勾股定理教案

时间:2024-05-30 13:08:58 教案 我要投稿

勾股定理教案精品[15篇]

  作为一名教学工作者,常常需要准备教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么写才合适呢?下面是小编收集整理的勾股定理教案,欢迎大家分享。

勾股定理教案精品[15篇]

勾股定理教案1

  1、勾股定理

  勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.

  即直角三角形两直角的平方和等于斜边的平方.

  因此,在运用勾股定理计算三角形的边长时,要注意如下三点:

  (1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形;

  (2)注意分清斜边和直角边,避免盲目代入公式致错;

  (3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长.即c2=a2+b2,a2=c2-b2,b2=c2-a2.

  2.学会用拼图法验证勾股定理

  拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.

  如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.

  请读者证明.

  如上图示,在图(1)中,利用图1边长为a,b,c的四个直角三角形拼成的一个以c为边长的正方形,则图2(1)中的小正方形的'边长为(b-a),面积为(b-a)2,四个直角三角形的面积为4×ab=2ab.

  由图(1)可知,大正方形的面积=四个直角三角形的面积+小正方形的的面积,即c2=(b-a)2+2ab,则a2+b2=c2问题得证.

  请同学们自己证明图(2)、(3).

  3.在数轴上表示无理数

  将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.

  二、典例精析

  例1如果直角三角形的斜边与一条直角边的长分别是13cm和5cm,那么这个直角三角形的面积是cm2.

  分析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可.根据勾股定理公式的变形,可求得.

  解:由勾股定理,得

  132-52=144,所以另一条直角边的长为12.

  所以这个直角三角形的面积是×12×5=30(cm2).

  例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点A爬到

  顶点B,则它走过的最短路程为()

  A.B.C.3aD.分析:本题显然与例2属同种类型,思路相同.但正方体的

  各棱长相等,因此只有一种展开图.

  解:将正方体侧面展开

勾股定理教案2

  一、回顾交流,合作学习

  【活动方略】

  活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.

  【问题探究1】(投影显示)

  飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?

  思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.(3000千米)

  【活动方略】

  教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.

  学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.

  【问题探究2】(投影显示)

  一个零件的形状如右图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?为什么?

  思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,这个零件符合要求.

  【活动方略】

  教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.

  学生活动:思考后,完成“问题探究2”,小结方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

  ∴△ABD为直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此这个零件符合要求.

  【问题探究3】

  甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?

  思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的.位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)

  【活动方略】

  教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.

  学生活动:课堂练习,与同伴交流或举手争取上台演示

勾股定理教案3

  一、教学目标

  1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.

  2.探究勾股定理的逆定理的证明方法.

  3.理解原命题、逆命题、逆定理的概念及关系.

  二、重点、难点

  1.重点:掌握勾股定理的逆定理及证明.

  2.难点:勾股定理的逆定理的证明.

  3.难点的突破方法:

  先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.

  为学生搭好台阶,扫清障碍.

  ⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.

  ⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.

  ⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.

  三、课堂引入

  创设情境:⑴怎样判定一个三角形是等腰三角形?

  ⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想.

  四、例习题分析

  例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?

  ⑴同旁内角互补,两条直线平行.

  ⑵如果两个实数的平方相等,那么两个实数平方相等.

  ⑶线段垂直平分线上的点到线段两端点的距离相等.

  ⑷直角三角形中30°角所对的直角边等于斜边的一半.

  分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用.

  ⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.

  解略.

  本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的关系.

  例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

  分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证.

  ⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.

  ⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.

  ⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.

  ⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.

  证明略.

  通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的'理性思维.

  例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)

  求证:∠C=90°.

  分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.

  ⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.

  ⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证.

  本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.

勾股定理教案4

  一、内容和内容解析

  1。内容

  应用勾股定理及勾股定理的逆定理解决实际问题。

  2。内容解析

  运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。

  基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。

  二、目标和目标解析

  1。目标

  (1)灵活应用勾股定理及逆定理解决实际问题。

  (2)进一步加深性质定理与判定定理之间关系的认识。

  2。目标解析

  达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;

  目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。

  三、教学问题诊断分析

  对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。

  本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。

  四、教学过程设计

  1。复习反思,引出课题

  问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容。

  师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。

  追问:你能用勾股定理及逆定理解决哪些问题?

