[荐]《数学广角》教案15篇
作为一位不辞辛劳的人民教师,时常要开展教案准备工作,编写教案助于积累教学经验,不断提高教学质量。我们该怎么去写教案呢?以下是小编帮大家整理的《数学广角》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《数学广角》教案1
教学目标
1.使学生通过简单的事例,初步体会运筹思想和对策论方法在解决实际问题中的应用。
2.使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
3.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
4.使学生逐渐养成合理安排时间的良好习惯。
教材说明
和前面几册教材一样,在本册中也专门安排“数学广角”一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容也是新增的内容。
本单元主要是通过日常生活中的一些简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。《标准》中指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”在日常生活中,解决问题的方法学生很容易找到,而且会找到解决问题的不同的策略,这里的关键是让学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生的解决问题的能力。
优化问题是人们经常要遇到的问题,例如,我们出门旅行就要考虑选择怎样的路线和交通工具,才能使旅行所需费用最少或者所花的时间最短;又如著名的邮递员送信最短路线问题。在经济建设、工农业生产、交通运输、军事国防等各行各业都会面临优化的问题,比如企业要考虑怎样安排生产能使利润最大,农民会考虑怎样安排播种能使年产量最多等等。当年华罗庚先生提出的“优选法”已经广泛地应用于人们的生产和生活中了,现在这些思想已经形成了数学中一门应用性很强的分支──运筹学。在这一单元我们主要是通过一些简单的优化问题向学生渗透优化思想,例如,例1讨论烙饼时怎样操作最省时间;例2分析家里来客人需要沏茶时,怎样安排各种事情能让客人尽快喝上茶;在“做一做”中安排了餐厅怎样安排炒菜的顺序能让客人都尽快吃上菜等等;例3安排的是在码头卸货时,按照怎样的顺序卸货能让三艘船总的等候时间最少,接下来的“做一做”是医务室的就诊顺序问题。通过这些生活中常见的这些简单事例,让学生从中体会运筹思想在解决问题中的作用。
其实我国古人早就有了丰富的运筹思想,比如战国时期“田忌赛马”的故事,就是对策论的应用。对策论是运筹学的一个分支,对策论的方法也是运筹思想中常用的方法之一,在体育比赛中经常会用到。比如在乒乓球团体比赛中就要根据不同的对手来排兵布阵,这里就用到了对策论的方法。例4就呈现了“田忌赛马”的故事,让学生体会对策论的方法在实际中的应用。最后还安排了一个“数学游戏”,学生可以去思考在这个报数游戏中先报数的人采用怎样的对策就能保证一定获胜。
教学建议
1.适当把握教学要求。
运筹思想和对策方论的理论都是比较系统、抽象的数学思想方法,在这里只是让学生通过简单的事例,初步体会运筹思想和对策方法在解决实际问题中的应用,初步培养学生的应用意识,提高解决实际问题的能力。学生只要能从解决问题的多种方案中寻找出最优的方案,初步体会优化思想的应用就可以了,并不要求学生一看到问题就能从优化的角度给出最优的方案。另外老师在教学中也不要使用运筹、优化和对策等数学化的语言进行描述。
2.本单元内容可用3课时进行教学。
具体内容的说明和教学建议
1.例1。
例1讨论烙饼时怎样合理安排操作最节省时间,让学生体会在解决问题中优化思想的应用。教材首先给出一幅生动有趣的情境图:妈妈正在烙饼,并且说出了烙饼的方法“每次只能烙两张饼,两面都要烙,每面3分钟”。小女孩说:“爸爸、妈妈和我每人一张。”也就是说总共要烙3张饼。然后小精灵提出问题:“怎样才能尽快吃上饼?”接下来教材呈现出3个学生互相讨论交流的场景。第一个学生说的方法是一张一张地烙:“烙一张饼要6分钟,烙3张饼要18分钟。”旁边的小女孩说:“一张一张地烙太费时间了。”提示学生还可以有更快捷的方法。接下来另一个小女孩给出了她的方法:“可以先烙两张,再烙一张,这样省时间。”通过计算学生可以发现这种方法只需要12分钟,比第一种方法节省了6分钟。当然,这还不是最优的方法。所以,教材接下来提出:还可以怎样烙?哪种方法比较合理?让学生继续探索。这里最好的方法是:先烙1,2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2,3号饼的反面。这种方法只需9分钟。最后,教材提出:如果要烙的是4张饼,5张饼......10张饼呢?让学生根据前面的方法独立思考,寻找合理、快捷的烙饼方案。
教学时,教师首先要引导学生观察、理解情境图里的内容。可以提问:烙1张饼需要几分钟?烙两张饼呢?使学生明确要解决的问题:一共要烙3张饼,怎样烙花费的时间最少?
