《圆柱的体积》教案15篇[精选]
作为一名辛苦耕耘的教育工作者,常常要根据教学需要编写教案,编写教案助于积累教学经验,不断提高教学质量。来参考自己需要的教案吧!以下是小编为大家整理的《圆柱的体积》教案,仅供参考,大家一起来看看吧。
《圆柱的体积》教案1
教学内容:
人教版小学数学六年级下册《圆柱的体积》P25-26。
教学目标:
1.经历探究和推导圆柱的体积公式的过程。
2.知道并能记住圆柱的体积公式,并能运用公式进行计算。
3.在自主探究圆柱的体积公式的过程中,体验、感悟数学规律的来龙去脉,知道长方体与圆柱体底面和高各部分间的对应关系。发展学生的观察能力和分析、综合、归纳推理能力。
4.激发学生的学习兴趣,让学生体验成功的快乐。
5.培养学生的转化思想,渗透辩证法和极限的思想。
教学重点:掌握和运用圆柱体积计算公式
教学难点:圆柱体积公式的推导过程
教具学具准备:教学课件、圆柱体。
教学过程:
一、复习导入
1.同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的'通用公式是什么呢?用字母怎样表示?
2.回忆一下圆面积的计算公式是如何推导出来的?
(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。我们还可以往下继续分割,无限分割就变成了一个长方形。长方形的长相当于圆周长的一半,可以用πR表示,长方形的宽就当于圆的半径,用R表示。所以用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式是S=πR。
3.课件出示一个圆柱体
我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?
二、探索体验
1.学生猜想可以把圆柱转化成什么图形?
2.课件演示:把圆柱体转化成长方体
①是怎样拼成的?
②观察是不是标准的长方体?
③演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。
3.借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。
课件出示要求:
①拼成的长方体与原来的圆柱体比较什么变了?什么没变?
②推导出圆柱体的体积公式。
学生结合老师提出的问题自己试着推导。
4.交流展示
小组讨论,交流汇报。
生汇报师结合讲解板书。
圆柱体积=底面积×高
‖ ‖ ‖
长方体体积=底面积×高
用字母公式怎样表示呢? v、s、h各表示什么?
5.知道哪些条件可以求出圆柱的体积?
6.计算下面圆柱的体积。
①底面积24平方厘米,高12厘米
②底面半径2厘米,高5厘米
③直径10厘米,高4厘米
④周长18.84厘米,高12厘米
三、课堂检测
1.判断
①圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。( )
②圆柱的底面积扩大3倍,体积也扩大3倍。( )
③一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。( )
④圆柱体的底面直径和高可以相等。( )
⑤两个圆柱体的底面积相等,体积也一定相等。( )
⑥一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。( )
2.联系生活实际解决实际问题。
下面的这个杯子能不能装下这袋奶?
(杯子的数据从里面量得到直径8cm,高10cm;牛奶498ml)
学生独立思考回答后自己做在练习本上。
3.一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?
4.生活中的数学
一个用塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。
①覆盖在这个大棚上的塑料薄膜约有多少平方米?
②大棚内的空间大约有多大?
独立思考后小组讨论,两生板演。
四、全课总结
这节课你有什么收获?
五、课后延伸
如果要测量圆柱形柱子的体积,测量哪些数据比较方便?试一试吧?
六、板书设计
圆柱体积= 底面积×高
长方体体积=底面积×高
《圆柱的体积》教案2
目标:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式;使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。
重点:能够正确计算圆柱体体积
教学难点:圆柱体体积公式的推导过程。
教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。
教学过程:
一、复习
1.圆柱的侧面积怎么求?
(圆柱的侧面积=底面周长×高。)
2.长方体的体积怎样计算?
学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的'统一公式“底面积×高”。
板书:长方体的体积=底面积×高
3.拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么圆柱有几个底面?有多少条高?
二、导入新课
教师:请大家想一想,在学习圆的面积时,我们是怎样把圆变成已学过的图形再计算面积的?
先让学生回忆,同桌的相互说说。
然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?
让学生相互讨论,思考应怎样进行转化。
指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开教师应该给予表扬。
教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
板书课题:圆柱的体积
三、新课
1.圆柱体积计算公式的推导。
圆的面积是怎样推导出来的?
圆柱体积计算公式的推导又会怎样呢?(看模型,联想长方体)
推导其体积计算公式
板书:圆柱的体积=底面积×高
教师:如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积计算公式: V=Sh
2.教学例1
出示例1
(1)教师指名学生分别回答下面的问题:
这道题已知什么?求什么?
能不能根据公式直接计算?
计算之前要注意什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。
(2)用投影出示下面几种解答方案,让学生判断哪个是正确的?
V=Sh=50×2.l=105
答:它的体积是105立方厘米。
2.1米=110厘米。
V=Sh=50×210=10500
答:它的体积是1050O立方厘米。
50平方厘米=0.5立方米
V=Sh=0.5×2.1=1.05答:它的体积是1.05立方米。
50平方厘米=0.005平方米
V=Sh=0.005×2.1=0.0105立方米
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单i对不正确的第、种解答要说说错在什么地方。
五、作业:
数学书: 9页 第2、3、4、
《圆柱的体积》教案3
目标:
1、 理解圆柱体积公式的推导过程,掌握计算公式。
2、 会运用公式计算圆柱的体积,提高学生知识迁移的能力。
3、 在公式推导中渗透转化的思想。
重点:
理解圆柱的体积公式的推导过程。
难点:
圆柱体积的计算。
用具:
课件、圆柱模型。
过程:
1、 教师提问。
(1)什么叫物体的体积?怎样求长方体的体积?