  师生活动:学生通过思考举手回答,教师板书课题。

  【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题。

  2。 点击范例,以练促思

  问题2 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

  师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。

  追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?

  师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程, “远航”号的航向——东北方向;解决的问题是“海天”号的航向。

  追问2:你能根据题意画出图形吗?

  师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。

  追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?

  师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。

  解:根据题意,

  因为

  ,即

  ,所以

  由“远航”号沿东北方向航行可知

  。因此

  ,即“海天”号沿西北方向航行。

  课堂练习1。 课本33页练习第3题。

  课堂练习2。 在

  港有甲、乙两艘渔船,若甲船沿北偏东

  方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达

  岛,乙船到达

  岛,且

  岛与

  岛相距17海里,你能知道乙船沿哪个方向航行吗?

  【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。

  3。 补充训练,巩固新知

  问题3 实验中学有一块四边形的空地

  若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?

  师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的.合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。

  【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

  4。 反思小结,观点提炼

  教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:

  (1)知识总结:勾股定理以及逆定理的实际应用;

  (2)方法归纳:数学建模的思想。

  【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。

  5。布置作业

  教科书34页习题17。2第3题,第4题,第5题,第6题。

  五、目标检测设计

  1。小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )

  A。南北 B。东西 C。东北 D。西北

  【设计意图】考查运用勾股定理的逆定理解决实际生活问题。

  2。甲、乙两船同时从

  港出发,甲船沿北偏东

  的方向,以每小时9海里的速度向

  岛驶去,乙船沿另一个方向,以每小时12海里的速度向

  岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且

  两岛相距45海里,那么乙船航行的方向是南偏东多少度?

  【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。

  3。如图是一块四边形的菜地,已知

  求这块菜地的面积。

  【设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。

勾股定理教案5

  教学 目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学 重点:

  分式通分的理解和掌握。

  教学 难点:

  分式通分中最简公分母的确定。

  教学 工具:

  投影仪

  教学 方法:

  启发式、讨论式

  教学 过程

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的 通分 .

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做 最简公分母 .

  根据分式通分和最简公分母的定义,将分式xx ,xx,xx 通分:

  最简公分母为:xx ,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为xx。通分如下:

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:

  (1)xx,xx,xx ;

  分析:让学生找分式的'公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy 2

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

  解:∵最简公分母是10a 2 b 2 c 2

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:

  (1)取各分母系数的最小公倍数;

  (2)凡出现的字母为底的幂的因式都要取;

  (3)相同字母的幂的因式取指数最大的。

  取这些因式的积就是最简公分母。

勾股定理教案6

  一、创设问属情境,引入新课

  活动1(1)总结直角三角形有哪些性质.(2)一个三角形,满足什么条件是直角三角形?

  设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力.

  师生行为学生分组讨论,交流总结;教师引导学生回忆.

  本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”.

  生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方:(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.

  师:那么,一个三角形满足什么条件,才能是直角三角形呢?

  生:有一个内角是90°,那么这个三角形就为直角三角形.

  生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.

  师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?

  二、讲授新课

  活动2问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.

  这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”.那么围成的'三角形是直角三角形.

  画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.

  设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法.

  师生行为让学生在小组内共同合作,协手完成此活动.教师参与此活动,并给学生以提示、启发.在本活动中,教师应重点关注学生:①能否积极动手参与.②能否从操作活动中,用数学语言归纳、猜想出结论.③学生是否有克服困难的勇气.

  生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52.我们围成的三角形是直角三角形.

  生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.

  再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.

  是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?

  活动3下面的三组数分别是一个三角形的三边长?

