《圆柱的体积》教案

时间:2024-05-22 15:51:11 教案 我要投稿

(必备)《圆柱的体积》教案

  作为一位兢兢业业的人民教师,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们应该怎么写教案呢?下面是小编收集整理的《圆柱的体积》教案,欢迎阅读,希望大家能够喜欢。

(必备)《圆柱的体积》教案

《圆柱的体积》教案1

  教学目标:

  1、渗透转化思想,培养学生的自主探索意识。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  圆柱体积的计算公式的推导。

  教学准备:主题图、圆柱形物体

  教学过程:

  一、复习:

  1、长方体的体积公式是什么?

  (长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的.体积=底面积×高)

  2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

  3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  二、新课:

  1、圆柱体积计算公式的推导:

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

  (课件演示将圆柱细分,拼成一个长方体)

  (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  (长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

  2、教学补充例题:

  (1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ① 这道题已知什么?求什么?

  ② 能不能根据公式直接计算?

  ③ 计算之前要注意什么?

  (计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)出示下面几种解答方案,让学生判断哪个是正确的.

  ①V=Sh

  50×2.1=105(立方厘米)

  答:它的体积是105立方厘米。

  ②2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的体积是10500立方厘米。

  ③50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的体积是1.05立方米。

  ④50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的体积是0.0105立方米。

  先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

  (4)做第20页的“做一做”。

  学生独立做在练习本上,做完后集体订正。

  3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

  4、教学例6:

  (1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

  (2)学生尝试完成例6。

  ① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

  5、比较一下补充例题、例6有哪些相同的地方和不同的地方?

  (相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。)

  三、巩固练习:

  1、做第26页的第1题:

  2、练习五的第2题:

  这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

  四、全课总结:

《圆柱的体积》教案2

  新课程观强调:

  教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地用教材,而不是简单地教教材。在实际教学中,如何落实这一理念?本人结合圆柱的体积一课谈谈自己的实践与思考。

  ■ [片段一]

  ■ 师生共同探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(苏教版第12册P8):一根圆柱形钢材,底面积是20平方厘米,高是1.5米,它的体积是多少?

  ■ 由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答:

  ■ 1.5米=150厘米 201150=3000(立方厘米)

  ■ 师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现:

  ■ ①20平方厘米=0.002平方米 0.00211.5=0.003(立方米)

  ■ ②20平方厘米=0.2平方分米 1.5米=15分米 0.2115=3(立方分米)

  ■ 师:为什么会出现三种结果?

  ■ 经讨论,学生才明白:从不同的角度去考虑问题,将得到不同的结果。

  ■ [片断二]

  ■ 巩固与应用阶段,我将教材练习二中的一个填表题(表1)进行了加工组合呈现给学生这样一个表格(表2)。

  ■ 表 1

  ■

  ■ 表2

  ■

  ■ 学生填表后,师:观察前两组数据,你想说什么?

  ■ 学生独立思考后再小组交流,最后汇报。

  ■ 生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。

  ■ 生2:两个圆柱的高相等,底面积越大,体积就越大。

  ■ 师:观察后两组数据,你想说什么?

  ■ 有了前面的基础,学生很容易说出了后两组的关系。

  ■ 学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元比例的教学作了提前孕伏。

  ■ [片段三]

  ■ 教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?

  ■ 学生动手测量自备的圆柱形茶杯的有关数据并计算它的体积。

  ■ 师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。

  ■ [教学反思]

  ■ 精心研究教材是用好教材的基础

  ■ 教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种枷锁,而应作为跳板编者意图与学生实际的跳板。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

  ■ 1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会从不同的角度去考虑问题,将得到不同的结果的道理,从而学会多角度考虑问题,提高解决问题的能力。

  ■ 2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为比例的教学作了提前孕伏。走出了数学教学的'只见树木,不见森林的点教学的误区。

  ■ 落实课标理念是用好教材的关键

  ■ 能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。关注人是新课程的核心理念。我们的数学教学不能再以学科为中心,而应以学生为出发点和归宿。教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能符合新理念。前两个片段就突破了学科中心和知识中心,走向了学生中心。[片断三]在教材关注学生的基础上向深层发展不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。

  ■ 学生获得发展是用好教材的标准

  ■ 有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质一切为了每一位学生的发展。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,以本为本,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。

《圆柱的体积》教案3

  教学目标:

  1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

  2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

  3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

  教学重点:

  圆柱体积计算公式的推导过程并能正确应用。

  教学难点:

  借助教具演示,弄清圆柱与长方体的关系。

  教具准备:

  多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

  教学设想:

  《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识从生活中来到生活去的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

  教学过程:

  一、创设情境,激疑引入

  水是生命之源!节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

  1、出示装了水的圆柱容器。

  (1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

  (2)讨论后汇报

  生1:用量筒或量杯直接量出它的体积;

  生2:用秤称出水的重量,然后进一步知道体积;

  生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

  师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

  生1:把水到入长方体容器中

  生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

  [设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

  2、创设问题情境。

  师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

  [设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

  师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

  二、经历体验,探究新知

  1、回顾旧知,帮助迁移

  (1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

  生1:圆柱的上下两个底面是圆形

  生2:侧面展开是长方形

  生3:说明圆柱和我们学过的圆和长方形有联系

  师:请同学们想想圆柱的体积与什么有关?