(2)圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?
2、 教师:同学们,我们在研究圆的面积公式的推导时,是把它转化成我们学过的长方形来解决的,那么,圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课,我们就来研究这个问题。(板书:圆柱的体积)
1、 教学例5。
讲授圆柱体积公式的推导。(演示动画“圆柱的体积”)
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形的形状,沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?(近似的长方体)
②通过刚才的实验你发现了什么?
A、拼成的这个近似长方体的立体图形和圆柱相比,体积大小没变,但形状变了。
B、拼成的这个近似长方体的立体图形和圆柱相比,底面的形状变了,由圆变成了近似长方形的立体图形,而底面的面积大小没有发生变化。
C、这个近似长方体的立体图形的高就是圆柱的高,高的长度没有变化。
(4)学生根据圆的面积公式的推导过程,进行猜想。
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?
②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?
③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?
(5)通过以上的观察,启发学生说出发现了什么。
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的'面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体图形的形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积)近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)
③用字母表示圆柱的体积公式。(板书:V=Sh)
2、 教学例6。
出示教材第26页例6。
(1)学生读题,理解题意。
(2)教师:要知道能否装下这袋奶,首先要计算出什么?
学生:杯子的容积。
(3)指明要计算杯子的容积,学生在练习本上完成。
杯子的底面积:3.14×(8÷2)2=50、24(cm2)
杯子的容积:50、24×10=502、4(mL)
答:因为502、4大于498,所以杯子能装下这袋牛奶。
3、 教学例7。
师:看下面的问题你能解答吗?遇到了什么问题?有什么办法吗?(课件出示:教材第27页例7)
生1:这个瓶子不是一个完整的圆柱,无法直接计算容积。
生2:我们可以先转化成圆柱,再计算瓶子的容积。
师:怎样转化呢?说说你的想法。
学生可能会说:
瓶子里的水的体积始终是不变的,即使瓶子倒置后,水的体积与原来还是一样的,这样就说明瓶子的容积其实就是水的体积加上18cm高的圆柱的体积。
也就是把瓶子的容积转化成了两个圆柱的体积。
……
师:尝试自己解答一下。
学生尝试解答;教师巡视了解情况。
组织学生交流汇报:
瓶子的容积=3.14×(8÷2)2×7+3.14×(8÷2)2×18
3.14×(8÷2)2×7+3.14×(8÷2)2×18
=3.14×16×(7+18)
=3.14×16×25
=1256(cm3)
=1256(mL)
答:这个瓶子的容积是1256mL。
只要学生解答正确就要给予肯定,不强求算法一致。
【设计意图:让学生联系实际,灵活地运用圆柱体积的计算方法解决实际问题,使学生体会到在生活中,数学知识应用的广泛性】
师:在本节课的学习中,你有哪些收获?
学生可能会说:
利用“转化”可以帮助我们解决问题。
我们利用了体积不变的特性,把不规则图形转化成规则图形来进行体积的计算。
在五年级时,计算梨的体积也是用了转化的方法。
……
【设计意图:既帮助学生梳理了所学知识,又及时总结了学习方法,渗透了数学思想】
圆柱的体积
长方体的体积=底面积×高
↓ ↓ ↓
圆柱的体积=底面积×高
V=
A类
1、填表。
底面积S(平方米) 高h(米) 圆柱的体积V(立方米)
15 3
6.4 4
2、一个圆柱形水池,底面半径是10米,深1.5米。这个水池的占地面积是多少平方米?水池的容积是多少立方米?
(考查知识点:圆柱的体积;能力要求:掌握圆柱体积的计算方法)
B类
两个底面积相等的圆柱,一个圆柱的高为9分米,体积为162立方分米。另一个圆柱的高为3分米,体积是多少立方分米?