勾股定理教案7

  在数学课程改革中,基于对数学课程标准基本理念的理解,我从多个方面、不同的角度将课改前后勾股定理的教学进行了对比与研究,以求从中明晰在今后的教学中亟待解决的问题,更加靠近课程改革的具体目标、

  一、课程改革前对勾股定理的教学

  (一)教学目标

  1、使学生掌握勾股定理、

  2、使学生能够熟练地运用勾股定理,由已知直角三角形中的两条边长求出第三条边长

  (二)教学内容

  1、关于勾股定理的数学史:《周髀算经》中出现的“勾广三,股修四,径隅五”

  2、给出勾股定理:直角三角形两直角边a,b的平方和,等于斜边c的平方,即a2 + b2 = c2

  3、用拼图法推证勾股定理、

  4、勾股定理的应用:解决几何计算、作图及实际生产、生活的问题、

  二、课程改革后对勾股定理的教学

  (一)教学目标

  1、认知目标:掌握直角三角形三边之间的数量关系,学会用符号表示、通过数格子及割补等办法探索勾股定理的形成过程,使学生体会数形结合的思想,体验从特殊到一般的逻辑推理过程

  2、能力目标:发展学生的合情推理能力,主动合作、探究的学习精神,感受数学思考过程的条理性,让学生经历“观察—猜想—归纳—验证”的数学思想,并感受数形结合和由特殊到一般的思想方法

  3、情感目标:通过数学史上对勾股定理的介绍,激发学生学数学、爱数学、做数学的情感,使学生在经历定理探索的过程中,感受数学之美、探究之趣

  (二)教学内容

  1、在方格纸上通过计算面积的方法探索勾股定理(或设计其他的探索情境)

  2、由学生通过观察、归纳、猜想确认勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2 + b2 = c2,即直角三角形两直角边的平方和等于斜边的平方

  3、勾股世界:介绍勾股定理的悠久历史、重大意义及古代人民的聪明才智

  4、探讨利用拼图法验证勾股定理、

  5、勾股定理的实际应用、

  三、两种课堂教学的对比

  (一)教学理念和教学内容的不同

  课改前传统的勾股定理的教学,重在掌握定理和应用定理、这种教学过分突出了勾股定理这一现成几何知识结论的传递和接受,忽略了定理的发现过程、发现方法,导致学生的学习过程被异化为被动接受和单纯的`记忆定理、被动认知和机械训练变形及运算技能的过程、这种教学思想的弊病是“重结论而轻过程”,“厚知识运用而薄思想方法”

  课改后勾股定理的教学从以下几方面进行:

  1、创设探索性的问题情境——学生归纳出直角三角形三边之间的一般规律

  2、拼图验证定理——用数形结合的方法支持定理的认识

  3、构建数学模型——学生体验由特例归纳猜想、由特例检验猜想

  4、解决实际问题——熟练掌握定理,并形成运用定理的技能

  5、勾股定理数学史——激发学生的民族自豪感,点燃热爱数学的热情

  站在理论的角度,在这种设计中,使学生对知识的实际背景和对知识的直观感知以及学生对收集、整理、分析数学信息的能力等方面得以加强、这充分反映了以未来社会对公民所需的数学思想方法为主线选择和安排教学内容,并以与学生年龄特征相适应的大众化、生活化的方式呈现教学内容、不过,通过实际教学,要想真正的做到“以学生为本”,在短短的两课时内既要重点突出,又能不留死角地圆满完成以上五个层面的学习,也确属不易

  (二)教师备课内容的不同

  教改前对勾股定理的备课,在把握教材内容的同时,可在勾股定理的数学史和定理应用两方面加以调整、例如,增强民族自豪感:中国古代的大禹就是用勾股定理来确定两地的地势差,以治理洪水;激发学习兴趣:勾股定理的证明方法已有400多种,给出这些证明方法的不但有数学家、物理学家,还不乏政界要人,像美国第20任总统加菲尔德、印度国王帕斯卡拉二世,都通过构造图形的方法给出了勾股定理的别致证法、

  定理应用这一课时,教材从纯几何问题、生活问题、生产问题等几方面均有涉及,从提高学生兴趣方面可灵活补充一道11世纪阿拉伯数学家给出的一道趣味题:小溪边长着两棵树,隔岸相望、一棵树高30肘尺(古代长度单位),另一棵高20肘尺,两树的树干间的距离是50肘尺、每棵树的树顶上都停着一只鸟,两只鸟同时看见树间水面上游出的一条鱼,它们立刻飞去抓鱼,并且同时到到目标、问:这条鱼出现的地方离较高的树的树根有多远?

