积公式。在学习时可借助方程的知识解决问题。

  媒体与手段运用:

  多媒体

  教学环节:

  一、复习阶段

  1、出示

  问:这是一个三角形,要求它的面积必须知道什么?(学生回答后指名到黑板前量出这个三角形的底和高。)

  问:知道了三角形的底和高,怎样求也它的面积?用哪个公式?(学生回答后教师板书:S=ah2)

  问:这个三角形的面积是多少?(学生独立计算)

  二、新授内容

  1、出示练习十四第7题

  (1)教师讲解,学生试做。

  (2)让学生尝试用方程完成。

  2、练习十四第6题(学生读题,并请同学讲讲自己的思路。)

  教师提醒学生在求三角形面积时要注意除以2。

  3、练习十四第9题。(学生试做)

  分析题意,学生注意单位之间的转化。

  4、讲解等底等高的三角形面积相等。

  5、把一个三角形分成四个面积相等的三角形,可以怎么分?

  学生自己先试分,然后上台反馈答案。

  三、巩固练习

  课后做一做

  学生在做的过程中,注意面积单位。

  四、总结

  今天我们学习了三角形面积计算公式,我们是通过转化的方法来推导出。这种方法在今后还可以多次进行运用。

《三角形的面积》教案7

  教学目标:

  1、通过拼一拼、比一比、算一算、推一推,使学生理解并掌握三角形面积计算公式,并能按要求求出三角形的面积。

  2、培养学生动手、推理的能力。

  教学重点:理解并掌握三角形的面积计算公式。

  教学过程:

  一、提出问题,引入课题。

  1、看书P81,观察方格纸上三角形的面积。

  2、想一想:三角形能不能转化成我们熟悉的平面图形?来计算它的面积。

  二、研究探讨

  1、让学生4人一小组讨论:分别拿出两个完全一样的钝角三角形、锐角三角形、直角三角形,自己拼一拼、议一议、推一推,看能不能得到三角形面积的计算方法。

  2、学生合作探讨学习,师巡视。

  3、检查反馈:(如果学生拼出,则让学生自己说一说,师作必要的补充纠正。)

  两个完全一样的三角形,可以拼成下面的图形:

  4、比一比:三角形和拼成的平行四边形,它们的底和高有怎样的关系?面积呢?

  5、推一推:

  怎样计算三角形的面积?

  平行四边形的面积=底×高

  三角形的面积=底×高÷2

  强调:为什么要“÷2”?(三角形的面积是拼成的平行四边形面积的一半。)

  字母公式为:S=AH÷2

  6、判断:三角形的面积是平行四边形面积的一半。(错必须是等底等高的三角形和平行四边形它们的面积才有这样的关系。)

  7、迁移练习

  例:一块三角形钢板,底是84厘米,高是25厘米。它的'面积是多少平方厘米?

  (1)让生独立做。

  (2)检查:84×25÷2=1050(平方厘米)

  三、练习

  1、下面平行四边形的面积是16平方分米,求阴影部分的面积。

  请学生说明理由

  2、口算出每个三角形的面积,填在空格里。

  底(米)

  8

  5

  4

  20

  高(米)

  7

  12

  10

  15

  面积(平方米)

  3、计算下面每个三角形的面积。

  42厘米

  18厘米2厘米

  6厘米3米

  2米

  4、一种零件,有一个面是三角形,它的底是12厘米,高是4厘米。这一面的面积是多少平方厘米?