  生1:可能与它的大小有关

  生2:不是吧,应该与它的高有关

  [设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

  (2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

  配合学生回答演示课件。

  [设计意图:通过想象,进一步发展学生的空间观念,由形到体;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

  2、小组合作,探究新知

  (1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

  (2)学生以小组为单位操作体验。

  把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份)

  [设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

  (3)学生小组汇报交流

  近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

  教师根据学生汇报,用教具进行演示。

  (4)概括板书:根据圆柱与近似长方体的关系,推导公式

  长方体的'体积 = 底面积 高

  圆柱的体积 = 底面积 高

  用字母表示计算公式V= sh

  [设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践操作,动画演示,验证了学生的发现,从学生的认识和发现中,围绕着圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识 公式)]

  三、实践应用,巩固新知。

  1、火眼金睛判对错。

  (1)长方体、正方体、圆柱的体积都等于底面积乘高。( )

  (2)圆柱的高越大,圆柱的体积就越大。( )

  (3)如果两个圆柱的体积相等,则它们一定等底等高。( )

  [设计意图:加深对刚学知识的分析和理解。]

  2、计算下面各圆柱的体积。

  (1)底面积是30平方厘米,高4厘米。

  (2)底面周长是12。56米,高是2米。

  (3)底面半径是2厘米,高10厘米。

  [设计意图:让学生灵活运用公式进行计算。]

  3、实践练习。

  提供在创设情景中圆柱形接水容器的内底面直径和高。

  这个圆柱形容器,内底面直径是10厘米,高12厘米,水面高度10厘米。

  [设计意图:让学生领悟数学与现实生活的联系。]

  4、课堂作业。

  为了美化环境,阳光小区在楼前的空地上建了四个同样大小的圆柱形花坛。花坛的底面内直径为4米,高为0、6米,如果里面填土的高度是0、4米,这四个花坛共需要填土多少立方米?

  [设计意图:使学生进一步感受到生活中处处有数学,同时培养学生的环保意识。]

  四、反思回顾

  师:通过本节课的学习,你有什么收获吗?

  [设计意图:让不同层次的学生谈学习收获,可使每个学生都体验到成功的喜悦。这样,学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习的乐趣,增强了学好数学的信心。]

  板书设计:

  圆柱的体积

  根据圆柱与近似长方体的关系,推导公式

  长方体的体积 = 底面积 高

  圆柱的体积 = 底面积 高

  用字母表示计算公式V= sh

  教学反思:

  本节的教学从生活的实际创设情境,提出问题,让学生学习有用的数学,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识(长方体体积的计算)经验(圆面积公式的推导)解决新的问题,在新旧知识的联系上,巧妙的利用想象、课件演示将圆和圆柱有机的联系到一起,使学生想象合理、联系有方。在探究新知中,通过想象和操作,让学生充分经历了知识的形成过程,为较抽象的理论概括提供了必要而有效的感性材料,加强了实践与知识的联系,并创造性的补充了一些与学生身边实际生活相联系的练习题,提高了学生的学习兴趣。

《圆柱的体积》教案4

  教学内容:北师大版数学六年级下册5——6页。

  教学目标:

  1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学重点:目标1。

  教学难点:目标2。

  教学过程:

  活动一:复习旧知,巩固学过的公式。

  1、一个直径是100毫米的圆,求周长。

  2、一个半径3厘米的圆,求周长和面积。

  3、一个长为3米,宽为2米的长方形,它的面积是多少?

  4、出示圆柱体的模型,说说它有什么特征?

  活动二;探究新知。

  1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)

  要解决这个问题,就是求什么?

  2、圆柱的表面积包括哪几部分?

  3、圆柱的表面积的计算关键在哪一部分?

  4、探索圆柱侧面积的计算方法。

  1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。

  2)圆柱侧面展开图的`长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?

  3)师;圆柱的侧面积就是求长方形的面积。用长乘宽。

  4)长就是圆柱的底面圆的周长,宽就是圆柱的高。

  5)请你来总结一下圆柱侧面积的计算方法。

  6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。

  活动三:新知识的运用。

  1、求底面半径是10厘米,高30厘米的圆柱的表面积。

  2、教师板书:

  侧面积:2╳3.14╳10╳30=1884(平方厘米)

  底面积:3.14╳10╳10=314(平方厘米)

  表面积:1884+314╳2=2512(平方厘米)

  要求按步骤进行书写。

  2、试一试。

  做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?

  求至少需要多少铁皮,就是求水桶的表面积。

  这道题要注意什么?无盖就只算一个底面。这种题如果求整数,一般用进一法。

  3、练一练。书第6页第1题。

  3个小题:已知底面直径或底面周长和高,求圆柱的表面积。重点讨论:已知底面周长,求表面积。

《圆柱的体积》教案5

  教材简析:

  本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。例4是圆柱的体计算公式的直接运用,是圆柱体积计算的基本,但这题又给学生设置了单位不统一的障碍,让学生在直接应用公式计算的同时注意计量单位的统一。例5是圆柱体积计算公式的扩展练习,意在让学生加深理解容积的概念,使之明确求水桶的容积就是求水桶内部的体积。例5除了在意义上扩展外,公式的运用中也有加深,水桶的底面积没有直接给出,因此要先求出水桶的底面积,再求出水桶的体积。

  教学目的:

  1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

  2.会用圆柱的体积计算圆柱形物体的体积和容积。

  3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

  4.借助实物演示,培养学生抽象、概括的思维能力。

  教 具圆柱体、长方体彩图各一张,圆柱的体积公式演示教具。

  学 具:小刀,用土豆做成的一个圆柱体。

  教学过程:

  一、复习铺垫

  1.说说长方体的体积计算公式,正方体的体积计算公式,把这两个体积公式统一成一个又是怎样的?这个公式计算体积的物体有什么特征?