  在实际教学中根据学生的理解情况及实际水平,在训练的形式、数量上与教材也有所区分:增加了一个随堂检测,以巩固所学、由于当时所教班级为数学班,学生整体接受能力较强,就设计了一个请学生自编有关勾股定理应用的题目,效果不错、

  教改后的备课,除了在上述两方面有所选择之外,重点放在了探索情境的设置上:利用下面图中的任何一个或几个都可从3个正方形的面积关系中得出直角三角形三边关系,不同的班级可由学生不同的认知水平来设计认识层次、

  为了保证教学重点,把利用拼图验证勾股定理的主要探讨放在专门的课题学习中进行

  (三)学生学习方式的不同

  对于课改前勾股定理的学习,学生沿袭着“接受定理——强化训练——回味体会”的方式、这在一定程度上增强了学生对定理的熟悉程度,并在定理应用上感到运用自如、但这种熟练仅仅是一种强化训练后的暂时现象,知识的本身及其迁移只保持在较短的时间内,不会给学习者留下长久的甚至是终生的印象

  很明显,课改后勾股定理的学习是从实际问题到数学问题,再回到实际问题的处理过程,学生眼中的勾股定理来源于熟悉的背景——正方形面积,又用于指导生产、生活、经常用数学的眼光来审视生活,从生活中发现数学,学生才会逐步具有“数学建模”的能力,才能逐步感悟生活的数学性、这不仅是社会发展的需要,同时也是促进学生自身发展的需要、学生学习过程中对定理的探求、现代信息技术的发现及验证过程无时不表现着其学习的主动性,定理的归纳、结论的自我认同又包含着合作与自由发展的和谐共鸣、利用课堂教学、利用教材培养学生良好的学习方式,便塑造了其良好的思维方式,促进了学生和谐、自由、全面、充分的发展

  (四)教学效果的不同(见下表)

  四、两种教学对比研究的结论

  (一)新课程前后的教学各有优势与不足(见下表)

  (二)新课程中几何教学需要注意的几个方面

  1、探究学习不是简单地布置学生去探究、去学习,教师要发挥主导作用,要让学生明确去探究什么,如何探究,要让学生的探究活动是有效的、有意义的新教材中的很大一部分可采用勾股定理的探究方式:向学生提供探索情境,提出能提供必需信息的问题——学生采用多种方式寻求问题的答案,获取信息——整理、归纳结论——设法验证或解释

  2、学生学习过程中的主动参与要在教师指导督促中形成,不能过高估计学生的意志、兴趣、例如,营造一种和谐、民主的课堂气氛来提高全体学生的参与兴趣;帮助学生制订分段式的小目标来增强其成就感,强化其参与意识、

  3、避免合作学习流于形式

  (1)坚持“组间同质,组内异质”的分组方式,以保证人人有所发展

  (2)教师要加强合作技能的指导,指导学生进行小组分工,要求明确各自在完成共同的任务中个人承担的责任

  (3)及时协调组内成员间的关系,有效解决组内出现的不利问题

  (4)正确评价组内成员的成绩,寻求个人和小集体共同提高的途径

  4、要注重教学活动目标的整体实现、新课程中注重对学生学习兴趣的培养、能力的提升,注重知识形成过程的教学,但对一些基本的训练有些淡化,导致整体教学目标不够均衡、为此,在勾股定理的教学中,不但要重过程、方法、能力,还要重视相关的计算和推理,并在计算和推理中学会数学思考,这样才能把“知识技能”、“数学思考”、“问题解决”、“情感态度”多方面教学目标有机结合,达到整体实现教学目标

  5、不能忽视双基的教学,要注重学生对基础知识、基本技能的理解和掌握、基础知识不但是学生发展的基础性目标,还是落实数学思想、方法、能力目标的载体、数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系