(考查知识点:圆柱的体积;能力要求:能运用圆柱体积计算的方法解决简单的问题)
课堂作业新设计
A类:
1、 45 25.6
2、 314平方米 471立方米
B类:
54立方分米
教材习题
第25页“做一做”
1、 75×90=6750(cm3)
2、 3.14×(1÷2)2×10=7.85(m3)
第26页“做一做”
1、 3.14×(8÷2)2×15=753.6(cm3) 753.6cm3=0.7356L 0.75361 不够。
2、 3.14×(0.4÷2)2×5÷0.02≈31(张)
第27页“做一做”
3.14×(6÷2)2×10=282.6(cm3) 282.6cm3=282.6mL
第28页“练习五”
1、 3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
2、 3.14×(60÷2)2×90=254340(cm3) 254340cm3=254340mL
3、 3.14×(3÷2)2×0.5×2=7.065(m3)
4、 80÷16=5(cm)
5、 3.14×1.52×2×750=10597.5(千克) 10597.5千克=10.5975吨
6、 表面积:3.14×6×12+3.14×(6÷2)2×2=282.6(cm2)
体积:3.14×(6÷2)2×12=339.12(cm3)
表面积20×10+20×15+15×10)×2=1300(cm2) 体积:20×10×15=3000(cm3)
表面积:3.14×14×5+3.14×(14÷2)2×2=527.52(cm2)
体积:3.14×(14÷2)2×5=769.3(cm3)
7、 25cm=0.25m 35—3.14×(2÷2)2×0.25=34.215(立方米)
8、 3.14×(6÷2)2×11×(2+1)=932.58(cm3) 932.58cm3=932.58mL
932、58800 不够
9、 81÷4.5×3=54(dm3)
10、 3.14×(10÷2)2×2=157(cm3)
11、 3.14×(1.2÷2)2×20×50=1130.4(cm3) 1130.4cm3=1.1304L 1.13041 能装满。
12、 3.14×(10÷2)2×80—3.14×(8÷2)2×80=2260.8(cm3)
13、 30×10×4÷6=200(cm3)=200(mL)
14、 3.14×102×20=6280(cm3) 3.14×202×10=12560(cm3)
15、 第四个圆柱的体积最小;第一个圆柱的体积最大。
发现:同样一张长方形纸可以围成两个不同的圆柱,且以长边为圆柱的底面周长时围成圆柱的体积最大。
《圆柱的体积》教案4
教学内容:
教科书第44页的例5,完成第44页;“做一做”的第2题和练习十一的第3—7题。
教学目的:
使学生掌握圆柱体积的计算公式,并能运用公式解决一些简单的实际问题。
教具准备:
一个圆柱形物体,一个圆柱形杯子。
教学过程:
一、复习
1、口算。
出示练习十一的第3题(可以用卡片或用投影出示):
①4、5十0、37 0、25×8 5、8十2、9
②7、2÷9 6、1—4、8
2,复习圆柱的体积。
教师:我们是怎样得到圆柱体积的计算公式的?圆柱体积的计算公式是什么?
指名学生叙述一下圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。圆柱体积的计算公式是“底面积×高”,即:V=SH。
二、新课
1、教学圆柱体积公式的另一种形式。
教师:请大家想一想,如果已知圆柱底面的半径r和高H,圆柱体积的计算公式
应该怎样表达?
引导学生根据底面积S与半径r的关系可以知道:S=∏×R × R,所以圆柱体积的计算公式也可以写成:V=∏×R×R×H。
2、教学例5。
出示例5。
(1)教师提出下面问题帮助学生理解题意:
①这道题已知什么?求什么?
②求水桶的容积是什么意思?根据什么公式?为什么?
要使学生理解水桶的容积就是水桶能容纳物体的体积,求水桶的容积就是求这个圆柱形水桶内部的体积。所以可以根据圆柱体积的计算公式来计算。
⑧要求水桶的容积应该先求什么?
要使学生明确,水桶的底面积在题中没有直接给出,因此要先求水桶的底面积,再求水桶的容积。
①水桶的底面积应该怎样求?
(2)让学生叙述解答过程,教师板书。
求出水捅容积之后,教师提问:最后结果应该怎样取值?
使学生明确要把计量单位改写成立方分米,取近似值时要采用去尾法。
(3)做第44页。做一做”的第2题。
让学生独立做在练习本上,做完后集体订正。
三、课堂练习
1、做练习十一的第4题。
这是一道实际测量、计算的题目,可以分组进行测量和计算,每组的茶杯可以是不一样的.。教师可以先让学生讲一下自己的测量方法,再进行测量和计算。
学生测量时,教师行间巡视,注意察看学生测量的方法是否正确,对有困难的学,生要及时给予指导。
做完后集体订正,要注意强调不能只计算出茶杯的体积,还要计算出可以装多少克水,以及取近似数的方法。
2、做练习十一的第5题。
读题后、教师可以先后提问:
“这道题要求的是什么?”
“题目只告诉了圆柱形粮食囤的底面半径和高,要求这个粮囤能装稻谷多少立方米,应该先求什么?怎样求?”
指名学生回答后,再让学生独立做在练习本上,教师巡视。
做完后集体订正,强调得数的取舍方法。
3、做练习十一的第6题。
教师:这道题已知什么?求什么?
指名学生回答后,再问:应该怎样求?
引导学生从圆柱的体积计算公式入手,可以直接用算术方法计算,也可以列方程来解答。
4、做练习十一的第7题。
读题后,教师可提出以下问题:
“这道题要求的是什么?”
“怎样利用已知条件求出这个油桶的容积?”
“题目中的条件和问题的单位不统一。应该怎样改写更简便?”分别指名学生回答。要使学生明白,这里可以先将40厘米和50厘米分别改写成4分米和5分米计算更简便。
让学生独立做在练习本上,教师行间巡视,注意察看学生对圆柱体积计算方法是否掌握,计量单位是否按照题目的要求进行改写,最后得数的取舍是否正确。
做完后集体订正,指名学生说说自己是怎样计算的。
《圆柱的体积》教案5
教学内容:北师大版数学六年级下册5——6页。
教学目标:
1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学重点:目标1。
教学难点:目标2。
教学过程:
活动一:复习旧知,巩固学过的公式。
1、一个直径是100毫米的圆,求周长。
2、一个半径3厘米的圆,求周长和面积。
3、一个长为3米,宽为2米的长方形,它的面积是多少?
4、出示圆柱体的模型,说说它有什么特征?
活动二;探究新知。
1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)
要解决这个问题,就是求什么?
2、圆柱的表面积包括哪几部分?
3、圆柱的表面积的计算关键在哪一部分?
4、探索圆柱侧面积的计算方法。
1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。
2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?