  5、有一个底面是三角形的水池,底长8米,高是底的3倍,求这个水池底面的面积。

  四、总结。

  请你说一说三角形面积公式的推导过程。

《三角形的面积》教案8

  教材分析:

  三角形的面积是在学生掌握了三角形的特征以及长方形、正方形面积计算的基础上进行教学的。通过对这部分内容的教学,使学生理解并掌握三角形面积计算公式,会应用公式计算三角形的面积,同时加深三角形与长方形、正方形之间内在联系的认识,培养学生的实际操作能力。进一步发展学生的空间观念和思维能力,提高学生的数学素养。

  学情分析:

  在学习三角形的面积这一内容前,学生已经认识了三角形的特征;在学习长方形面积、正方形面积以及求组合图形的面积时,已经学会割、补、移等方法,也学会了把未知的学习问题转化为已知的问题。因此在教学三角形的'面积这课时,学生已经具备了一定的知识准备和能力基础。

  教学目标:

  1、经历三角形面积公式的推导过程,理解公式的意义。

  2、理解三角形的底和高与“被转化长方形”长和宽之间的关系。

  3、会用三角形的面积公式计算三角形的面积。

  4、培养学生运用所学知识解决简单的实际问题的能力,体验数学应用价值,使学生感受到数学就在身边。

  教学重点:三角形面积公式的推导。

  教学难点:理解三角形是同底(长)等高(宽)长方形面积的一半。

  教学过程:

  一、导入阶段

  通过故事情景产生生活中三角形比较大小的问题:

  1、比三角形的大小用数学语言来表达是比什么?

  2、采用哪些方法可以比较呢?

  小结 :运用透明方格纸来比较三角形的大小是一种方法,但你感觉怎样?

  二、探究阶段

  (一)画三角形。

  1、每个学生拿出准备好的长方形纸,按要求画三角形。

  操作说明:

  (1)以长方形纸的一边作为三角形的底边。

  (2)以对边的任意一点作为三角形的顶点。

  (3)连接顶点与对面的两个角。

  (4)你画了一个什么样的三角形?

  2、大组交流。

  3、猜一猜:要求学生根据自己所画的三角形猜一猜它的面积是整个长方形面积的几分之几?

  4、观察已画三角形与长方形之间的特殊关系

  5、画出三角形已知底上的一条高,观察已画的三角形的面积占整个长方形面积的几分之几?

  (二)实验

  1、剪拼三角形。

  操作说明:

  (1)剪下你所画的三角形。

  (2)将剩下部分拼到剪成的三角形中。

  思考:剩下部分拼成的三角形是否与剪成的三角形一样大?

  (3)填写实验报告。

  2、学生完成报告后交流

  (三)归纳

  根据学生的实验得出结论:

  一个直角三角形的面积是相应的长方形面积的一半。

  一个锐角三角形的面积是相应的长方形面积的一半。

  一个钝角三角形的面积是相应的长方形面积的一半。

  (1)请学生用一句话来概括。

  (2)用数学的方式来表示:三角形面积=相应长方形面积/2

  (3)根据长方形的面积公式,推导三角形的面积公式

  (4)用字母表示三角形的面积公式。

  三、运用阶段:

  1、教学例

  2、计算导入阶段的3个三角形的面积

  (1)分别测出3个三角形的底与高,作好记录。

  (2)计算出每个三角形的面积。

  (3)交流。

  (4)拓展:找出下列图形中面积相等的两个三角形,为什么?

  四、总结

  这节课我们学习了什么?2、计算三角形面积要知道那些条件?

《三角形的面积》教案9

  教学目标

  1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

  2、培养学生观察能力、动手操作能力和类推迁移的能力。

  3、培养学生勤于思考,积极探索的学习精神。

  教学建议

  教材分析

  本小节内容是三角形面积的计算。是在学生已经掌握了三角形的特征和平行四边形面积计算的基础上,运用转化思想和方法来学习的。牢固掌握这种解决问题的思想和方法,是将来学习数学的一条捷径。

  本小节教材分为三个部分。第一部分是用数方格的方法求出三角形面积。通过数三个不同类型三角形的面积,使学生真正体会到这种方法太麻烦,不易数对,盟生一种探求更好、更简捷的计算公式,进一步调动学生继续探索的积极性。第二部分是用转化的方法推导出三角形面积的计算公式。用两个完全一样的直角三角形,锐角三角形和钝角三角形通过平移、旋转分别拼摆成平行四边形,通过发现每个三角形与拼成的平行四边形(或长、正方形)的面积关系,从而渗透“三角形面积=底×高÷2”的计算公式。第三部分是应用三角形面积公式计算。