  6、重视合情推理及演绎推理的教学和训练、推理教学要转变并贯穿于数学教学的始终、教学中,教师要设计适当的学习活动,引导学生通过观察、估算、归纳、类比、画图等活动发现一些规律,猜想某些结论,发展合情推理能力、对于几何的教学要加强演绎推理的教学训练,通过实例让学生认识到,结论的正确与否需要演绎推理的证明、当然,不同年级可提出不同的要求,但要慢慢加强,训练不断提高要求,最后形成较高的演绎推理能力

勾股定理教案8

  学习目标

  1、通过拼图,用面积的方法说明勾股定理的正确性.

  2.探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。

  重点难点

  或学习建议学习重点:用面积的方法说明勾股定理的正确.

  学习难点:勾股定理的应用.

  学习过程教师

  二次备课栏

  自学准备与知识导学:

  这是1955年希腊为纪念一位数学家曾经发行的邮票。

  邮票上的图案是根据一个著名的`数学定理设计的。

  学习交流与问题研讨:

  1、探索

  问题:分别以图中的直角三角形三边为边向三角形外

  作正方形,小方格的面积看做1,求这三个正方形的面积?

  S正方形BCED=S正方形ACFG=S正方形ABHI=

  发现:

  2、实验

  在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。

  请完成下表:

  S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的关系

  112

  145

  41620

  91625

  发现:

  如何用直角三角形的三边长来表示这个结论?

  这个结论就是我们今天要学习的勾股定理:

  如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾

  练习检测与拓展延伸:

  练习1、求下列直角三角形中未知边的长

  练习2、下列各图中所示的线段的长度或正方形的面积为多少。

  (注:下列各图中的三角形均为直角三角形)

  例1、如图,在四边形中,∠,∠,,求.

  检测:

  1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;

  (2)b=8,c=17,则S△ABC=________。

  2、在Rt△ABC中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()

  A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

  3、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()

  A.12cmB.10cmC.8cmD.6cm

  4、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?(画出示意图)

  5、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4千米处,过了20秒,飞机距离这个男孩5千米,飞机每小时飞行多少千米?

  课后反思或经验总结:

  1、什么叫勾股定理;

  2、什么样的三角形的三边满足勾股定理;

  3、用勾股定理解决一些实际问题。

勾股定理教案9

  重点、难点分析

  本节内容的重点是勾股定理的逆定理及其应用。它可用边的关系判断一个三角形是否为直角三角形。为判断三角形的形状提供了一个有力的依据。

  本节内容的难点是勾股定理的逆定理的应用。在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方。

  教法建议:

  本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法。通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题。在课堂教学中营造轻松、活泼的课堂气氛。通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的。具体说明如下:

  (1)让学生主动提出问题

  利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。所有这些都由学生自己完成,估计学生不会感到困难。这样设计主要是培养学生善于提出问题的习惯及能力。

  (2)让学生自己解决问题

  判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路。

  (3)通过实际问题的解决,培养学生的数学意识。

  教学目标:

  1、知识目标:

  (1)理解并会证明勾股定理的'逆定理;

  (2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

  (3)知道什么叫勾股数,记住一些觉见的勾股数。

  2、能力目标:

  (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

  (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力。

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过知识的纵横迁移感受数学的辩证特征。

  教学重点:

  勾股定理的逆定理及其应用

  教学难点:

  勾股定理的逆定理及其应用

  教学用具:

  直尺,微机

  教学方法:

  以学生为主体的讨论探索法

  教学过程:

  1、新课背景知识复习(投影)

  勾股定理的内容

  文字叙述(投影显示)

  符号表述

  图形(画在黑板上)

  2、逆定理的获得

  (1)让学生用文字语言将上述定理的逆命题表述出来

  (2)学生自己证明

  逆定理:如果三角形的三边长 有下面关系:

  那么这个三角形是直角三角形

  强调说明:

  (1)勾股定理及其逆定理的区别

  勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。

  (2)判定直角三角形的方法:

  ①角为 、

  ②垂直、

  ③勾股定理的逆定理

  2、 定理的应用(投影显示题目上)