  2.指出圆柱各部分的名称。说一说圆柱有多少条高?有几个底面?每个1自由的面积如何计算?这个计算公式是怎样推导出来的?

  二、设疑揭题

  我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

  [评析:复习抓住教学重点,瞄准学习新知识所必须的旧知识,、旧方法进行铺垫,沟通了知识之间的内在联系,衔接自然。新课引入教师引出了学习新知识的思路,导出了解决问题的方法,从而调动了学生学习的积极性,激发了学生探求新知识的欲望。

  三、新课教学

  1.探究推导圆柱的体积计算公式。

  (l)自学第43页第二自然段,然后按照书中要求,两人一组将于中的圆柱切开拼一拼,再说一说你拼成三个近似什么形状的立方体?

  (2)请学生演示教具,学生边演示边讲解切割拼合过程。

  (3)根据学生讲解,出示圆柱和长方体的彩图。

  (4)学生观察两个立体图,找出两图之间有哪些部分是相等的?

  (5)依据长方体的体积计算公式推导出圆柱的'体积计算公式。板书:V=sh

  (6)要用这个公式计算圆柱的体积必须知道什么条件?

  [评析:在教学中充分让学生动手、动脑、动口,让学生在操作中感知,在观察中理解,在比较中归纳。教师的导、放、扶层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力]

  2.教学例4

  (1)出示例4。

  (2)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?谁愿意试一试?

  (3)请一名同学板演,其余同学在作业本上做。

  (4)板演的同学讲解自己的解题方法,说一说在做这道题的过程中遇到了什么问题,是怎样解决的?

  (5)教师归纳学生所用的解题方法。强调在解题的过程中要注意单位统一。

  3.教学例5

  (1)请同学们想一想,如果已知圆柱底面的半径r t和高h,怎样求圆柱的体积?请学生自学并填写第44页第一自然段的空白部分。

  (2)出示例5,指名读题。请同学们思考解题方法。

  (3)请学生讲解题思路讨论、归纳统一的解题方法。

  (4)让学生按讨论的方法做例5。

  (5)教师评讲、总结方法。

  (6)学生讨论。比较例4、例5有哪些相同和不同点。

  [评析:引导学生通过实际操作,由观察、分析、比较,再进行计算,达到运用新知、巩固新知的目的。]

  四、新知应用

  1.做第44页下面做一做的题目。两人板演,其余在自己作业本主做,做完后及时反馈练习中出现的错误,并加以评讲。

  2.刚才同学们在做例4时,还有下面几种解法,请大家仔细思考,这些解法是对还是错?试说明理由。

  (1)V=sh=5O2.1=105

  答:它的体积是105立方厘米

  (2)2.l米=210厘米

  V=sh=50210=10500

  答:它的体积是10500立方厘米。

  (3)50立方厘米=0.5立方米

  V=sh=0.52.1=1.05(立方米)

  答:它的体积是l.05立方米。

  (4)50平方厘米=0.005平方米。

  V=0。00521=0.01051

  答:它的体积是0.01051(立方米)。

  五、全课总结

  问:这节课里我们学到了哪些知识?根据学生回答教师总结。

  六、学生作业

  练习十一的第l 、2题。

  [总结实:本节课的教学体现了三个主要特点:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生操作、观察、思考、说理,调动多种感观参与学习;三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。总之,本节课教师引导得法,学生学得灵活,体现了重在思,贵在导,导思结合的原则,体现了教是为了不教,学会是为了会学的素质教育思想]

《圆柱的体积》教案6

  教学内容:

  北师大版小学数学教材六年级下册第8—10页。

  教学目标:

  1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,能够运用公式正确的计算圆柱的体积和容积。

  2、初步学会用转化的思想和方法,提高解决实际问题的能力。

  教学重点、难点:

  重点:掌握圆柱体积的计算公式。

  难点:圆柱体积计算公式的推导。

  教学过程:

  一、情境导入

  1、出示教学情境:怎样用学过的知识测量出老师的水杯里装了多少毫升的水?

  想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

  让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出长方体的长、宽和水的高,就能求出水的体积。

  2、出示第二情境:圆柱形的木柱子、压路机的车轮这样的圆柱用这种方法还行吗?怎么办?

  怎样计算圆柱的体积?这就是我们本节课要研究的`问题。(板书课题:计算圆柱的体积)

  二、探究新知:

  1、大胆猜想:你觉得圆柱体积的大小和什么有关?

  学生猜想,教师出示相应的课件演示,让学生观察,体会圆柱的体积和它的底面积和高,有关系,有怎样的关系。

  2、圆柱的体积可能等于什么?(说说猜想依据)

  长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

  (用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。)

  学生讨论交流:

  (1)把圆柱拼成长方体后,什么变了,什么没变?

  (2)拼成的长方体与圆柱之间有什么联系?

  (3)通过观察得到什么结论?