理解了问题情境和需要解决的问题后,先让学生独立思考,再分小组讨论交流,说一说自己是怎样安排的,自己的方案一共需要多长时间烙完。学生可能会有不同的方案,教师可以把各小组汇报的不同方案在黑板上展示出来,让大家来比较各种方案的优劣。如果学生已经想出了最好的方法,老师对此可以再加以详细的分析;如果学生只出现课本上的两种方法,老师可以引导学生思考讨论,在讨论的基础上让学生发现更优的方案。
在探索更优的方案时,教师可以这样启发引导:在用第二种方法烙第3张饼的时候,本来一次可以烙两张饼的锅现在只烙了一张,这里可能就浪费了时间。想一想,会不会还有更好的方法呢?启发学生发现:如果锅里每次都烙2张饼,就不会浪费时间了。接着可以进一步启发学生:一张饼正反面分别要烙3分钟,怎样安排才能每次都是烙的2张饼呢?
也可以让学生动手实验试一试,并要求把实践的结果记录下来。可以用硬币、课本或者写着“正”“反”两字的橡皮来代表饼,分别用他们的正反面代表烙饼的正反面。学生记录的方法也可以有不同,可以用图示的方法,还可以用下面的表格记录(供参考)。通过实验,可以发现用这种方法烙饼总共只需要9分钟。
1
2
3
第一次
正
正
第二次
反
正
第三次
反
反
在此基础上,让学生比较上面讨论过的各种方法,体会优化思想在解决实际问题中的应用。最后还可以让学生在实验的基础上独立完成:如果要烙的是4张饼,5张饼......10张饼,怎样安排最节省时间?再通过小组讨论交流,说一说自己的发现。其正确的结果是:如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2个2个的烙,最后3张饼按上面的最优方法烙,最节省时间。
2.例2。
例2以家里来客人要沏茶的实际素材为背景,提出“怎样安排才能尽快让客人喝上茶?”问题,继续讨论如何用优化的思想选择合理、快捷的解决问题的方法。教材在情境图下给出了沏茶所要做的各种工序,以及做每件事情所需的时间。然后呈现学生们讨论怎样安排的场面。在这些内容中包含了解决这一问题的思考方法:首先要明确沏茶的大致顺序,也就是说哪些事情要先做,然后再考虑还有哪些事情可以同时做,能同时做的事尽量同时做,这样才能节省时间。比如“要烧水,必须先洗水壶,接水。”小男孩想:“等待水开的时间可以做点什么呢?”等,提示学生有些事情(烧水和找茶叶、洗茶杯等)可以同时进行。教材还提示可以用流程图的方式表示解决问题的顺序或方案,教给学生设计方案的具体方法。最后,教材让学生比一比谁的方案所需的时间最少,谁的方案更合理;再一次揭示了讨论这一问题的目的:探讨解决问题的优化方案。
教学例2时,教师首先引导学生观察、理解情境图,可以让学生用讲故事的方法引出问题。之后可以组织学生讨论:沏茶都需要做哪些事情?每件事大概需要多长时间?学生讨论交流后,再出示教材中给出的图例。
接下来可让学生分小组来设计方案,要让学生首先思考并讨论清楚:这些工序中哪些事情要先做?哪些事情可以同时做?在小组汇报时,教师可以引导学生用画箭头的方法把沏茶的过程图表示出来,再让各小组把自己的方案用这种流程图表示出来,然后在全班展示。
最后,让学生比较同学们设计的方案,看看每一种方案中,沏茶的顺序对不对,所需的时间各是多少。从中选出最佳的方案。下面是参考的答案(当然还可以显示出时间):
“做一做”的问题可以让学生先独立思考,然后再通过小组讨论看看谁的方案最合理。
第1题是与例1配合的,意思是:餐厅现在同时来了3位顾客,每人点了两个菜,而只有两个厨师,怎样安排炒菜的顺序比较合理呢?与例1的解决方法相同,应先给前两个人各炒一个菜,接下来给第一个人和第三个人各炒一个菜,最后给后两个人各炒一个菜。汇报交流时,可以让学生们说一说自己的理由。
第2题是与例2对应的.,是关于生病吃药中各项事情的安排问题。这里通过表格的方式给出吃药时要做的各项事情以及所需的时间,让学生来合理安排。与例2的解决方法相同,一方面要考虑各项事情的先后顺序,比如要先倒水,然后才能等水变温;另一方面要考虑哪些事情可以同时进行,比如在等开水变温的时候可以找感冒药,还可以量体温,这样就能节省时间了。
第3题是让学生互相交流一下生活中还有哪些事情可以通过合理安排来提高效率,体会优化思想在生活中的应用,并逐渐养成合理安排时间的良好习惯。学生可以从各个方面、各个行业去考虑,但主要还是结合学生的实际生活,从身边的事例中寻找。比如在学校里,打扫卫生时怎样合理安排各项事情能节省时间,在家里用洗衣机洗衣服时,还可以同时整理房间等等。在此,教师可以结合具体事例教育学生养成合理安排时间的良好习惯。
3.例3。