  本节课的教学重点是理解掌握三角形面积的计算公式及面积计算公式的应用。难点是三角形面积公式的推导过程。

  教法建议

  教师要先复习三角形的特征,能画出并指出各种不同类型三角形的底和高,再复习平行四边形面积公式的推导过程,为解决三角形面积公式做铺垫。

  在推导三角形面积计算公式之前,先用数方格求面积的方法,然后引导学生联想平行四边形面积公式的推导过程,启发提问:能不能也把今天学习的`三角形转化成我们学过的其它图形?首先利用书后材料剪下不同类型的三角形,按照书中安排的层次,先研究把两个直角三角形转化成学过的不同图形,重点解决为什么不把它们转化成三角形的道理。这样在研“两个锐角三角形”时,就不会转化成没学过面积公式的图形,第二层中要注意解决旋转的问题,为了便于理解,可借助课件,形象地展现在学生面前。第三层次则由学生自主探索完成,通过以上(三种不同情况)转化前后的对比,得出三角形的面积计算公式。并重点提问为什么要除以2?由于已有平行四边形面积计算公式的基础,关于三角形面积公式和字母公式就可由学生自己解决了。

  本节课要注重发挥学生的主体地位,注意培养学生的动手能力,在操作中学会新知。

《三角形的面积》教案10

  编排意图

  教材以小组合作学习的形式展现学生探究的过程。首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题;接着根据平行四边形面积公式推导的方法提出解决问题的思路:把三角形也转化成学过的图形;通过学生动手操作和探索,推导出三角形面积计算公式。最后用字母表示出面积计算公式。

  教学建议

  (1)本部分教学可按提出问题、寻找思路、实验探究的步骤,以小组合作学习为主的形式进行。学生已经经历了平行四边形面积公式的推导过程,要以学生在推导中获得的经验为基础,放手让学生自主去探究。

  (2)学生动手操作实验环节是本部分教学的重点。按教材的编排,把三角形转化成已学过的图形,没有采用平行四边形的割补方法,而是用两个同样三角形拼摆的方法。这个方法推导过程简单,学生比较容易理解和掌握。每个小组最少应准备相同的直角三角形、锐角三角形、钝角三角形各两个,教师可提出明确的操作和探究要求:“用两个同样的三角形拼一拼,能拼出什么图形?拼出图形的面积你会计算吗?拼出的图形与原来的三角形有什么联系?”学生可能拼出三角形、长方形和平行四边形,其中长方形和平行四边形学生已经会计算面积。在小组操作和讨论的基础上组织交流。可以选择用直角三角形、锐角三角形、钝角三角形拼的三种情况分别进行汇报,要求学生能根据拼出的图形叙述出推导的过程。在此基础上作总结归纳:

  通过实验可以看到,两个完全一样的三角形都可以拼成一个平行四边形(或长方形),这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以可以推出

  三角形的面积 = 底 × 高 ÷ 2

  (3)根据学生的`基础,也可以让学生用剪拼或折的方法进行推导,或结合教材第96页介绍的我国古代数学家刘徽的三角形面积计算方法,让学生进行推导,增强学生探究的兴趣,提高学生推理的能力。

  割补的方法一般有以下几种:

  ①

  拼成的平行四边形的底等于三角形的底,高等于三角形高的一半。

  ②

  拼成的长方形的底等于三角形的底,高等于三角形高的一半。

  三角形的面积 = 底 ×(高 ÷ 2)

  = 底 × 高 ÷ 2

  ③

  拼成的长方形的高等于三角形的高,底等于三角形底的一半。

  三角形的面积=长方形的面积

  =(底÷2)×高

  =底 × 高 ÷ 2

  折叠的方法:

  折出的长方形面积是三角形面积的一半,长和宽也分别是三角形底和高的一半。

  三角形的面积 = 长方形的面积×2

  =(底÷2×高÷2)×2

  = 底×高÷2

  2. 例1及“做一做”。

  编排意图

  应用三角形面积计算公式解决实际问题。例1是解答引入三角形面积计算时提出的问题:怎样计算红领巾的面积?