  得到:圆柱的体积=底面积×高 V=Sh

  三、拓展交流

  要求圆柱的体积只要找到它的底面积和高就可以,分别讨论知道半径、直径、地面周长,该怎么求出圆柱的体积,总结出公式。

  四、练习设计:

  1、想一想,填一填:

  把圆柱体切割拼成近似(),它们的()相等。长方体的高就是圆柱体的( ),长方体的底面积就是圆柱体的( ),因为长方体的体积=(),所以圆柱体的体积=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圆柱体体积用字母表示为( )

  2、判断正误,对的画“√”,错误的画“×”。

  (1)圆柱体的底面积越大,它的体积越大。×

  (2)圆柱体的高越长,它的体积越大。×

  (3)圆柱体的体积与长方体的体积相等。×

  (4)圆柱体的底面直径和高可以相等。√

  3、分别计算下列各图形的体积,再说说这几个图形体积计算方法之间的联系。

  4×3×8

  6×6×6

  3.14×(5÷2)2×8

  =96(cm3)

  =216(cm3)

  =157(cm3)

  4、计算下面各圆柱的体积。

  60×4

  3.14×12×5

  3.14×(6÷2)2×10

  =240(cm3)

  =15.7(cm3)

  =282.6(dm3)

  5、这个杯子能否装下3000mL的牛奶?

  3.14×(14÷2)2×20

  =3077.2(cm3)

  =3077.2(mL)

  3077.2mL>3000mL

  答:这个杯子能装下3000mL的牛奶。

  五、课堂小结:谈谈这节课你有哪些收获?

《圆柱的体积》教案7

  第二课时

  教学目标

  1.经历同桌合作,测量、计算圆柱形物体体积的过程。

  2.会测量圆柱形物体的有关数据,能根据圆柱的高及底面直径或周长计算圆柱的体积。

  3.能与同伴合作寻找解决问题的有效方法,能表达解决问题的大致过程和结果。

  教学重点

  能根据学生自己测量的数据进行圆柱体积的计算。

  教学难点

  给出圆柱底面周长如何计算圆柱的体积。

  教具准备

  学生自备的茶叶筒或露露瓶。

  教学过程

  一、测量茶叶筒的体积

  1.师:同学们,我们要想计算这个茶叶筒的体积,应该首先知道哪些数据?

  生:茶叶筒的高,底面直径或半径。

  师:很好,那么我们就来亲手量一量你们手里的圆柱体的各个数据,并计算出它们的体积。

  学生同桌合作测量并计算。

  2.交流测量数据的方法和计算的结果。

  3.刚才同学大部分都测量的是茶叶筒的高和直径或半径,有没有测量茶叶筒的底面周长的?如果有,就说说是怎么测量和计算的。如果没有,就提示大家,如果给出了圆柱底面周长,怎样计算圆柱的体积呢?

  生:利用周长先求出半径,再进行计算。

  师:你们会不会测量茶叶筒的底面周长呢?如果已经忘记,就进行一下提示:在圆柱的底面上做一标记,然后把圆柱体在直尺上进行滚动。或用皮尺测量。请大家实际测量一下底面周长,并进行计算,看看和刚才计算的结果是否一致。

  二、巩固练习

  1.一根圆柱形水泥柱子,它的底面周长是6.28分米,高200分米,求它的体积?

  2.独立完成练一练的1-3题。

  三、家庭作业

  1.练一练的第4小题。

  2.①一个圆柱的的体积是141.3立方厘米,底面半径3厘米,它的高是多少厘米?

  ②一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?

  圆柱的体积

  第三课时 容积

  教学目标

  1.结合具体事例,经历探索容积计算问题的过程。

  2.掌握计算容积的方法,能解决有关容积的简单实际问题。

  3.在解决容积问题的过程中,体验数学与日常生活的密切联系。

  教学重点

  利用体积公式计算保温杯的容积。

  教学难点

  计算容积所需要的数据是容器内壁的高、底面直径或半径,如何获得这些数据。

  教学过程

  一、复习旧知

  1.求下列圆柱的体积(口答列式)。

  (1)底面积3平方分米,高4分米;

  (2)底面半径2厘米,高2厘米;

  (3)底面直径2分米,高3分米。

  追问:圆柱的体积是怎样计算的?(板书:V=Sh)

  2.复习容积。

  提问:什么是容积?它与物体的体积有什么区别?我们是按什么方法计算容积的?

  3.引入新课。

  我们已经学习过圆柱的体积计算,知道了容积和容积的.计算方法。这节课,就在计算圆柱体积的基础上,学习圆柱的容积计算。(板书课题)

  二、教学新课

  1.教学例题。

  出示例题,读题。提问:这道题求什么?你能计算它的容积吗?请大家仔细看一下题目,解答这道题还要注意些什么?(统一单位或改写体积单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。同时注意是怎样统一单位和取近似值的。

  2.注意体积单位和容积单位的区别,以及它们之间的换算:

  1立方分米=1升 1立方厘米=1毫升

  3.注意保温杯内壁的厚度应该减去几个才是内壁的直径,高应该减去几个厚度才是内壁的高?

  4.学生独立完成。然后进行全班交流。

  三、新课小结

  1.提问:求圆柱形容器的容积要怎样计算?如果知道圆柱底面的半径或直径,怎样求圆柱的体积?

  2.计算容积与计算体积有什么相同点和不同点?

  四、提高练习

  把6个这样的保温杯倒满水,大约需要多少千克水?

  注意大头蛙的话:1毫升水重1克。

  五、巩固练习

  1.拿一个水杯,量出它的内直径和高,算一算这个水杯大约可以装多少水?

  注意:如果给出水杯的外壁直径、杯壁厚度和高,怎么计算?(内壁就减两个厚度,高减一个厚度,因为水杯没有盖。)

  2.练一练1:求水杯的水有多少是求水杯的容积吗?水杯的高度与计算容积有关吗?需要用哪个数据来计算?(杯中水的高度)

  3.练一练第4小题。怎么钢管的体积?