  例1 如果一个三角形的三边长分别为

  则这三角形是直角三角形

  例2 如图,已知:CD⊥AB于D,且有

  求证:△ACB为直角三角形。

  以上例题,分别由学生先思考,然后回答。师生共同补充完善。(教师做总结)

  4、课堂小结:

  (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

  (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

  5、布置作业:

  a、书面作业P131#9

  b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

  求证:△DEF是等腰三角形

勾股定理教案10

  教学目标

  1、知识目标:

  (1)掌握勾股定理;

  (2)学会利用勾股定理进行计算、证明与作图;

  (3)了解有关勾股定理的历史.

  2、能力目标:

  (1)在定理的证明中培养学生的拼图能力;

  (2)通过问题的解决,提高学生的运算能力

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过有关勾股定理的历史讲解,对学生进行德育教育

  教学重点:勾股定理及其应用

  教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育

  教学用具:直尺,微机

  教学方法:以学生为主体的讨论探索法

  教学过程()

  1、新课背景知识复习

  (1)三角形的三边关系

  (2)问题:(投影显示)

  直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

  2、定理的'获得

  让学生用文字语言将上述问题表述出来.

  勾股定理:直角三角形两直角边 的平方和等于斜边 的平方

  强调说明:

  (1)勾――最短的边、股――较长的直角边、弦――斜边

  (2)学生根据上述学习,提出自己的问题(待定)

  学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

  3、定理的证明方法

  方法一:将四个全等的直角三角形拼成如图1所示的正方形.

  方法二:将四个全等的直角三角形拼成如图2所示的正方形,

  方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

  以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

  4、定理与逆定理的应用

  例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

  解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有

  ∴ ∠2=∠C

  又

  ∴

  ∴CD的长是2.4cm

  例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,

  求证:

  证法一:过点A作AE⊥BC于E

  则在Rt△ADE中,

  又∵AB=AC,∠BAC=

  ∴AE=BE=CE

  即

  证法二:过点D作DE⊥AB于E, DF⊥AC于F

  则DE∥AC,DF∥AB

  又∵AB=AC,∠BAC=

  ∴EB=ED,FD=FC=AE

  在Rt△EBD和Rt△FDC中

  在Rt△AED中,

  ∴

  例3 设

  求证:

  证明:构造一个边长 的矩形ABCD,如图

  在Rt△ABE中

  在Rt△BCF中

  在Rt△DEF中

  在△BEF中,BE+EF>BF

  即

  例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

  解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

  AD+AB+BC=3,AB+BC+CD=3

  图3中,在Rt△DGF中

  同理

  ∴图3中的路线长为

  图4中,延长EF交BC于H,则FH⊥BC,BH=CH

  由∠FBH= 及勾股定理得:

  EA=ED=FB=FC=

  ∴EF=1-2FH=1-

  ∴此图中总线路的长为4EA+EF=

  ∵3>2.828>2.732

  ∴图4的连接线路最短,即图4的架设方案最省电线.

  5、课堂小结:

  (1)勾股定理的内容

  (2)勾股定理的作用

  已知直角三角形的两边求第三边

  已知直角三角形的一边,求另两边的关系

  6、布置作业:

  a、书面作业P130#1、2、3

  b、上交作业P132#1、3

  板书设计

  探究活动

  台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

  (1)该城市是否会受到这交台风的影响?请说明理由

  (2)若会受到台风影响,那么台风影响该城市持续时间有多少?

  (3)该城市受到台风影响的最大风力为几级?

  解:(1)由点A作AD⊥BC于D,

  则AD就为城市A距台风中心的最短距离

  在Rt△ABD中,∠B= ,AB=220

  ∴

  由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.

  故该城市会受到这次台风的影响.

  (2)由题意知,当A点距台风中心不超过60千米时,

  将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

  该城市都会受到这次台风的影响

  由勾股定理得

  ∴EF=2DE=

  因为这次台风中心以15千米/时的速度移动

  所以这次台风影响该城市的持续时间为 小时

  (3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为 级.