  “做一做”是计算一个直角三角尺的面积,可以把两条直角边看作底和高。

  教学建议

  可以在学生独立完成的基础上进行交流与汇报,说说是怎样做的和计算的结果。注意检查计算中有没有忘记除以2,针对发生的错误,可以结合前面推导的过程,让学生说一说为什么要除以2?进一步加深印象。

  3.练习十六一些习题的说明和教学建议。

  第1、4、5题是应用问题,解决问题的过程中要应用三角形面积计算公式。其中第1题还可以进行交通常识的教育。这些标志牌表示的含义:

  注意危险 慢行 注意行人 向右急弯路

  第2题没有给出底和高的长度,要学生想办法求出每个三角形的面积。学生需要先找出或画出三角形的高,再分别量出底和高的长度。

  可先用小组合作形式完成或独立完成,再交流各自的做法。注意结合每种三角形的特点进行讨论。例如直角三角形以两条直角边为底和高计算最简便;钝角三角形一般会以最长的边作底,这样高就在三角形内。如果用水平的一条边作底,怎样找到高呢?可以让学生了解在钝角三角形短边上作高的方法(不作统一要求)。

  第3题根据乘除法的互逆关系灵活运用三角形面积计算公式。注意在根据三角形面积和高求底时,不要忘记三角形的面积先要乘2。

  第6题根据三角形面积计算公式,使学生理解三角形相等的基本条件是等底(两个三角形共底)和等高(平行线间的垂直距离都相等)。可以让学生先讨论:图中你能找到几个三角形?哪两个三角形面积相等呢?为什么?再根据等底等高三角形面积相等的道理,画出其他三角形。

  第7题是运用等底等高三角形面积相等的道理去分三角形。也可以用讨论的方式进行。

  分法一:

  将三角形任一边平均分成4段,把各分点与对应的顶点连接形成4个面积相等的三角形。

  分法二:

  连接三角形三条边的中点,形成的4个三角形面积相等。

  可以根据三角形中位线的性质证明出这4个三角形是等底等高。但学生还没有这些知识基础,可以通过测量证明每个三角形的底和高分别相等。

  第8*题是选作题。已知两个三角形的面积和高,可以分别求出它们的底长,也就是平行四边形的两条边长。

  540×2÷22?5=48(m)540×2÷18=60(m)

  因为平行四边形的对边相等,所以平行四边形的周长为

  (48+60)×2= 216(m)

  第9*题也是选作题。可以让学生根据三角形面积公式的推导和对三角形面积相等的判别知识进行推理。平行四边形的对角线把平行四边形分成两个相等的三角形,每个三角形面积是平行四边形面积的一半;A点是其中一个三角形底边的中点。根据等底等高三角形面积相等,涂色的三角形的面积是这个三角形面积的一半,也就是平行四边形面积的四分之一。所以涂色三角形的面积是 48÷4=12(m2)。

《三角形的面积》教案11

  教材分析

  “三角形面积的计算”是北师大版小学数学五年级第一学期第二单元第5小节的内容。本课内容编排的最大特点是突出实践性、研究性,加强了动手操作。教材让学生通过一系列的操作、研究,使学生逐渐明白所学图形与已学图形之间的联系,达到将所学图形(三角形)转化为已学会计算面积的图形(平行四边形),从而找出三角形面积的计算方法。教材注重培养学生的迁移、推理的学习方法以及操作实践、探索研究等能力。