  1)钢管体积=大圆柱体积-小圆柱体积

  2)钢管体积=钢管环形底面积高

《圆柱的体积》教案8

  学习目标:

  经历探究不规则物体体积的转化、测量和计算过程,在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。学习重点:应用圆柱的体积计算公式解决实际问题。

  学习难点:理解瓶子的容积是由装水的圆柱的体积和倒置后无水的圆柱的体积两部分组成的。

  学习过程

  一.创设情境,提出问题。

  每个小组桌子上有一个没有装满水的矿泉水瓶。原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?

  1:瓶子还有多少水?(剩下多少水?)

  2:喝了多少水?(也就是瓶子的空气部分。)

  3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)

  二、小组交流、探究新知

  1.独立思考、尝试解决问题

  怎么求这个矿泉水瓶的容积?根据自己的生活学习经验来想办法解决,2.小组合作,探讨瓶子的容积计算方法

  小组合作活动一:要求:小组内拿出课前准备的矿泉水,先请一位同学倒出一部分,再把你的想法在小组内交流交流。

  交流:哪位同学上来把你们的想法给大家交流分享一下?(生上台演示讲解。)

  3.总结板书:水的`体积+空气部分体积=瓶子的容积。

  三、同样的方法完成课本例题及做一做。

  1.完成例7。指名学生上台板演,2.数学书P27做一做。

  四、总结板书

  水的体积+空气部分体积=瓶子的容积

  形状变了体积不变

  五、作业:课本29页练习第10题、13题。

  教学反思

  本节课是利用所学圆柱的知识解决实际问题。虽然备课时尽量考虑到可能出现的所有情况,但是实际上课的过程中还是出现了没有预料到的情况。

  首先,小组合作的时候分组比较大:即有的学生真的参与进去了,有的学生却无事可干,因为计算量比较大,得到数据的同学忙着计算,没有接触到瓶子的同学没有计算的数据,也反映出我们平时小组合作时互相配合的良好习惯还没养成。如果我把小组设定为4人一组或2人一组的话,学生实际的参与程度会更高。

  其次,本课的教学过程中瓶子的容积计算方法的推导过程中,渗透了简便计算的方法,如果在理解底面积x(水的高+空气部分的高)这一步时,如果配上教具展示(把教具中圆柱形的水和倒置后圆柱形的空气部分剪下来,再拼接在一起,形成一个大圆柱。)学生更能理解空气部分体积+水的体积=底面积x(水的高+空气部分的高)表示的具体意义了。

  最后,我感觉这节课注重了容积计算方法的推导过程,练习时间较少,还有更多不规则体积的计算,期待在以后的练习中,学生都能找到解决问题的方法!

《圆柱的体积》教案9

  教学目标:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  圆柱体积的计算公式的推导。

  教学过程:

  一、复习

  1、长方体的体积公式是什么?正方体呢?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

  2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

  3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  师小结:圆的面积公式的推导是利用转化的`思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?

  二、新课

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

  反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?

  长方体和圆柱体的底面积和体积有怎样的关系?

  学生说演示过程,总结推倒公式。

  (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

  2、教学补充例题(删掉)

  (1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  (2)指名学生分别回答下面的问题

  ①这道题已知什么?求什么?

  ②能不能根据公式直接计算?

  ③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)出示下面几种解答方案,让学生判断哪个是正确的.

  ①V=Sh

  50×2.1=105(立方厘米)

  答:它的体积是105立方厘米。

  ②2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的体积是10500立方厘米。

  ③50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的体积是1.05立方米。

  ④50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的体积是0.0105立方米。

  先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.(删掉)

  (4)做第20页的“做一做”。

  学生独立做在练习本上,做完后集体订正.

  出示一组习题

  一个圆柱的半径4厘米,高3厘米,体积是多少立方厘米?

  一个圆柱的直径12厘米,高3厘米,体积是多少立方厘米?

  一个圆柱的周长12.56厘米,高3厘米,体积是多少立方厘米?

  3、引导思考:如果已知圆柱底面半径,直径,和底面周长和高,圆柱体积的计算公式是怎样的?

  4、教学例6

  (1)出示例,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)(删掉)

  (1)学生尝试完成例6。

  ①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

  (2)学生见解例题,师补充

  三、巩固练习

  1、一个圆柱形水桶底面直径是56厘米,高87厘米,水桶装多少水?

  2、一个圆柱的体积是80立方厘米,底面积是16平方厘米,它的高是多少厘米?

  3、一个圆柱形粮囤,从里面量得底面半径是1.5米,高是2米。如果每立方米约中750千克,这个粮囤能装多少吨玉米?

  4钢管的长80厘米,外直径10厘米,内直径8厘米,求它的体积。

  板书设计:

  圆柱的体积=底面积×高V=Sh或V=πr2h

  例6:

  ①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

  教学反思:

  以旧引新,培养学生的自主学习能力。加强直观操作,培养学生的动手操作能力。利用“转化思想”的方法把圆柱转化成近似的长方体,通过小组合作实验推导出圆柱体积的计算方法,使学生在操作中感知,在观察中理解,在比较中归纳,发展了学生的空间观念,培养了学生的动手能力和合作能力。

《圆柱的体积》教案10

  教学目标:

  1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。

  2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。

  教学重点:

  理解和掌握圆柱的体积计算公式,会求圆柱的体积

  教学难点:

  理解圆柱体积计算公式的推导过程。

  教学用具:

  圆柱体积演示教具。

  教学过程:

  一、复述回顾,导入新课

  以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)

  1、说一说:(1)什么叫体积?常用的体积单位有哪些?

  (2)长方体、正方体的体积怎样计算?如何用字母表示?