勾股定理教案11

  教学目标

  1、知识与技能目标

  用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.

  2、过程与方法

  让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.

  3、情感态度与价值观

  在探索勾股定理的过程中,体验获得成功的快 乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久化的思想,激励学生发奋 学习.

  教学重点了结勾股定理的由,并能用它解决一些简单的问题。

  教学难点:勾股定理的发现

  教学准备:多媒体

  教学过程:

  第一环节:创设情境,引入新(3分钟,学生观察、欣赏)

  内容:20xx年世界数学家大会在我国北京召开,

  投影显示本届世界数学家大会的会标:

  会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”

  的图作为与“外星人”联系的信号.今天我们就一同探索勾股定理.(板书 题)

  第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)

  1.探究活动一:

  内容:(1)投影显示如下地板砖示意图,让学生初步观察:

  (2)引导学生从面积角度观察图形:

  问:你能发现各图中三个正 方形的面 积之间有何关系吗?

  学生通过观察,归纳发现:

  结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

  2.探究 活动二:

  由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

  (1)观察下面两幅图:

  (2)填表:

  A 的面积

  (单位面积)B的面积

  (单位面积)C的面积

  (单位面积)

  左图

  右图

  (3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)

  (4)分析填表的数据,你发现了什么?

  学生通过分析数据,归纳出:

  结论2 以直角三角形两直角边为边长的小正方形的'面积的和,等于以斜边为边长的正方形的面积.

  3.议一议:

  内容:(1)你能用直角三角形的边长 、 、 表示上图中正方形的面积吗?

  (2)你能发现直角三角形三边长度之间存在什么关系吗?

  (3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?

  勾股定理(gou-gu theorem):

  如果直角三角形两直角边长分别为 、 ,斜边长为 ,那么即直角三角形两直角边的平方和等于斜边的平方.

  数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.

  第三环节: 勾股定理的简单应用(7分钟,学生合作探究)

  内容:

  例 如图所示,一棵大树在一次强烈台风中于离

  地面10m处折断倒下,

  树顶落在离树根24m处. 大树在折断之前高多少?

  (教师板演解题过程)

  第四环节:巩 固练习(10分钟,学生先独立完成,后全班交流)

  1、列图形中未知正方形的面积或未知边的长度:

  2、生活中的应用:

  小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得 一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?

  第五环节:堂小结(3分钟,师生对答,共同总结)

  内容:教师提问:

  1.这一节我们一起学习了哪些知识和思想方法?

  2.对这些内容你有什么体会?请与你的同伴交流.

  在学生自由发言的基础上,师生共同总结:

  1.知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 .

  2.方法:① 观察—探索—猜想—验证—归纳—应用;

  ② 面积法;

  ③ “割、补、拼、接”法.

  3.思想:① 特殊—一般—特殊;

  ② 数形结合思想.

  第六 环节:布置作业(2分钟,学生分别记录)

  内容:

  作业:1.教科书习题1.1;

  2.《读一读》——勾股世界;

  3.观察下图,探究图中三角形的三边长是否满足 .

  要求:A组(学优生):1、2、3

  B组(中等生):1、2

  C组(后三分之一生):1

  板书设计:见电子屏幕

  教学反思:

勾股定理教案12

  重点、难点分析

  本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

  本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的'数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

  教法建议:

  本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

  (1)让学生主动提出问题

  利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

  (2)让学生自己解决问题

  判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

  (3)通过实际问题的解决,培养学生的数学意识.

  教学目标:

  1、知识目标:

  (1)理解并会证明勾股定理的逆定理;

  (2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

  (3)知道什么叫勾股数,记住一些觉见的勾股数.

  2、能力目标:

  (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

  (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过知识的纵横迁移感受数学的辩证特征.