例3是关于排队论的问题,排队论是关于随机服务系统的理论,其中的一项研究是怎样使服务对象的等候时间最少的问题。教材出示了一个码头卸货的情景:码头上现在同时有3艘货船需要卸货,但是只能一船一船地卸货,并且每艘船卸货所需的时间各不相同,那么按照怎样的顺序卸货能使三艘货船等候的总时间(等候时间包括卸船时间)最少呢?教材没有给出答案,而是让学生自己来解决。这里卸货顺序的种数是一个排列问题,一共有6种不同的方案,主要是要让学生从中选出最优的方案。学生可以计算出每种方案中三艘货船的等候时间的总和各是多少,从而找出最优的卸货顺序。
接下来的“做一做”安排了3名同学同时到学校医务室看病,每人就诊所需的时间各不相同,怎样安排他们的就诊顺序可以使他们的等候时间之和最少。要解决的问题和例3基本相同。
教学例3时,教师可以先引导学生观察情境图,让学生说一说可以得到哪些信息。然后提出问题:要使三艘货船的等候时间的总和最少,应该按怎样的顺序卸货?接着可以让学生分小组讨论:①可以有哪些卸货的顺序?②每种方案总的等候时间是多少?在这里卸货顺序的方案是一个排列问题,学生一共可以找出6种不同的方案,教师可以引导学生用表格的方式罗列出来。可以用船1.船2和船3分别代表三艘货船(教材图中从上到下的顺序),并让学生算出每种方案三艘货船的等候时间的总和。
方案
卸货顺序
船1的等候时间(时)
船2的等候时间(时)
船3的等候时间(时)
等候时间的总和(时)
1
船1→船2→船3
8
8+4
8+4+1
33
2
船1→船3→船2
8
8+1+4
8+1
30
3
船2→船1→船3
4+8
4
4+8+1
29
4
船2→船3→船1
4+1+8
4
4+1
22
5
船3→船1→船2
1+8
1+8+4
1
23
6
船3→船2→船1
1+4+8
1+4
1
19
然后,让各小组汇报所找出的最优方案。老师可以提问:从表中你有什么发现吗?引导学生思考:如果先卸船1的货,那么三艘船都要等候8小时;而如果先卸船3的货,每艘船只需等候1个小时,所以依次从等候时间较少的船开始卸货,就能使总的等候时间最少。这一点只要求学生有所体会,不作为教学的要求。
接下来让学生完成“做一做”中的问题,同样的也可以让学生用列表的形式给出不同的就诊顺序,并算出等候时间,从中找出最优的方案。当然如果学生能运用例3里分析的优化思想直接找到依次从等候时间较少的同学开始就诊也可以。学生完成设计后,先分小组交流,再在班上汇报。
4.例4。
例4从“田忌赛马”的故事引入对策论的应用问题,对策论研究的是竞争的双方各自采取什么对策才能够战胜对手。“田忌赛马”的故事学生可能已经了解,但是并不是从数学的角度去理解的。在这里,通过这个故事让学生体会对策论方法在实际中的应用。
教材首先引导学生回忆这个故事,并让学生把田忌在赛马中使用的方法通过表格的形式列出来,通过比较让学生看到:虽然在同等级的马中,田忌的马都不如齐王的马;如果拿同等级的马进行比赛田忌一定会输,但是田忌所采用的策略却让他赢了。从而,让学生体会到对策论的方法在这场比赛中的重要性。接下来让学生思考:田忌所用的这种策略是不是唯一能赢齐王的方法?并让学生把田忌所有可以采用的策略列出来,通过对照来找到答案。田忌可以采用的策略一共有6种,但只有一种也就是他所使用的方法是唯一可以获胜的。最后,教材让学生说一说田忌的这种策略在生活中还有哪些应用,让学生体会对策论方法在生活中的应用。
例4后面有一个“数学游戏”,让两人轮流报数,每次只能报1或2,把每人报的数连续相加起来,最后一个报数使和为10的人就是获胜者。通过游戏活动让学生思考:如果先报数,采用怎样的策略能够确保获胜?在游戏中让学生体会对策论方法的应用。
教学例4时,教师可以先让学生回忆“田忌赛马”的故事,也可以请同学来讲一讲这个故事。让学生把田忌在赛马中使用的方法在教材给出的表格上补充完整(见下表)。
齐王
田忌
本场胜者
第一场
上等马
下等马
齐王
第二场
中等马
上等马
田忌
第三场
下等马
中等马
田忌
接下来让学生思考:田忌所用的这种策略是不是唯一能赢齐王的方法?让学生分组讨论,教师可引导学生:看一看田忌一共有多少种可采用的应对策略。并让学生把田忌所有可以采用的策略都找出来,填入表中(见下表,田忌1代表他的第一种策略),并指出每种策略获胜的一方。
第一场
第二场
第三场
获胜方
齐王
上等马
中等马
下等马
齐王
田忌1
上等马
中等马
下等马
齐王
田忌2
上等马
下等马
中等马
齐王
田忌3
中等马
上等马
下等马
齐王
田忌4
中等马
下等马
上等马
齐王
田忌5
下等马
上等马
中等马
田忌
田忌6
下等马
中等马
上等马
齐王
老师把各小组汇报的结果展示出来,通过对照学生很容易看到答案。接下来教师可以让学生说一说田忌的这种策略在生活中还有哪些应用,比如前面提到的乒乓球团体比赛,还可以让学生结合实际说一说。
做“数学游戏”时,教师可以先说明游戏的规则,学生明确方法后,让同桌的两人一组来玩这个游戏(每次游戏先报数的人可以交换)。学生对这个游戏方法比较熟悉后,老师再让学生来做一遍,这时第一个报数的人要思考:要想确保获胜,第一次应报几?接下来该怎样报?另一个人考虑怎样应对有获胜的可能。先让学生独立思考,然后可以进行实验,并在小组中讨论。