  学情分析

  <<三角形的面积>>属于“空间与图形”领域,在此之前,学生已经有了平行四边形面积公式的推导基础,因此把三角形转化成已学过的图形,通过拼、摆、剪、叠等实际操作,来探索三角形面积的计算。不过,让学生切实理解三角形的面积公式却不是很容易。如:公式中为什么要用“底×高”除以2?这个“底×高”求出来的是什么?要想让学生完全领悟,需要引导学生在探索活动中,循序渐进、由浅入深地进行操作与观察,讨论与交流,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。

  教学目标

  知识目标

  1.使学生经历、理解三角形面积公式的推导过程。

  2.能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。

  能力目标:

  1.通过动手操作、认真观察、比较、思考等方式,培养学生的`空间想象能力、思维能力和较强的动手能力;

  2.通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。

  情感目标:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点和难点

  教学重点:理解三角形面积计算公式,正确计算三角形的面积。

  教学难点:理解三角形面积公式的推导过程。

《三角形的面积》教案12

  教学要求:

  1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。

  2.能运用公式解答有关的实际问题。

  3.养成良好的审题、检验的习惯,提供正确率。

  教学重点:运用所学知识,正确解答有关三角形面积的应用题。

  教具准备:投影

  教学过程:

  一、基本练习

  1.填空。

  ⑴三角形的面积=,用字母表示是。

  为什么公式中有一个“÷2”?

  ⑵一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是()平方米,平行四边形的面积是()平方米。

  二、指导练习

  1.练习十七第7题:下图中哪个三角形的面积与涂颜色的三角形的.面积相等?为什么?你能在途中再画出一个与涂颜色的三角形面积相等的三角形吗?试试看。

  ⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?

  ⑵看看图中哪个三角形的面积与涂了色的三角形面积相等?为什么?

  ⑶分组讨论如何在图中画出一个与涂了颜色的三角形面积相等的三角形,并试着画出来

  2.练习十七第11※题:一张边长4厘米的正方形纸,从一边的中点到邻边的中点连一条线段,沿这条线段剪去一个角,剩下的面积是多少?

  分析与解:先求出原正方形的面积,再求出剪去的小三角形的面积,然后求出剩下部分的面积。因为剪去的是正方形的一个角,所以是个直角三角形,它的两条直角边都是正方形边长的一半,所以剪去的面积是2×2÷2=2平方厘米。

  3.练习十七第12※题:一块三角形土地,底是421米,高是58米。估算一下它的面积是多少平方米,大约是多少公顷。

  分析与解:课先取三角形的底和高的近似数400米和60米,再算出这块三角形土地的面积约是:400×60÷2=12000(平方米)=1.2公顷。

  三、课堂练习

  练习十七第6、8题。(分组完成)

  四、作业

  练习十七第9、10题。

《三角形的面积》教案13

  备课教师 钱燕春

  所属册数 第九册

  教学目标 11.使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确计算三角形的面积,并应用公式解决简单的实际问题。 2.使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

  重点难点 教学重点:理解并掌握三角形面积的计算公式。教学难点:理解三角形面积的推导过程。

  课前准备 多媒体课件,第127页的3对三角形。

  教学设计:

  一、初步感知

  1.出示例4,明确题意。

  图中每个小方格表示1平方厘米。仔细观察这3个平行四边形,你能说出每个涂色三角形的面积吗?先自己想一想、算一算,再在小组里交流你的方法。

  2.提问:为什么可以用‘‘平行四边形的面积÷2”求出每个涂色三角形的面积呢?

  根据学生的回答,课件演示:将平行四边形沿对角线剪开,旋转、平移、重叠。

  让学生观察演示过程,说说发现,并相机总结:每个平行四边形中的两个三角形是完全相同的;每个涂色三角形的面积是所在平行四边形面积的一半。

  3.揭题:三角形与平行四边形究竟有怎样的联系?三角形的面积可以怎样计算呢?这就是今天我们要研究的问题——三角形面积的计算。(板书课题)

  二、探究公式

  1.动手操作,填表分析。

  (1)出示例5中的三角形。

  ①按角的特点分类,:这几个三角形分别是什么三角形? (直角三角形、锐角三角形、钝角三角形)

  ②根据图中给出的数据,说出每个三角形的底和高分别是多少。

  ③每人从第123页上选一个三角形剪下来,与例5中相应的三角形拼成平行四边形。(要提醒每个小组注意:组内所选的三角形三种都要齐全)

  教师加强巡视,对拼平行四边形有困难的学生及时加以指导。

  ④组织讨论:通过操作,你认为拼成一个平行四边形的两个三角形有什么特点?