  教学重点:勾股定理的逆定理及其应用

  教学难点:勾股定理的逆定理及其应用

  教学用具:直尺,微机

  教学方法:以学生为主体的讨论探索法

  教学过程:

  1、新课背景知识复习(投影)

  勾股定理的内容

  文字叙述(投影显示)

  符号表述

  图形(画在黑板上)

  2、逆定理的获得

  (1)让学生用文字语言将上述定理的逆命题表述出来

  (2)学生自己证明

  逆定理:如果三角形的三边长 有下面关系:

  那么这个三角形是直角三角形

  强调说明:(1)勾股定理及其逆定理的区别

  勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

  (2)判定直角三角形的方法:

  ①角为 、②垂直、③勾股定理的逆定理

  2、 定理的应用(投影显示题目上)

  例1 如果一个三角形的三边长分别为

  则这三角形是直角三角形

  例2 如图,已知:CD⊥AB于D,且有

  求证:△ACB为直角三角形。

  以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

  4、课堂小结:

  (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

  (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

  5、布置作业:

  a、书面作业P131#9

  b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

  求证:△DEF是等腰三角形

勾股定理教案13

  教学课题:

  勾股定理的应用

  教学时间(日期、课时):

  教材分析:

  学情分析:

  教学目标:

  能运用勾股定理及直角三角形的判定条件解决实际问题.

  在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值.

  教学准备

  《数学学与练》

  集体备课意见和主要参考资料

  页边批注

  教学过程

  一.新课导入

  本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:

  一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的'垂直距离为8m.如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流.

  创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:

  底端也滑动0.5m;如果梯子的顶端滑到地面上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等)。

  通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题,从中感受用数学的眼光审视客观世界的乐趣.

  二.新课讲授

  问题一在上面的情境中,如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?

  组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导.

  问题二从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流.

  设计问题二促使学生能主动积极地从数学的角度思考实际问题.教学中学生可能会有多种思考.比如,

  ①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;

  ②因为梯子顶端下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;

  ③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。

  教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法.

  3.例题教学

  课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题.通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智.

  三.巩固练习

  1.甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km.

  2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是().

  (A)20cm(B)10cm(C)14cm(D)无法确定

  3.如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求这块草坪的面积.

  四.小结

  我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角三角形中的任意两边就可以依据勾股定理求出第三边.从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程.

勾股定理教案14

  一、教学目标

  【知识与技能】

  理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。

  【过程与方法】

  经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。

  【情感、态度与价值观】

  体会事物之间的联系,感受几何的魅力。

  二、教学重难点

  【重点】勾股定理的逆定理及其证明。

  【难点】勾股定理的逆定理的证明。

  三、教学过程

  (一)导入新课

  复习勾股定理,分清其题设和结论。

  提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。

  出示古埃及人利用等长的.3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。

  (二)讲解新知

  请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确

  出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。

  学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。

勾股定理教案15

  学习目标:

  1、通过拼图,用面积的方法说明勾股定理的正确性.

  2、通过实例应用勾股定理,培养学生的知识应用技能.

  学习重点:

  1.用面积的方法说明勾股定理的正确.

  2. 勾股定理的应用.

  学习难点:

  勾股定理的应用.

  学习过程:

  一、学前准备:

  1、阅读课本第46页到第47页,完成下列问题:

  (1)我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦。图(1)称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的。图(2)是在北京召开的`20xx年国际数学家大会(TCM-20xx)的会标,其图案正是“弦图”,它标志着中国古代的数学成就. 你能用不同方法表示大正方形的面积吗?

  2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)

  二、合作探究:

  (一)自学、相信自己:

  (二)思索、交流:

  拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和

  (三)应用、探究:

  1、如图 ,为了求出湖两岸的A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160米,BC长128米.问从点A穿过湖到点B有多远?

  (四)巩固练习:

  1、如图,64、400分别为所在正方形的面积,则图中字

  母A所代表的正方形面积是 _________ 。

  三.学习体会:

  本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。

  2②图

  四.自我测试:

  五.自我提高:

【勾股定理教案】相关文章:

勾股定理教案12-27

《勾股定理》的说课稿01-18

勾股定理说课稿12-25

《勾股定理》说课稿07-06

勾股定理说课稿05-20

探索勾股定理说课稿12-06

《勾股定理》说课稿优秀03-09

勾股定理的教学反思11-24

勾股定理教学反思05-17

《勾股定理》说课稿优秀05-02