如果有困难的话,教师可以提示学生思考:因为每次可报1或2,那么如果一方报1,另一方就可以报2;一方报2,另一方就可以报1,这样总能保证每个回合连续两次报数之和是3。因为谁最后报数使和是10谁获胜,所以你一定要设法报数使和是7,这样对方无论怎样接着报数,你都可以保证最后报数使和是10。同理,要想保证报数使和是7,倒推一步就是一定要先报数使和是4,再倒推一步就是一定要先报数1。如果两个人都清楚这个策略,那么,谁先报谁获胜。如果对方不知道这个策略,那么在报数的过程中要设法能够报数使和是7,就可以获胜。
利用减法原理就是:从最后报数和是10中每次减去3,减去3个3还剩1,即
10-3-3-3=1,用除法表示是:10÷3=3......1
所以第一个报数的人先报1,就可以保证控制局势。
同理,如果把最后报的数扩大到50,就是50÷3=16......2
所以第一个报数的人先报2,就可以保证获胜。
依此类推,如果每个人每次可以报2或3,就要把5做除数。学生明白其中的奥妙后,教师可以把最后的和10改为30或更大,或者每次可以报2或3,再让学生试一试。
《数学广角》教案2
教学内容:
义务教育课程标准实验教科书人教版二年级上册教材第99页的内容
教材分析:
排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。教材安排生动有趣的活动,让学生通过活动来学习。如在例1中安排了学生用数字卡片摆两位数的情景,在做一做中安排了学生握手的活动。
学情分析:
在日常生活中,有很多需要用排列组合来解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机超过多少电话号码就要升位等等。可采取学生独立思考和合作探究的方式教学。
教学目标:
1、知识与技能:
通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、数学思考:
经历探索简单事物排列与组合规律的过程。初步理解简单事物排列与组合的不同。初步培养学生有顺序地、全面地思考问题的意识。
3、情感与态度:
感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。激发学生学好数学的信心。
教学重点:
经历探索简单事物排列与组合规律的过程。
教学难点:
初步理解简单事物排列与组合的不同。培养学生有顺序地、全面地思考。
教学准备:数字卡片、课件等
教学过程:
一、激趣导入
师:小朋友们,今天我们去数学广角参观一次比赛。板书:数学广角》在去的过程中会遇到很多数学问题呢!碰到困难时,我们共同解决,好不好?我们去车站坐车吧。每张车票是2.50元。现在我们有这些面值的钱,可以怎样付钱?你有几种方法?(课件: 1元、5角、2角、1角)
(学情预设:学生可能多种答案,如一张2元一张5角,两张1元两张2角一张1角等)
这些与顺序无关的,叫组合。板书:组合
[设计意图]:激趣导入,让学生在实际运用中产生兴趣,在活动中找到启示。
二、展开活动,探索新知
(一)探索1、2组成的两位数
师:你们要上车呀,还要猜出密码才能把门打开,这扇门的密码,是由一个两位数组成的,猜对了就可以打开车门。提醒你们这个两位数是由数字1和2组成的,(生再猜,12和21,)这个两位数与10很接近,你们说是多少?(12)
(学情预设:学生可能比较快的把数排列出来)
(二)探索1、2、3能组成几个不同的两位数
1、用1、2、3三个数字可以组成几个不同的两位数呢?
2、教师激励学生动脑摆一摆:
从数字卡片中任选两张卡片,你能组成什么数?可以与小组同学讨论,并把结果记录下来。(学生拿出卡片,自己动手摆一摆。)
3、引导学生动脑,找规律去摆,我们比一比谁摆的数多而不重复。
4、学生摆完后,小组交流,组长把成员摆的数记下来,并总结摆数的方法。
5、小组汇报。
6、师生总结:按照一定顺序找的'数多而不重复。
7、小结:这些与顺序有关,我们叫排列。板书:排列
(学情预设:学生可能不能一次把这些两位数排列出来,通过动手并记录找出排列的最佳方法,可能有学生会想到用计算的方法。)
[设计意图]:让学生在体验中感受,在操作活动中成功,在交流中找到方法,在学习中应用。初步培养学生有顺序地、全面的思考问题的意识。
三、小组合作,巩固发展
1、握手
(1)三人做握手的游戏。每两人握一次手,一共握几次。
(2)小组汇报,三人到台上有规律的握手,得出结论。(3次)
2、衣服搭配
运动员们马上要参加比赛了,但是小红不乐意了,他看小清、小明都穿得这么漂亮自己不美,心里不舒服,小朋友们,你们愿意为小红重新选一套衣服吗?