  进一步明确:用两个完全一样的三角形才可以拼成一个平行四边形。

  (2)根据要求测量、计算:拼成的平行四边形的底、高、面积分别是多少?每个三角形的底、高和面积呢?

  (3)汇总数据,填写表格,初步归纳。

  ①要求学生把小组内得到的不同数据填在书上的表格中。

  ②提问:你是怎样算出三角形的面积的?

  从表中你能看出三角形与拼成的平行四边形还有怎样的联系?

  2.讨论交流,得出公式。

  (1)出示讨论题,小组开展讨论。

  ①拼成平行。四边形的两个三角形有什么关系?

  ②拼成的平行四边形的底和高与三角形的底和高有什么关系?每个三角形的面积与拼成的平行四边形的面积呢?

  ③根据平行四边形的面积公式,怎样求三角形的面积?

  (2)全班交流。

  ①交流第一个问题时,课件演示将每组中两个三角形重叠,让学生明确认识到:不管选择哪种三角形,拼成平行四边形的两个三角形必须完全相同。

  ②交流第二个问题时,课件可以闪烁相应的底和高。得出:每个三角形与拼成的.平行四边形等底等高,每个三角形的面积是拼成的平行四边形面积的一半。

  ③引导学生逐步表达如下的思考过程:

  因为平行四边形的面积=底×高,每个三角形的面积等于拼成的平行四边形的面积的一半,所以,三角形的面积二底×高÷2。

  (3)引导学生用字母表示三角形的面积公式。

  (4)让学生看书上的例4、例5,回顾刚才的推导过程。如果还有疑问,可提出讨论。反馈时要求学生用清晰的语言表述三角形面积公式的推导过程。

  三、应用公式

  1、指导完成“试一试”。

  出示题目,指名读题,学生独立解答。交流时再说说应用的面积公式。

  2.指导完成“练一练”。

  第l题先让学生回忆拼的过程,再回答。第2题看图口答。两题都要让学生说说自己是怎样想的。

  3、完成练习三第1- 3题。

  第1题口答。,第2题独立练习,要求先想一想面积公式,再列式计算。交流时,再让学生说说每个三角形的底和高分别是多少,以及计算时为什么要“÷2”。

  第3题先让学生独立完成再适当交流。

  四、介绍“你知道吗”

  1.课件播放“你知道吗”内容。

  2.让学生说说自己对“半广以乘正从”的理解。然后课件按教材插图的样子动态演示,将三角形转化成长方形。要求学生仿照例5的推导过程,研究转化后的长方形与三角形的关系,从不同的角度进一步加深对三角形面积公式的理解。

  五、全课总结

《三角形的面积》教案14

  教学目标:

  1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。

  2、通过操作使学生进一步学习用转化的思想方法解决新问题。

  3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。

  4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。

  教学重点:

  理解并掌握三角形面积的计算公式。

  教学难点:

  理解三角形面积的推导过程。

  教法与学法:

  教法:演示讲解、指导实践。

  学法:小组合作、动手操作。

  教学准备:

  完全相同的三组(锐角、钝角、直角)不同的三角形卡片、

  教学过程:

  一、情境引入,明确目标

  同学们,你们每天都佩戴着鲜艳的红领巾,代表你们是一名少先队员,是共产主义的接班人,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的`红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的面积(板书课题)

  二、自主学习、合作探究

  教师出示学具,学生动手操作、观察、分析、推理

  (1)用两个完全一样的三角形拼一拼,能拼出什么图形?