3)师;圆柱的侧面积就是求长方形的面积。用长乘宽。
4)长就是圆柱的底面圆的周长,宽就是圆柱的高。
5)请你来总结一下圆柱侧面积的计算方法。
6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。
活动三:新知识的`运用。
1、求底面半径是10厘米,高30厘米的圆柱的表面积。
2、教师板书:
侧面积:2╳3.14╳10╳30=1884(平方厘米)
底面积:3.14╳10╳10=314(平方厘米)
表面积:1884+314╳2=2512(平方厘米)
要求按步骤进行书写。
2、试一试。
做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?
求至少需要多少铁皮,就是求水桶的表面积。
这道题要注意什么?无盖就只算一个底面。这种题如果求整数,一般用进一法。
3、练一练。书第6页第1题。
3个小题:已知底面直径或底面周长和高,求圆柱的表面积。重点讨论:已知底面周长,求表面积。
《圆柱的体积》教案6
教学目标:
1、知识技能
结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法
让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:圆柱体积计算公式的推导过程
设计理念:圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点:
1、合作探究学习为主要的学习方式。
2、直观教学,先利用教具演示让学生观察比较,再让学生动手操作。
3、让学生运用知识的迁移规律,主动学习,掌握知识、形成技能。
教具准备:
圆柱的体积公式演示课件水槽水体积不同的圆柱体直尺细绳计算器。
教学过程
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)
二、自主探究、
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的`体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱C和圆柱D的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)
(设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱C放入水中,验证圆柱C的体积。
方案二:将学具中已分成若干分扇形块的圆柱D拆拼成新的形体,计算新形体的体积,验证圆柱D的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)
(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)
(7)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh(设计意图这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)
三、巩固发展
1、课件出示例4,学生独立完成。
指名说说这样列式的依据是什么。
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
2、巩固反馈
填表
底面积(㎡)高(m)圆柱体积(m3)
63
0.58
82
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知识)
3、完成第9页的“试一试”和练一练”中的两道题。
(“练一练”只列式,不计算)
集体订正,说一说圆柱体的体积还可以怎样算?
(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的2/3,计算水杯中水的体积?
(设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决问题,切实体验到数学就存在于自己的身边。)
5、拓展练习
(1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)
(2)、一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?
(设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)
四、全课小结:
谈谈这节课你有哪些收获。
《圆柱的体积》教案7
教学目标:
1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。
教学重点:
理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。
教学准点:
掌握圆柱体积公式的推导过程。
教学准备:
圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。
教学过程:
一、情境激趣导入新课
1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?” (板书课题)
二、自主探究, 学习新知
(一)设疑
1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?
2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?
3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)
师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式
(二)猜想
1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?
2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?
(三)验证
1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)
2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)
3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。
4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。
5、通过上面的观察小组讨论:
(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?
(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?
(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?
(4) 你认为圆柱的体积可以怎样计算?
(生汇报交流,师根据学生讲述适时板书。)
小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是V=Sh。
6、同桌相互说说圆柱体积的推导过程。
7、完成“做一做 ”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)
8、求圆柱体积要具备什么条件?
9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)
小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。
10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)
11、练一练:列式计算求下列各圆柱体的体积。
(1)底面半径2cm,高5cm。
(2)底面直径6dm,高1m。
(3)底面周长6.28m,高4m。
三、练习巩固拓展提升
1、判断正误:
(1)等底等高的圆柱体和长方体体积相等。………………()
(2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。.....()
(3)圆柱的底面积越大,它的体积就越大。............( )
(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。......( )
2、这是我们学校种榕树的一个花坛,测得花坛内直径是4m,花坛内填土高度是0.5m,算一算这个花坛内一共填土多少立方米?
3、学习很愉快,我们来庆祝一下:在一个棱长为20厘米正方体纸盒中,放一个最大的圆柱体蛋糕,系上180厘米长的丝带(打结部分忽略不计),那么这个蛋糕的体积到底是多少呢?
四、全课总结自我评价
通过这节课的学习你有什么感受和收获?
教学反思:
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的'能力和方法,同时在学习活动中体验学习的乐趣。
从本节课教学目标的达成来看,较好地体现了以下几方面:
一、创设生活情境,体现数学生活化。
《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。
二、引导学生经历知识探究的全过程。
动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。
三、注重学法指导和数学思想方法的渗透。
“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。
《圆柱的体积》教案8
教学内容:
九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。
教学目标:
1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。
2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。
3、引导学生探索和解决问题,体验转化及极限的思想方法。
教学重点:圆柱体体积的计算.
教学难点:理解圆柱体体积公式的推导过程.
教具:多媒体课件、圆柱形容器、水、橡皮泥。
教学过程:
一、激凝导入
师: 大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)
(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?
(2)生回答。
2、出示橡皮泥捏成的圆柱体。
那你有办法求出这个圆柱体橡皮泥的体积吗?
生(热情的):老师将它捏成长方体或正方体就可以了!
3、创设问题情境。
师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)
那怎么办?
学生试说出自己的办法。
师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)
二、经历体验、探究新知
1、推导圆柱的体积公式。
师:你们打算怎么去研究圆柱的体积?