师:老师这里准备了2件衣服,2件裤子,一共有几种穿法呢?你可以用你自己喜欢的方法来解决这个问题(学生打开书本101页,可以摆一摆,也可以连线,也可以用序号的方法)
3、比赛场次
比赛马上就要开始了,如果3位运动员,每两人比一场,一共要进行几场比赛呢?生看书上101页第2题。
[设计意图]:用实践活动培养学生的实践意识和应用意识,同时使学生受到学习的乐趣。并通过不同形式的练习不但联系学生的生活实际,而且巩固了所学的知识。
四、拓展练习
小朋友们如果我也参加比赛,四个人每两个人进行一场比赛,一共要进行几场呢?
五、课堂小结
比赛结束了,我们马上就要离开数学广角了,离开之前,你有什么感受吗?你有什么想说的吗?
《数学广角》教案3
第1课时 植树问题
【教学内容】:教材P106~111及练习二十四。
【教学目标】:
知识与技能:通过学生熟悉的生活情境,学生会用线段图来表示植树问题中的三种植树情况,培养学生分析问题的能力m
过程与方法:学生能够初步建立植树问题的数学模型,能根据这个模型将生活中类似的问题进行分类,并试着应用模型中间隔与棵数的关系来解决问题。
情感、态度与价值观:培养学生认真审题的良好学习习惯。
【教学重、难点】
重 点:能理解间隔数与棵数之间的关系并应用到生活中去。
难 点:理解间隔数与棵数之间的规律(总长÷间距=间隔数,间隔数+1=植树棵数),并能运用规律解决问题。
【教学方法】:自主探索、合作交流。
【教学准备】:多媒体。
【教学过程】
一、情境导入
1.出示:公路两旁的树。
师:为什么要在公路的`两旁栽上树呢?学生自由发言。
教师讲解:树木能够涵养水分减少水分的流失,还能净化空气,因此植树造林有助于环境的改善。(渗透植树造林的环保意识。)
2.揭题:今天我们就来研究有关植树的问题。(板书课题:植树问题)
二、互动新授
(一)提出问题--两端都栽、两端不栽。
1.出示教材第106页例1:同学们在全长100米的小路一边植树,每隔5米栽一棵树(两端都栽)。一共需要多少棵小树?
2.出示教材第107页例2:大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3米。一共要栽多少棵树?
引导:请同学们先在纸上用线段图画一画你的种法.再在小组中交流、讨论。
3.(出示线段图)问题分析:
两端都栽:
两端不栽:
(二)棵数与间隔数之间的关系。(找规律)
提问:刚才同学们用线段图表示了两种植树情况,现在同学们能否用算式来表示这两种植树情况呢?
1.两端都栽:(教学例1)
假设小路长20米,那么可以栽几棵?
用画线段图表示:
则20÷5=4,要栽5棵。
由此可知:lOO÷5=20(个),那么这里的20就是棵数了吗?应该是什么?
学生回答:不是,是间隔数,应该是20+1=21(棵)。
教师板书:关系:间隔数+1=棵数
追问:为什么这里的20是间隔数,而不是棵数?
学生回答,分析原因:100÷5=20只是求100米里面有多少个5米,所以20是间隔数而不是棵树。并得出公式:路长÷间距=间隔数(不是棵数,跟棵数没关系。)
2.两端不栽:(教学例2)
假设两馆间相距30米,小树之间的距离为5米,则30÷5=6(个),6-1=5(棵)
用画线段图表示:
由此可知:60÷3=20(个),20-1=19(棵)
教师板书:关系:间隔数-1=棵数
3.一端不栽:(教学例3)
出示教材第108页例3:张伯伯准备在圆形池塘周围栽树。池塘周长是120m,如果每隔lOm栽l棵,一共要栽多少棵树?
假设池塘的周长是60米,每隔10米栽1棵,则60÷10=6(棵)
用画线段表示:
由此可知:120÷1=12(棵)
教师板书:关系:间隔数=棵树
4.问题归类。
提问:刚才我们解决了植树时的问题,其实在日常生活中还有很多地方也有这样类似的情况,谁知道哪里还有这样的情况?
学生说,教师小结。
5.应用知识
⑴完成教材第107页“做一做”第1题。先让学生分组讨论,然后再说一说。
⑵完成教材第107页“做一做”第2题。先把题目的要求读一读,然后同桌互说,再指名学生说一说。
⑶完成教材第108页“做一做”。先让学生分析一下这个问题是不是“植树问题”,再在小组内讨论交流。
三、巩固练习
1.教材第109页练习二十四第3题。
(1)出示第3题。
指名一名学生朗读题目,理解题意。
(2)提问:从题目中你能得到什么信息?这种架设电线杆的问题应该怎么计算?