  长方体、正方体的体积=()×()用字母表示()

  2、求下面各圆的面积(只说出解题思路,不计算。)

  (1)r=1厘米;(2)d=4分米;(3)C=6.28米。

  (二)揭示课题

  你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)

  二、设问导读

  请仔细阅读课本第8-9页的内容,完成下面问题

  (一)以小组合作完成1、2题。

  1、猜一猜,圆柱的体积可能等于()×()

  2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的`方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系

  (1)圆柱的底面积变成了长方体的()。

  (2)圆柱的高变成了长方体的()。

  (3)圆柱转化成长方体后,体积没变。因为长方体的体积=()×(),所以圆柱的体积=()×()。如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()

  [汇报交流,教师用教具演示讲解2题]

  (二)独立完成3、4题。

  3、如果已知课本第8页左上方柱子的底面半径为0.4米,高5米,怎样计算柱子的体积?

  先求底面积,列式计算()

  再求体积,列式计算()

  综合算式()

  4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“()×()”(杯子厚度忽略不计)

  【要求:完成之后以小组互查,有争议之处四人大组讨论。】

  教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。

  三、自我检测

  1、课本9页试一试

  2、课本9页练一练1题(只列式,不计算)

  【要求:完成后小组互查,教师评价】

  四、巩固练习

  课本练一练的2、3、4题

  【要求:组长先给组员讲解题思路,然后小组内共同完成】

  教师进行错例分析。

  五、拓展练习

  1、课本练一练的5题

  2、有一条围粮的席子,长6.28米,宽2.5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?

  【要求:先组内讨论确定解题思路,再完成】

  六、课堂总结,布置作业

  1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。

  2、作业:课本练一练6题

《圆柱的体积》教案11

  教学目标:

  1、知识技能

  运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、过程方法

  让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3、情感态度价值观

  通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  圆柱体体积的计算公式的推导过程及其应用。

  教学难点:

  理解圆柱体体积公式的推导过程。

  教学准备:圆柱体积公式推导演示学具、多媒体课件。

  教学过程:

  一、复习导入

  同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体

  的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

  二、图柱转化,自主探究,验证猜想。

  (一)猜想。

  1、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)

  [数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]

  2、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。

  (二)操作验证。

  1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。

  在操作时,学生分组边操作边讨论以下问题:

  ①拼成的近似长方体的体积与原来的圆柱体积有什么关系?

  ②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?

  ?.拼成的近似长方体的高与原来的圆柱的高有什么关系?

  2、小组代表汇报

  (学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

  3、电脑演示操作

  (1)电脑演示圆柱体转化成长方体的过程:

  仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?

  动画演示:把圆柱的`底面平均分成32份、64份,切开后拼成的物体会有什么变化?

  (分的分数越多,拼成的图形就越接近长方体)

  (2)根据学生的观察、分析、推想,老师完成板书:

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  V=Sh

  (3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

  三、练习巩固,灵活应用

  闯关1.一根圆柱形钢材,底面积是75平方厘米,长是90厘米。它的体积是多少?

  让学生试做,集体反馈。

  闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?

  学生讨论、交流、汇报。

  小结:解决以上问题的关键是先求出什么?(生:底面积)

  闯关3.下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的。)学生在练习本上独立完成,集体反馈。

  四、课堂小结

  学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)

  五、布置作业

  教科书第21页练习三第1-4题。

  板书设计:

  圆柱的体积

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  V= Sh

《圆柱的体积》教案12

  《数学课程标准》指出“数学教学要让学生经历知识的形成过程,能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和学科学习中的问题,增加应用数学的意识”。新课标注重的不只是让学生掌握学习中的结论,更关注的是个性的体验,让学生在活动中体验 、在实践中运用即让学生主动参与、实践交流、合作探究中去经历知识形成的过程,通过不断地发现问题、提出问题、分析问题、解决问题,积累生活中的经验,培养应用数学的能力,体验数学的乐趣,感受数学在生活中的应用价值。

  圆柱的体积这节课是在学生已经初步理解体积和容积的含义、掌握了长方体和正方体体积计算方法的基础上学习的。本节内容包括圆柱的体积计算公式的推导,利用公式计算圆柱的体积,能运用圆柱的体积解决生活中的实际问题。

  教学情境如下:

  一:情境引入,感性认识

  师:(拿出橡皮泥)你知道它的'体积吗?你用什么方法知道的,说给大家听一听。

  生:捏成长方体或正方体,量出长、宽、高后再用公式:长×宽×高计算出体积。

  师:你还能捏成我们学过的其他图形吗? (学生操作:捏成圆柱)

  师:现在你会计算它的体积吗?猜一猜,怎么办呢?(学生操作:圆柱捏成长方体)

  师:你发现了什么?

  生:形状变,体积不变.

  师:我们曾经学过可以把什么图形通过什么方法转化成什么图形求面积呢?

  生:圆切割拼成一个近似的长方形。

  师: 圆柱形橡皮泥的体积会求了, 如果要求圆柱体容器里水的体积该怎么办?

  生:把水倒入长方体容器中,再测量计算。

  师:要求圆柱体铁块的体积呢?

  生:把它浸入水中,求出排出水的体积。

  师:要求商场门口圆柱体柱子的体积呢?(生面面相觑,不知所措)。

  二:自主探究,迁移转化

  1、引导

  师:有的同学把圆柱转化成我们已学过的立体图形,来计算它的体积。

  (让学生互相讨论,应如何转化,然后组织全班汇报)

  生:把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。

  2、 操作

  学生拿出事先准备好的萝卜(圆柱体模具)和小刀,让学生动手切一切,拼一拼。

  3、感知:将圆柱体模具(已切好)当场演示。

  ①让一位学生把切割好的一半拿上又叉开;

  ②另一位学生将切割好的另一半拼合上去;

  ③观察得到一个什么形体?同时你发现了什么?