小组同学讨论研究的方法。
2、学生动手操作感知
(1)学生以小组为单位操作体验。(操作学具,进行拼组)。
(2)学生小组汇报交流:
近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高。。。。。。
(3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)
3、教师课件演示圆柱转化成长方体的过程。
4、师生共同推导出圆柱的体积公式:
长方体的体积=底面积高
圆柱的体积=底圆柱面积高
V = Sh
5、巩固公式
①V、S、h各表示什么?
②知道哪些条件就可以求圆柱的.体积?
а、知道底面积和高可以直接用公式计算圆柱的体积;
b、知道底面半径和高,可以先计算出底面积,再计算体积;
c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。
学生回答后师板书。
6、教学例4、例5。
课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。
三、实践练习
1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。
2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。
同学们,你们知道小林是怎样想的吗?
四、课堂总结;
通过本节课的学习,你有什么收获?
《圆柱的体积》教案9
本节课的设计思考:
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么
办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。 不足之处:
在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的.认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。
二、教师的语言非常贫乏
在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。
苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。
《圆柱的体积》教案10
【教学内容】
教科书第34~35页例3及课堂活动,练习八1,2,3题。
【教学目标】
1.通过学生体验圆柱体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。
2.倡导交流、合作、实验操作等学习方式,培养学生观察、猜测、分析、比较、综合的学习思考方法。
3.让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感。
【教学重点】
圆柱体积计算方法及应用。
【教学准备】
教具:标有厘米刻度的透明长方体容器和圆柱容器、量筒、多媒体课件。
【教学过程】
一、实验回顾长方体体积计算方法
(1)出示透明长方体容器。
教师:现在我们向这个容器里倒入1厘米深的水,容器里的水会形成什么形体?(长方体)
(教师现场操作倒水)估计一下,有多少立方厘米?
怎样才能知道这层长方体的水有多少立方厘米?
(预设:①计算;②倒入量筒测量)
(2)如果要计算的话,要测量哪些数据?
(请一名学生前台测量,教师注意提醒从内部量)
教师板书数据,全体学生即时计算,一生板演。
学生讲解,教师从算式中用红线勾出表示底面积的.部分。
说明:长方体的体积可以用底面积乘高来计算,当高为1 cm时,底面的面积数就是这个长方体所含的体积单位数。
教师再往容器内依次倒入2 cm,3 cm高的水,随机请学生口答出体积数。
(3)揭示:当长方体的高度增加,我们就可以用一层的体积数乘上高度(也就是层数)来求得体积。
二、实验探究,学习新知
1.初次实验
出示标有厘米刻度的圆柱形玻璃容器。
教师:向这个容器里倒入1厘米深的水,水会形成什么形状?(圆柱)
教师操作倒水后:猜一猜,这个圆柱形水柱的体积如何计算?(教师板书学生猜测结果:V=Sh)
教师:假如这些猜测合理,我们需要测量哪些数据?(d或r)
一名学生上前台在教师的协助下现场测量,记录下数据。
学生集体按照自己猜测的方法演算结果,并进行相关板演。
教师:怎样证明这些结果的正确性?(量筒测量)
教师将容器中的水倒入量筒,直观验证V=Sh的正确性。
2.二度实验
教师:一次实验还不能说明问题,我们再进行几次行吗?
教师往容器中倒入2 cm,4 cm,5 cm,10 cm高的水,学生计算后,师生共同用量筒直观验证,并生成实验表格。
3.实验分析
教师:刚才的实验说明了什么?观察数据你还有哪些发现?
4.回归课本,认识转化法推导圆柱体积,扩展对公式的认识
教师:圆柱体积V=Sh,关于这个方法,我们的数学家们用不同的方法进行了相关的说明,一起来看看。
课件配音演示:
教师:欣赏了数学家的推导方法,再回忆一下我们刚才的实验,你想说点什么吗?
三、实践应用,巩固新知
1.基本技能训练
练习八第1题。
2.拓展应用,促进发展
教学例3。
教师:不告诉圆柱的底面积,你能求出它的体积吗?
课件出示例3:
集体感知题意。全体学生独立完成,两名学生板演后讲解。
教师小结:当求体积的必要条件没有直接告诉时,我们应先根据相关信息予以解决。
3.独立作业
练习八第2,3题。
四、全课总结:
教师:今天我们一起研究了什么知识?在今天的学习中你的最大收获是什么?
《圆柱的体积》教案11
教学目标
1.使学生理解和掌握圆柱的体积计算公式,能运用公式计算圆柱的体积、容积,解决一些简单的实际问题。
2.渗透极限思想,发展学生的空间观念。
3、培养学生仔细计算的良好习惯。
重难点
1、圆柱体体积的计算
2、圆柱体体积公式的推导
教学过程
一、复习导入
1.解答下面各题
(1)圆的半径是2厘米。圆的面积是多少平方厘米?
(2)一个长方体,底面积是20平方米,高是2米,体积是多少?
2.导入
我们以前学过了长方体、立方体的体积的计算方法,都可以用公式V=SH进行计算,圆柱体的体积又该怎样计算呢?这节课我们一起来研究圆柱体体积的计算方法。(揭示课题)
二、探索新知
1.公式推导
(1)自学课本,初步感知圆柱是怎样转化成长方体的,让学生去发现两柱体之间的联系。
(2)操作研讨:演示操作,讨论:拼成的长方体跟圆柱体有什么异同点?