(3)学生讨论后交流。
(4)组织学生独立列式解答,并相互订正。
2.教材第111页练习二十四第13题。
(1)出示题目。
(2)提问:从题目中你能得到什么信息?这跟前一个练习题有什么不同,你又要如何计算?
(3)学生讨论后交流,指名学生板演,其余学生独立列式解答,然后集体订正。
3.教材第109页练习二十四第6题。组织学生读题并归纳有效信息,讨论这道题属于植树问题的哪种情况,并列式算出答案。
4.教材第111页练习二十四第14*、15*题。
(1)出示题目。引导观察,理解题意。
(2)学生先独立解题,然后小组讨论交流。
(3)教师组织汇报交流。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
五、作业:教材练习二十四剩余题。(课内时间不够,可在课外完成)
【板书设计】:
植树问题
两端都栽 两端不栽 一端不栽
间隔数+1=棵数 间隔数-1=棵数 间隔数=棵树
《数学广角》教案4
教学内容:
人教版小学数学二年级下册第九单元《数学广角-数独》第二课时。
教学目标:
1.通过观察 、分析等活动,让学生完成简单的数独游戏,能够根据已知条件来进行推理。
2.经历数独游戏的探究过程,培养学生观察、分析、推理的能力。
3.体会学习数学的乐趣,提高数学学习兴趣。
教学重点:
通过观察、分析、推理完成填数游戏。
教学难点:
找到关键格。
教学过程:
一、创设情境,激趣导入
师:同学们,你们喜欢玩游戏吗?(喜欢)那今天这节课易老师就和大家一起来玩填数游戏。
二、理解规则,寓教于乐。
师:先来看看游戏规则。(投影出示游戏规则),谁来用自己的话解释一下规则?
生1:每行每列都有1~4这四个数。每个数在每行、每列都只能出现一次。在2分钟之内确定B是几。
师:如果这一行已经出现了2,同一行能不能继续填2?(不能),这一列有3这个数,同一列能不能再填3?(不行。)都明白游戏规则了吗?(明白了。)
师:你能不能在3分钟之内确定B是几呢?先请大家先试一试吧。计时开始。
师:时间到。得出结论了吗?B是几?
生2:B是2。
师:你是怎么想的?
生3:凭感觉猜的。
师:要猜也必须有根据的猜想,别的同学还有什么好方法吗?
生:边试边填,假设2的后面是1……
师:噢,原来你是采用了推理假设的方法,真是个爱动脑筋的孩子。那你得出B是几了吗?
生:还没有,时间不够。
师:有没有更快更简单的方法呢?
师:老师给你们一点提示。(投影出示A点),仔细观察,A所在的位置有什么特点吗?
生 一时看不出来 。
师:大家仔细看一看,A有没有可能是3?
生1:不可能,因为A所在的列已经出现了3,游戏规则里有“每个数在每行、每列都只能出现一次”这一条,所以A不可能是3。
师:你观察得真仔细。
师:那A没有可能是2呢?
生2:也不可能。因为A所在的这一行里已经有2了,不能重复出现。
师:那3可能吗?
生3:也不可能,3也在A的这一行里,道理跟之前一样。
师:A既不是 4也不是3和2,那A可能 是几啊?
生4:A只能是1。
师:为什么?
生4:因为我们在表格里只能填1-4这四个数,4、3、2都 被排除了,所以A只能是1。
师:哇,你们的推理能力真强啊,这么快就得出A是1了。那按照刚才的方法,你能快速确定B是几了吗?为什么?
生5: A是4,那么B所在的行和列已经出现了4、2、3,所以B只能是1。
师:其他同学也这么认为吗?
生:没错!
师:那填数游戏的诀窍是什么?
生6:找到关键的格子。只要这个格子所在行和列里有了其他几个数,就能确定这个格子是几。
师:大家都听明白了吗?
生:明白了。
师:你真是太棒了,表达得真清楚,我们一起表扬他。
师:那你们能不能填出其他方格里的数了呢?(能)我们一起来填一填。
师指方格中的位置,点名回答,说出理由。
三、游戏来源,板书课题
师:同学们真棒!这么短的时间内就掌握了方法,完成了填数游戏。其实早在19世纪70年代就它就已经在美国的.一本杂志上刊登过,到1984年4月,日本一家游戏杂志提出“独立的数字”概念,意思是“这个数字只能出现一次”,并将这个游戏命名为“数独”。(板书课题:数独)??
四、巩固练习
师:刚刚大家玩得开心吗?想不想继续玩?(想)那就请你打开书110页,完成下面的做一做。
?? 集体校正答案?
师:先填哪一格?A。再确定B,
五、课堂
师:在今天的数独游戏中,你有什么收获?