  以四人小组为单位进行探索、讨论、总结。

  小组汇报:

  生:拼成的长方体和圆柱体不变的有:体积、底面积、高等;变了的有:侧面积、表面积、底面周长。

  4、课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。

  5、讨论:圆柱与所拼成的近似长方体之间的有什么联系?你发现了什么?

  6、汇报:

  圆柱→近似长方体

  ①体积相等②底面积相等③高相等④表面积不相等,

  根据学生的回答板书如下:

  长方体的体积=底面积×高

  ↓ ↓ ↓

  圆 柱 体 的 体 积 =底面积×高

  引导学生用字母表示计算公式:V=Sh

  师:要用这个公式计算圆柱的体积必须知道什么条件?

  生:底面积和高。

  师:如果给你圆柱的直径(半径或者周长)和高,如何求圆柱的体积呢?

  生:根据公式先求出半径,再求出底面积即可…

  教学反思:

  教学中充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、实践、比较找两个图形之间的关系,推导出圆柱的体积计算公式。直观有效的教学过程不需要教师繁复的讲解,学生在自主动手探索,互动交流讨论的学习空间里思维的火花自然而然地爆发出来。教学内容和重难点不仅得到实施和解决,更重要的是学生的综合能力得到提高。

  实际教学中教师只有不断诱发学生主动思维的愿望,营造无拘无束的思维空间,让学生经历知识发现、探索、创造的过程,才能更有效地培养学生的创新能力,还要使学生在学习中发现数学知识“从生活中来到生活中去”的理念。

《圆柱的体积》教案13

  教学内容:

  P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

  教学目标:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  圆柱体积的计算公式的推导。

  教学过程:

  一、复习

  1、复习圆面积计算公式的推导方法及过程。

  2、什么叫物体的体积?长方体、正方体的体积公式是什么?(长方体的体积=长×宽×高,正方体的体积=棱长3,长方体和正方体体积的统一公式=底面积×高)

  二、新课

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

  (3)通过观察,使学生明确:长方体的`底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

  2、教学补充例题

  (1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ① 这道题已知什么?求什么?

  ② 能不能根据公式直接计算?

  ③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)出示下面几种解答方案,让学生判断哪个是正确的.

  ①V=Sh

  50×2.1=105(立方厘米)

  答:它的体积是105立方厘米。

  ②2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的体积是10500立方厘米。

  ③50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的体积是1.05立方米。

  ④50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的体积是0.0105立方米。

  先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

  (4)做第20页的“做一做”。

  学生独立做在练习本上,做完后集体订正.

  3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

  4、教学例6

  (1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

  (2)学生尝试完成例6。

  ① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

  5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)

  三、巩固练习

  1、做第21页练习三的第1题.

  2、练习三的第2题.

  这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

  四、布置作业

  练习三第3、4题。

  通过批阅作业,发现圆柱体的表面积正确率极低,主要有几方面原因:

  1、计算错误;

  2审题不认真,单位不统一;

  3、灵活解决问题时,没能正确判断所求面积到底包含哪几部分。

  为提升正确率,所以今天补充了一节是练习课,主要是指导学生完成教材中的习题。在此,想谈谈练习二的第11、19题。

  第11题教材只要求学生根据切面形状进行连线,其实这题应该充分利用挖掘,不仅培养学生的空间观念,同时还可提升学生解决实际问题的能力。所以在教学中,我补充了如下练习:

  (1将一根高5分米的圆柱形木料沿底面直径垂直切成两部分,(如11题第2幅图),这时表面积比原来增加了40平方分米。这根圆柱形木料原来的表面积是多少平方分米?

  (2一个圆柱的侧面展开是一个正方形,正方形的边长是12.56分米,求这个圆柱体的表积。

  第19题解决决起来很繁琐,虽然课堂上我给予了学生十分充足的独立尝试练习时间,但在未给予任何提示的情况下全班仅4人全对,另有4人结果计算正确,但却未换算单位,正确率仅为7.4%。所以下次再教时,此题应加大指导力度。建议:先在小组内讨论“求涂油漆的面积也就是求什么?”然后强调单位换算,并复习平方米与平方厘米之间的进率(10000),最后再让学生分步列式解答。第2问要求“一共需要多少元”结合生活实际,学生应主动对计算结果取近似值。

  第四课时教学反思

  开放的设问结硕果

  因为临时换课,所以今天是本学期开学以来第一次在学生未预习的情况下教学新课。没有预习,给学生的自主探索以更广阔的空间。当学生提出可以将圆柱的底面分成许多相等的扇形,把圆柱切开,拼成一个近似的长方体后,我请学生们观察并思考“转化后的长方体与圆柱体之间有什么联系呢?”

  他们除了发现教材中所提到的体积不变、底面积不变、高不变外,还有不少新发现。如“长方体的长是圆柱体底面周长的一半”,“长方体的宽是圆柱体底面半径”, “圆柱体的侧面积是长方体前后两个面的面积总和”(魏勉)。当学生的发现由底面积涉及到侧面积时,我根据本班学情适时进行了拓展性提问,“将圆柱体转化为长方体,表面积有变化吗?如果有,有怎样的变化?”由此将圆柱体与长方体转化的探究由体积的变化引向了新的层面——表面积。

  我将根据学情在练习课中补充相关练习:把一个高15厘米的圆柱体分割成若干份,再拼成一个近似的长方体,表面积增加了90平方厘米。那么这个圆柱的体积是多少?