异:长方体变成圆柱体。同:体积、底面积、高都相同。
(3)比较归纳
在自学、操作、观察、讨论的基础上得出:
圆柱体体积=圆柱底面积圆柱的`高
V=SH
2.公式应用
(1)例1.读题,学生独立解答,板演、反馈,说说列式依据与应注意的问题。(单位)
类似题练习:
书本试一试和练一练
请同学板演计算的过程,并说明列式的依据.同学之间评.
(3).深入练习,书本第5题.
(4)实际应用:
测量生活中常见圆柱物体:茶叶罐、搪瓷杯,学生自由选择。量底面直径和高,并计算它的体积.
三、课堂总结
回顾学习全过程,知道求圆柱体积所需要的条件。质疑问难。
四、布置作业
作业本一面。
《圆柱的体积》教案12
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。例4是圆柱的体计算公式的直接运用,是圆柱体积计算的基本,但这题又给学生设置了单位不统一的障碍,让学生在直接应用公式计算的同时注意计量单位的统一。例5是圆柱体积计算公式的扩展练习,意在让学生加深理解容积的概念,使之明确求水桶的容积就是求水桶内部的体积。例5除了在意义上扩展外,公式的运用中也有加深,水桶的底面积没有直接给出,因此要先求出水桶的底面积,再求出水桶的体积。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱体、长方体彩图各一张,圆柱的体积公式演示教具。
学 具:小刀,用土豆做成的一个圆柱体。
教学过程:
一、复习铺垫
1.说说长方体的体积计算公式,正方体的体积计算公式,把这两个体积公式统一成一个又是怎样的?这个公式计算体积的`物体有什么特征?
2.指出圆柱各部分的名称。说一说圆柱有多少条高?有几个底面?每个1自由的面积如何计算?这个计算公式是怎样推导出来的?
二、设疑揭题
我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
[评析:复习抓住教学重点,瞄准学习新知识所必须的旧知识,、旧方法进行铺垫,沟通了知识之间的内在联系,衔接自然。新课引入教师引出了学习新知识的思路,导出了解决问题的方法,从而调动了学生学习的积极性,激发了学生探求新知识的欲望。
三、新课教学
1.探究推导圆柱的体积计算公式。
(l)自学第43页第二自然段,然后按照书中要求,两人一组将于中的圆柱切开拼一拼,再说一说你拼成三个近似什么形状的立方体?
(2)请学生演示教具,学生边演示边讲解切割拼合过程。
(3)根据学生讲解,出示圆柱和长方体的彩图。
(4)学生观察两个立体图,找出两图之间有哪些部分是相等的?
(5)依据长方体的体积计算公式推导出圆柱的体积计算公式。板书:V=sh
(6)要用这个公式计算圆柱的体积必须知道什么条件?
[评析:在教学中充分让学生动手、动脑、动口,让学生在操作中感知,在观察中理解,在比较中归纳。教师的导、放、扶层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力]
2.教学例4
(1)出示例4。
(2)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?谁愿意试一试?
(3)请一名同学板演,其余同学在作业本上做。
(4)板演的同学讲解自己的解题方法,说一说在做这道题的过程中遇到了什么问题,是怎样解决的?
(5)教师归纳学生所用的解题方法。强调在解题的过程中要注意单位统一。
3.教学例5
(1)请同学们想一想,如果已知圆柱底面的半径r t和高h,怎样求圆柱的体积?请学生自学并填写第44页第一自然段的空白部分。
(2)出示例5,指名读题。请同学们思考解题方法。
(3)请学生讲解题思路讨论、归纳统一的解题方法。
(4)让学生按讨论的方法做例5。
(5)教师评讲、总结方法。
(6)学生讨论。比较例4、例5有哪些相同和不同点。
[评析:引导学生通过实际操作,由观察、分析、比较,再进行计算,达到运用新知、巩固新知的目的。]
四、新知应用
1.做第44页下面做一做的题目。两人板演,其余在自己作业本主做,做完后及时反馈练习中出现的错误,并加以评讲。
2.刚才同学们在做例4时,还有下面几种解法,请大家仔细思考,这些解法是对还是错?试说明理由。
(1)V=sh=5O2.1=105
答:它的体积是105立方厘米
(2)2.l米=210厘米
V=sh=50210=10500
答:它的体积是10500立方厘米。
(3)50立方厘米=0.5立方米
V=sh=0.52.1=1.05(立方米)
答:它的体积是l.05立方米。
(4)50平方厘米=0.005平方米。
V=0。00521=0.01051
答:它的体积是0.01051(立方米)。
五、全课总结
问:这节课里我们学到了哪些知识?根据学生回答教师总结。
六、学生作业
练习十一的第l 、2题。
[总结实:本节课的教学体现了三个主要特点:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生操作、观察、思考、说理,调动多种感观参与学习;三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。总之,本节课教师引导得法,学生学得灵活,体现了重在思,贵在导,导思结合的原则,体现了教是为了不教,学会是为了会学的素质教育思想]
《圆柱的体积》教案13
教学内容:人教版数学第十二册《圆柱的体积》。
教学目的:
1、理解圆柱体积的意义。
2、初步掌握圆柱体积的计算方法,会计算圆柱的体积。
3、了解圆柱体积的推导过程。
4、通过教学,培养学生合理猜测能力、灵活的计算能力,发展学生的空间观念、提高运用所学知识解决简单的实际问题的能力。
教学重点:会计算圆柱的体积。圆柱体积计算公式的推导。
教学难点:圆柱体积计算公式的推导。
教具准备:圆柱体、圆柱形的胡萝卜、刀等。
一、复习旧知,调动学生的积极性。
师:请同学们回忆,圆的面积公式是怎样推导出来的?