六、教学反思
同学们认识数独的并不多,这种游戏全面考验做题者观察能力和推理能力,虽然玩法简单,但数字排列方式却千变万化,数独是训练头脑的绝佳方式。部分学生的推理能力和观察能力强。在活动结束前,请做得快的同学说方法。有少部分学生跟不上,没有完全理解,还要多练习。
从备课的角度来说,我在备课时设计的难度较大,整节课大部分学生积极思考,努力解决问题,但有少数同学还是没能彻底明白数独游戏的规则,无法顺利地找到突破口,所以解决问题的积极性不够高,出现了轻微的两极分化现象。接下来的备课我准备降低知识内容的难度,并将引导转换成学生能理解的语言。
《数学广角》教案5
【教学内容】:
《植树问题》是新课程标准实验教材四年级下册的内容。
【设计理念】:
《新课标》指出“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“植树问题”通常是指沿着一定的路线,这条路线的总长度被分成若干间隔。由于路线不同,植树要求不同,路线被分成的间隔和植树之间的关系就不同。本节课主要通过让学生自主探究、分析、比较的方法,找“植树问题”的规律。
【学期与教材分析】:
教材将植树问题分为几层次:两端都栽、两端不栽、环形情况等,其目的在于通过解决问题渗透数学思想方法。不同的教师在处理植树问题的教学上各有差别,而俞正强老师,一个衣着朴素、老式的布鞋、光亮的脑门、憨厚的笑容,对“植树问题”有自己独特的教学和见解,他抛开课本给出解决植树这类型问题的方法,从练习题的引入出发,层层递进的引导学生思考、分析、具体问题具体分析,使学生在轻松、愉快的学习氛围中完成。
【教学目标】
1、通过动手操作、合作交流,理解一条线段上植树问题的规律。
2、学会应用植树问题的模型去解决实际问题的方法。
3、经历和体验“复杂问题简单化”的解题方法和策略。
【教学重难点】
引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。
为完成上述教学内容和目标要求, 俞老师从简单的习题着手,进一步联系到生活中的植树等实际问题,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。
一、练习引入,构建新知。
课前创设简单易懂的`题目“20米,平均每5段一份,可以分几份?”学生很快列出算式20÷5=4(段),紧接着引出例题“20米路,每5米栽一棵树,可以栽几棵?”学生列出算式20÷5=4。
俞老师没有直接告诉学生答案,而是询问,为什么用除法?问题(1)中两道题有什么共同点?目的在于,让学生在练习中,突现知识的起点----平均分。而不同点又是什么?一是求点数,一个求线段。那么一共可以栽几棵树呢?学生通过观察知道了一共可以栽4+1=5(棵)树,整节课条理清晰,层次分明,浅显易懂,始终围绕重点内容进行展开教学。
二、注重实践,体验探究。
教学中,俞老师多次引导学生观察、假设、思考,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个端点,也就是要在5棵树。使学生发现和理解,植树问题并非简单的除法就可以解决,植树问题种在的地方就是点,而非线段上,接着俞老师从生活实际出发,引导学生思考和观察,生活中哪些人把什么做在点子上?学生通过思考后纷纷答道:电线杆、垃圾桶、栽花、纽扣、排队等,从而发散了学生的思维,激起了学生的学习兴趣。在学生兴趣盎然的时候,俞老师提出问题“段数和点数有什么样的关系?”启发学生透过现象发现规律,也就是栽树的棵树要比段数(间隔数)多1。让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、联系生活,拓展思维。
体验是构建的基础,俞老师通过有趣的游戏激发学生理解植树在实际生活中的利用。让一排学生当“点”每2米栽一棵树,可以栽几棵树?转变为如果路尽头有了一座房子,我们该怎么植树?如果路的头尾各有一个房子,又怎么植树?栽几棵?简单实在的实际问题,把本节课的知识点良好的应用到实际生活当中,使学生从旧知向隐含的新知迁移了,本节课也因此达到了升华。
总之,本节课,以学生的设计为出发点,通过线段这一简洁、直观的方法的观察、分析,引导学生积极认真的思考,进而透过现象发现不同情况下的棵树与段数之间的关系。本节课,俞老师没有课件,一支粉笔,一块黑板,真正是一节难得的常态课,值得我学习和借鉴。
《数学广角》教案6
教学目标
1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。
2、比较正确地计算小数乘法,提高计算能力。
3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。
教学重点
小数乘法的计算法则。
教学难点
小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
教具准备
投影、口算小黑板。
教学过程
一、引入尝试
1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8 ×1。2)
2、尝试计算
师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?
师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算1。2×0.8呢?
如果能,应该怎样做?(指名口答,板书学生的讨论结果。)
示范:
1。 2扩大到它的.10倍1 2
× 0. 8扩大到它的10倍× 8
0.9 6缩小到它的1/100 9 6
3、1。2×0.8,刚才是怎样进行计算的?