  今天的作业正确率明显提升,但全班有4名学生将圆柱体侧面积与体积公式混淆,列式全错,因此要加强辨析指导。自从让学生“创造”圆柱体表面积的另类推导方法及公式以来,孩子们探索并“创造”新公式的热情不断高涨。虽然,今天由于种种原因没能给学生上课,但他们仍旧将自己的新发现用纸条记录了下来送到我的手中。

  创新(一)圆柱体侧面积:圆柱体的体积=(2πrh) :(πrrh)=2:r。(发现者:沈洪鑫)

  创新(二)圆柱的体积=圆柱的侧面积÷2×r(发现者:兰晟)

  根据这一发现,能够有效提高已知半径和侧面积求体积或已知体积求侧面积的习题。如:一根圆柱形木头的侧面积是37.68平方分米,底面半径是3分米,它的体积是多少平方分米?如果按常规做法为:首先求圆柱体的高37.68÷(3.14×2×3)=2(分米);然后再求圆柱体的体积3.14×32×2=56.52平方分米),共需要6步。如果根据上述发现,解答此题就只需要将37.68÷2×3即可求了正确结果,大大提高速度。

《圆柱的体积》教案14

  ●教学内容

  苏教版六年级下册第二单元圆柱和圆锥第三课时P17~18页例4,P2页练一练,练习一1~3。

  ●设计说明

  教学目标:

  知识技能:结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

  数学思考:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  解决问题:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  情感态度:提高学习数学的兴趣和学好数学的信心。

  教学重点:

  掌握和运用圆柱体积计算公式。

  教学难点:

  利用“转化”的方法推导圆柱体积公式的过程。

  ●课时安排

  1课时

  ●教学准备

  教师准备:多媒体课件一套。把圆柱沿底面等分成16份的教具。 学生准备:预习教材,把圆柱沿底面等分成16份的教具。

  ●教学过程

  一、创设情境,提出问题

  某玩具厂厂长,他们厂新开发了一种积木玩具,这三个积木的'底面积和高都相等,他想比较一下这三个积木的体积的大小,同学们有什么方法?

  二、动手实验,探索公式

  1.观察、比较,建立猜想。引导生观察例4中的三个几何体,提问:

  ⑴长方体、正方体的体积相等吗?为什么?

  (板书:长方体的体积=底面积×高)

  ⑵圆柱的体积与长方体、正方体的体积可能相等吗?这三个几何体的底面积和高都相等,它们的体积有什么关系?

  2.实验操作,验证猜想

  让学生自主探究(材料:圆柱体积木、圆柱体插拼教学具、师准备课件),想办法验证圆柱的体积与长方体、正方体的体积相等。

  教师提示:你能想办法把圆柱转化成长方体吗?圆是如何转化成长方形的,可以模仿这样的方法来转化。

  ⑴小组合作研究怎样将圆柱体转化成一个长方体。

  ⑵小组代表汇报,全班交流。

  (学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励) ⑶演示操作。

  a.请一名学生演示用切、插、拼的方法把圆柱体转化成长方体。其他学生模仿操作。

  b.思考:这是一个标准的长方体吗?为什么?如果分割的份数越多,你会有什么发现?

  c.电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)。

  3.观察比较,推导公式。

  a.小组讨论:

  圆柱体转化成长方体后,什么变了,什么没有变?

  b.根据学生的观察、分析、推想,老师完成板书:

  长方体的体积=底面积× 高

  圆柱的体积 = 底面积× 高

《圆柱的体积》教案15

  教学目标:

  1、理解圆柱体积公式的推导过程。

  2、能够初步地学会运用体积公式解决简单的实际问题。

  3、进一步提高学生解决问题的能力。

  教学重、难点:

  1、理解圆柱体积公式的推导过程。

  2、能够初步地学会运用体积公式解决简单的实际问题。

  3、理解圆柱体积公式的推导过程。

  教学准备:

  圆柱切割组合模具、小黑板。

  教学过程:

  一、创设情境,生成问题

  1、什么是体积?(物体所占空间的大小叫做物体的体积。)

  2、长方体的体积该怎样计算?归纳到底面积乘高上来。

  3、圆的面积怎样计算?

  二、探索交流,解决问题

  1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的',能不能把圆柱转化成我们学过的立体图形来计算它的体积?

  (启发学生思考。)

  2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

  3、思考:

  (1)圆柱切开后可以拼成一个什么形体?(长方体)

  (2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

  (拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)

  4、推导圆柱体积公式

  小组讨论:怎样计算圆柱的体积?

  学生汇报讨论结果。

  长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

  师:圆柱的体积怎样计算?用字母公式,怎样表示?

  板书:V=Sh

  5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?

  三、巩固应用练习。

  1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?

  2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?

  四:课堂小结:

  通过这节课你学会了哪些知识,有什么收获?

  五:课后作业:

  教材第9页,练一练第1、3、4、题

【《圆柱的体积》教案】相关文章:

《圆柱的体积》教案09-01

圆柱的体积教案02-02

《圆柱的体积》教案05-22

《圆柱的体积》教案15篇04-01

《圆柱的体积》教案15篇[精选]05-22

《圆柱的体积》说课稿12-13

圆柱的体积说课稿02-03

说课稿《圆柱的体积》02-20

精选《圆柱的体积》教案(通用13篇)08-10