生: (1、将圆分成若干等份,拼成一个近似长方形。2、把圆分的等份越多就越接近长方形。)
师:鼓励。(方向要明确,有促进,鼓励学生积极参与,参与合作)
多媒体显示:把圆平均分成若干份,拼成一个近似长方形。
师:什么叫体积?常用的体积单位有哪些?(立方厘米、立方分米、立方米等)
生:略。
师:(表扬,能比划一下1立方厘米、1立方分米、1立方米多大吗?)
师:长方体的体积怎样计算?
生:略。 师板书。长方体的体积=底面积×高
二、导入新课。
1、师:根据体积的含义,想一想,什么叫圆柱的体积?
生:略
师:(出示任意圆柱)你能估计一下这个圆柱的体积吗?(师相机鼓励、指导,更多的学生参与。)
师:拿出你们准备的圆柱,同桌估计一下体积,记录下来。
师:如果你想得到准确的体积,该怎样计算?(学生去猜测,师进行指导、鼓励。)
2、(引导学生完成猜测体积公式)
(如果学生猜对)师:怎样证明你的`猜测是对的呢?(师要等待)
(如果学生不能回答)师:能转化成我们学过的立体图行吗?
3、学生尝试。
(各小组合作,分好工,用课前准备好的萝卜或其他试切拼,教师尽可能多参加每个小组的活动,进行指导。)
(教师尽可能地参加与多组活动,并指导组与组之间的互评)
4、集体交流。
师:自己认为成功的小组请举手,不管是成功还是失败,我们都能从中受到一些启发。失败了,下次再来。请成功的小组介绍一下你们是怎样拼的。
生:略。
师:鼓励。指导。
师:切拼前后,什么变了?什么没变?(小组讨论)
(教师相机教学)板书:圆柱的体积=底面积×高
师:这样的证明你们信吗?(信 、不信)
师:怀疑好,为什么?(辩论,时间不要长。让学生大胆谈自己的想法,培养学生的能力。)
(字母推导)
三、知识的应用。
师:计算圆柱的体积需要哪两个条件?(略)
(出示例题,学生试做)指名(后进生两两合作)板演。学生评价,注意保护不足者。
师:认为自己没有错误的同学举手。(回应课开始的估计,拿出引入时估算体积的圆柱。)
师:如果请你测量所需要的数据,你打算测哪些数据比较方便,底面积吗?
(当然底面积不能一下测出)(半径或直径,和高)
师:同桌合作测量并计算你手里的圆柱体积。(完后,介绍结果并和你的估计进行比较,看是否接近。)(小于一百立方厘米的举手。)
四、小结。
师:通过今天的学习你们有哪些收获?还有哪些问题?
(生小结。师补充。)
《圆柱的体积》教案14
●教学内容
苏教版六年级下册第二单元圆柱和圆锥第三课时P17~18页例4,P2页练一练,练习一1~3。
●设计说明
教学目标:
知识技能:结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
数学思考:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
解决问题:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的.喜悦。
情感态度:提高学习数学的兴趣和学好数学的信心。
教学重点:
掌握和运用圆柱体积计算公式。
教学难点:
利用“转化”的方法推导圆柱体积公式的过程。
●课时安排
1课时
●教学准备
教师准备:多媒体课件一套。把圆柱沿底面等分成16份的教具。 学生准备:预习教材,把圆柱沿底面等分成16份的教具。
●教学过程
一、创设情境,提出问题
某玩具厂厂长,他们厂新开发了一种积木玩具,这三个积木的底面积和高都相等,他想比较一下这三个积木的体积的大小,同学们有什么方法?
二、动手实验,探索公式
1.观察、比较,建立猜想。引导生观察例4中的三个几何体,提问:
⑴长方体、正方体的体积相等吗?为什么?
(板书:长方体的体积=底面积×高)
⑵圆柱的体积与长方体、正方体的体积可能相等吗?这三个几何体的底面积和高都相等,它们的体积有什么关系?
2.实验操作,验证猜想
让学生自主探究(材料:圆柱体积木、圆柱体插拼教学具、师准备课件),想办法验证圆柱的体积与长方体、正方体的体积相等。
教师提示:你能想办法把圆柱转化成长方体吗?圆是如何转化成长方形的,可以模仿这样的方法来转化。
⑴小组合作研究怎样将圆柱体转化成一个长方体。
⑵小组代表汇报,全班交流。
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励) ⑶演示操作。
a.请一名学生演示用切、插、拼的方法把圆柱体转化成长方体。其他学生模仿操作。
b.思考:这是一个标准的长方体吗?为什么?如果分割的份数越多,你会有什么发现?
c.电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)。
3.观察比较,推导公式。
a.小组讨论:
圆柱体转化成长方体后,什么变了,什么没有变?
b.根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积× 高
圆柱的体积 = 底面积× 高
《圆柱的体积》教案15
教学内容:圆柱体积
教学目标:
1、使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。
2、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
教学重点
圆柱体体积的计算.
教学难点
理解圆柱体体积公式的推导过程.
对策:
通过观察实验,理解和掌握圆柱体积计算公式,发展空间观念。
课前准备:圆柱体积演示教具。
教学预设:
一、复习引新:
1、师:前几天我们学习了什么?