  (2)拼出的图形与原来的三角形有什么联系?

  (3)拼出的图形的面积你会计算吗?

  三、展示交流、点拨归纳

  1、课件出示直角三角形、锐角三角形、钝角三角形拼成的图形

  (1)想一想:每个直角三角形的面积与拼成的长方形或平行四边形的面积有什么关系?

  (2)想一想:每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?

  (3)想一想:每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?

  2、学生回答,教师总结:

  通过以上的实验可以看出:

  两个完全一样的三角形可以拼成一个__________________。

  这个平行四边形的底等于____________________________。

  这个平行四边形的高等于____________________________。

  每个三角形的面积等于拼成的平行四边形面积的________。

  所以得出结论:

  三角形的面积=平行四边形的面积÷2

  三角形的面积=底×高÷2

  S=ah÷2

  三、巩固训练、拓展提升

  (1)这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?(100厘米),高多少吗?(33厘米)

  你能计算出它的面积吗?

  在练习本上算一算

  小结:通过这道题的解答,你明白了什么?

  (2)你认识下面的这些道路交通警示标志吗?

  向右急转弯 注意危险 减速慢行 注意行人

  交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?

  学生试算

  〔设计意图〕这道练习的设计,既巩固了数学知识又自然地渗透了安全教育。

  四、总结收获

  这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式这节课你们最大的收获是什么?(学会了三角形的面积怎样计算;学会了用转化的方法推导三角形的面积计算公式。)

  下节课我们继续运用转化的思想探究梯形面积的计算方法。

《三角形的面积》教案15

  第一课时

  教学内容:

  三角形面积的计算(例题、做一做和练习十七第1~4题。)

  教学要求:

  1.使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。

  2。通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。

  3。引导学生运用转化的方法探索规律。

  教学重点:

  理解并掌握三角形面积的计算公式。

  教学难点:

  理解三角形面积计算公式的推导过程。

  教学过程:

  一、激发

  1.出示平行四边形

  1。5厘米

  2厘米

  提问:

  (1)这是什么图形?计算平行四边形的面积我们学过哪些方法?(板书:平行四边形面积=底高)

  (2)底是2厘米,高是1。5厘米,求它的面积。

  (3)平行四边形面积的计算公式是怎样推导的?

  2.出示三角形。三角形按角可以分为哪几种?

  3.既然长方形、正方形、平行四边形都可以用数方格的方法或利用公式计算的方法,求它们的面积,三角形面积可以用哪些计算方法呢?(揭示课题:三角形面积的计算)

  二、尝试

  1.用数方格的方法求三角形的面积。

  (1)指名读P。69页第一段。

  (2)订正数的结果。

  (3)如果不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?

  (4)三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。

  2.用直角三角形推导。

  (1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。

  (2)拼成的这些图形中,哪几个图形的面积我们不会计算?

  (3)利用拼成的长方形和平行四边形,怎样求三角形面积?

  (4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?

  引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。

  面积=面积的一半

  3.用锐角三角形推导。

  (1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。

  提问:你发现了什么?

  引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。

  (2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述边提问)

  ①把两个锐角三角形重叠放置。

  提问:怎样操作才能拼成一个平行四边形?直接把一个三角形向左或向右平移,能拼成一个平行四边形吗?

  ②怎样才能使上面的三角形倒过来,使它原来的底在上面,底所对的顶点在下面?我们用旋转的方法,按住三角形右边的顶点不动,使三角形向逆时针方向转动180度,(也可以左边顶点不动,顺时针转动180度)直到两个三角形的底成一条直线为止。

  ③再把右边的三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止。

  (3)教师带着学生规范地操作。

  重点指导:哪点不动?哪点动?旋转多少度?怎样平移?转化的过程中旋转和平移有什么不同?(平移时各个点沿着直线移动,旋转时一个点不动,其它点都绕着不动点转动。)

  (4)对照拼成的图形,你发现了什么?

  引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。

  板书:

  面积=面积的一半

  (5)练习十八第1题。

  ①两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。

  ②通过刚才的操作,你又发现了什么?

  引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半。

  面积=面积的一半

  4.归纳、总结公式。

  (1)通过以上三个实验,同学们互相讨论一下,你发现了什么规律?

  (2)汇报结果。

  引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的面积等于拼成的平行四边形面积的一半。

  (同时板书)

  ③这个平行四边形的底等于三角形的'底。(同时板书)

  ④这个平行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上除以2?(强化理解推导过程)

  板书:三角形面积=底高2

  (4)完成书空。

  5.教学字母公式。

  (1)学生看书71页上面3行。

  (2)提问:通过看书,你知道了什么?

  引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:

  S=ah2。(板书)

  三、应用

  1。教学例题:一种零件有一面是三角形,三角形的底是5。6厘米,高是4厘米。这个三角形的面积是多少平方厘米?

  ①读题。理解题意。

  ②学生试做。指名板演。

  ③订正。提问:计算三角形面积为什么要除以2?

  2。做一做。

  订正时提问:计算时应注意哪些问题?

  3.填空。

  两个完全一样的三角形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于(

  )。因为每个三角形的面积等于拼成的平行四边形的面积的(),所以()。

  4.练习十七第2、3题。

  5.利用公式求P。75页方格上的三角形的面积。

  四、体验

  今天有何收获?怎样求三角形的面积?三角形面积的计算公式是怎样推导的?

  五、作业

  练习十七4题。

  第二课时

  教学内容:

  三角形面积计算的练习(练习十七5~10题)

  教学要求:

  1。是学生比较熟练地应用三角形面积计算公式计算三角形的面积。

  2。能运用公式解答有关的实际问题。

  3。养成良好的审题、检验的习惯,提供正确率。

  教学重点:

  运用所学知识,正确解答有关三角形面积的应用题。

  教具准备:

  投影

  教学过程:

  一、基本练习

  1。填空。

  ⑴三角形的面积=,用字母表示是。

  为什么公式中有一个2?

  ⑵一个三角形与一个平行四边形等底等高,平行四边形的底是2。8米,高是1。5米。三角形的面积是()平方米,平行四边形的面积是(

  )平方米。

  二、指导练习

  1。练习十七第7题:下图中哪个三角形的面积与涂颜色的三角形的面积相等?为什么?你能在途中再画出一个与涂颜色的三角形面积相等的三角形吗?试试看。

  ⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?

  ⑵看看图中哪个三角形的面积与涂了色的三角形面积相等?为什么?

  ⑶分组讨论如何在图中画出一个与涂了颜色的三角形面积相等的三角形,并试着画出来

  2。练习十七第11※题:一张边长4厘米的正方形纸,从一边的中点到邻边的中点连一条线段,沿这条线段剪去一个角,剩下的面积是多少?

  分析与解:先求出原正方形的面积,再求出剪去的小三角形的面积,然后求出剩下部分的面积。因为剪去的是正方形的一个角,所以是个直角三角形,它的两条直角边都是正方形边长的一半,所以剪去的面积是222=2平方厘米。

  3。练习十七第12※题:一块三角形土地,底是421米,高是58米。估算一下它的面积是多少平方米,大约是多少公顷。

  分析与解:课先取三角形的底和高的近似数400米和60米,再算出这块三角形土地的面积约是:400602=12000(平方米)=1。2公顷。

  三、课堂练习

  练习十七第6、8题。(分组完成)

  四、作业

  练习十七第9、10题。

【《三角形的面积》教案】相关文章:

三角形面积教案09-25

三角形面积的计算教案04-12

三角形面积教案优秀03-26

数学教案三角形面积的计算05-08

三角形面积说课稿04-19

三角形的面积说课稿05-21

《三角形的面积》说课稿05-15

三角形的面积说课稿11-28

《三角形面积》说课稿12-24

面积的教案11-19