生:圆柱的表面积和侧面积。
师:圆的面积怎样求?
交流得出:圆的面积=圆周率×半径的平方
2、求下面各圆的面积。(只列式,不计算)
r=1cmd=4dmc=6.28m
3、求下列三个立体图形的底面积
(图略)图意:图1:长方体:长6.4厘米,宽2.5厘米
图2:正方体:棱长4厘米
图3:圆柱体:底面直径4.52厘米,高4厘米
4、思考:(1)上面长方体与正方体体积相等吗?为什么?
(2)猜一猜,当圆柱与正方体、长方体底面积、高相等时,圆柱的体积与长正方体的体积相等吗?用什么办法验证呢?
二、新授:探索圆柱体积计算公式
1、同桌交流,启发学生用转化的思考方法。
2、教具操作转化过程,光盘课件演示。
3、提问:从中你发现了什么?
引导学生发现:拼成的长方体体积=底面积×高
圆柱体积=底面积×高
4、学习用字母表达式来表示。
三、实际运用:
1、第26页上试一试:学生独立解答,一人板演。集体校对,说明计算方法。
2、练一练第1题:方法同上。分析校对后提问:这两题都要注意什么?
3、练一练第2题:读题理解:量底面从里面量什么意思?理解体积与容积的区别。再独立解答,校对分析。
4、第27页上练习七第1题:先独立填表,再组织交流。
5、补充:一个圆柱形水桶,底面直径和高都是40厘米。这个水桶能装多少千克水?(1立方分米的水重1千克)
6、补充:一个圆柱形的水桶,底面积是12.56平方分米,高是20厘米,里面装了3/5桶水。水重多少千克?(1立方分米水重1千克)
7、补充:两个体积相等的圆柱,一个圆柱的底面积是78.5平方分米,高是8分米。另一个圆柱的高是10分米,底面积是多少?
四、全课总结
五、独立作业:第27页上第2、3、4题,第5题要求测量数据。
课前思考:
新授部分的重点是引导学生在操作、观察、讨论等数学活动中,理解圆柱体积公式的推导过程,体验转化和极限思想。课前教师要组织学生准备好学具和教具,提高活动质量。我将活动这一部分的教学过程再做一补充:
1、引导。
圆面积计算公式是什么?(S=πr2)这一计算公式是怎样推导出来的?谁说一说圆面积计算公式的推导过程?
师:刚才,同学们说出了圆面积计算公式的推导过程:是把圆分切割,拼成一个近似的长方形,找出圆的面积和所拼的长方形面积之间的关系,再利用求长方形面积的计算公式导出
圆面积的计算公式。
师:那么怎样计算圆柱的体积呢?能不能把圆柱转化成我们已经学过的图形来求出它的体积?
让学生讨论,思考应怎样进行转化。然后指名说说自己想到的方法。教师应给予表扬。
师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
2、合作学习,探索研究。
(1)谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
(2)提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,拿出课前准备好的学具圆柱,操作一下。
(3)讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
课件演示,使学生清楚地认识到:拼成的立体会越来越接近长方体。
3、推出公式
(1)提问:拼成的长方体与原来的圆柱有什么关系?什么变了?什么没有变?
指出:圆柱通过切割、拼合后,转化为近似的长方体,形状变了,体积不变;(板书:长方体的体积=圆柱的体积)拼成的长方体的'底面积等于圆柱的底面积;拼成的近似的长方体的高就是圆柱的高。
(2)想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式:圆柱的体积=底面积×高
(3)引导用字母公式表示圆柱的体积公式:V=sh
(4)学生回顾圆柱体积的推导过程,同桌间互相说一说。
课前思考:
本节课主要使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。圆柱体积的计算公式学生不难记忆,但更重要的是怎样让学生主动参与这一推导的过程。在讨论拼成的长方体与原来的圆柱有什么联系时,要引导学生结合对教具和学具的演示进行思考,让学生认识“转化”的思考方法。要指导学生用语言完整的说出推理过程,相对很多表达能力不强的学生来说或许有点困难,但要尽可能的让学生说。
对于圆的推导过程,相信不少学生都已经忘记,所以我打算课前先复习一下圆的相关知识,以及正方体和长方体的体积计算公式。
课后反思:
圆柱的体积计算方法学生都能掌握,但在推导拼成的长方体与原来的圆柱有什么联系这一过程时,不是很顺畅,我让学生利用学具同桌合作操作,这样能给学生直观的感受。
从学生的作业质量来看,大部分学生都掌握得很好,单学习圆柱体积的计算公式,学生不容易混淆,如果和圆柱的侧面积结合起来,以及遇到实际问题时,相信很多学生都会混淆了。所以有必要增加适当的对比练习,加以巩固。
在做练习第4题时,我让学生交流方法,学生都能把两种不同的方法说出来,而计算则是让学生留到课后去解决。
【《圆柱的体积》教案】相关文章:
《圆柱的体积》教案09-01
圆柱的体积教案02-02
《圆柱的体积》教案05-22
(必备)《圆柱的体积》教案05-22
《圆柱的体积》教案15篇04-01
《圆柱的体积》说课稿12-13
圆柱的体积说课稿02-03
说课稿《圆柱的体积》02-20
精选《圆柱的体积》教案(通用13篇)08-10