引导学生得出:先把被乘数1。2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。
4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:6。05×0.82的积中有几位小数?6。052×0.82呢?
5、小结小数乘法的计算方法。
师:请做下面一组练习(1)练习(先口答下列各式积的小数位数,再计算)(2)引导学生观察思考。
①你是怎样算的?(先整数法则算出积,再给积点上小数点。)
②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)
③计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?
(3)根据学生的回答,逐步抽象概括出P。5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)
(4)专项练习①判断,把不对的改正过来。
0.0 2 4 0.0 1 3
× 0.1 4 × 0.0 2 6
9 6 7 8
2 4 2 6
0.3 3 6 0.0 0 0 3 3 8
三、应用
1、在下面各式的积中点上小数点。
0 。 5 8 6 。 2 5 2 。 0 4
× 4。 2 × 0 。 1 8 × 2 8
1 1 6 5 0 0 0 1 6 3 2
2 3 2 6 2 5 4 0 8
2 4 3 6 1 1 2 5 0 5 7 1 2
2、做一做:先判断积里应该有几位小数,再计算。
67×0.32.14×6。2
3、P。8页5题。
先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。
四、体验回忆这节课学习了什么知识?
五、作业:P8 7、9题。P9 13题。个人修改
口算:
5.2×0.2
7。3×0.01
76×0.03
75×0.05
0.05×6
79。2×0.2
②根据1056×27=28512,写出下面各题的积。
105.6×2.7= 10.56×0.27= 0.1056×27= 1。056×0.27=
板书设计:
教后反思:小数乘小数的乘法是本单元的难点,学生在计算时错误较多,要继续多练,重点练习点小数点。
《数学广角》教案7
教学内容:
人教版义务教育课标实验教材(四上)112的例1
教学目标:
1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。
教学重点:
体会优化思想。
教学难点:
探究解决问题的最优方案。
教具准备:
多媒体课件、探究用表格
学具准备:
三张圆纸片。
教学过程:
一、创设情境,生成问题
1、同学们家里有厨房吗?你们进过厨房吗?进去做什么?厨房里有什么数学问题吗?
2、我们来看看王华家厨房里的数学问题。(课件出示例1图)中午放学回家,王华发现妈妈正在厨房准备烙饼。(板书课题:烙饼问题)
师:“从图上你能得到哪些信息?”学生观察、理解图中的内容。
(这一环节是通过创设出生活化的情境,激发学生的学习兴趣。利用烙饼这一事例,调动学生已有的生活经验,使学生处于主动思考解决问题的最佳状态。)
教师提问:“妈妈烙一张饼最少需要几分钟?” “如果妈妈要烙2张饼最少需要几分钟,怎样烙?”
小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟;再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。
师:“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “要烙3张饼,锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?”
二、探索交流,解决问题
1、学生操作,探究烙3张饼的方法。
让学生用发的圆片烙一烙,同桌说说用了几分钟,是怎样烙的。(圆片的正、反面上分别写着正、反两字来代表饼的正、反面。)教师参与到小组活动中。
(相信学生,放手让学生探索解决问题的方法,才能使学生成为学习的主人。)
2、学生演示烙饼法。
师:谁愿意把你烙饼的方法介绍给大家。(学生上黑板动手烙,边烙边说)
让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”
得出结论:9分钟是烙3张饼所用的时间最短的,我们就把(烙3张饼所需时间最短的)这种方法,叫快速烙饼法。(教师板书快速烙饼法)
教师用课件演示烙三张饼的方法并小结:先把饼1、饼2同时放进锅里,先烙饼1、饼2的正面,3分钟后,取出饼1,放入饼3,再同时烙饼2的反面和饼3的正面,3分钟后,饼2烙好了,取出饼2,再放入饼1,再同时烙饼1和饼3的反面,又过了3分钟,饼1和饼3烙好了,这样烙3张饼就用了9分钟。
师:老师是用什么方法烙的?(也是用快速烙饼法)
师:使用这种方法时,你发现了什么?
(1、使用快速烙饼法,锅里面必须同时放2张饼。2、用的时间短。)
让学生用烙3张饼的快速烙饼法再烙一次,边烙边说给你的同桌听。
(烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)
3、拓展延伸:
师:(出示表格,边说边点击表格)刚才烙2张饼时可以2张2张烙,所需时间是6分钟,烙3张饼时可以用烙3张饼的最佳方法,所需时间是9分钟。想一想,如果烙4张饼,怎样烙时间最短?
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?需几分钟”
小组活动,通过小组交流,使学生找到最佳方法。
教师小结后提问:“如果要是烙6张饼,怎样才能让大家尽快地吃上饼?需几分钟”
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问“如果要是烙7张饼、8张饼10张饼最少需几分钟?”
(通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)
在这样过程逐步形成课件表格.饼数
2 3 4
同时烙两张饼 快速烙饼法 两张两张地烙
先烙两张,后三张用快速5 烙饼法
两张两张地烙
18 15
烙 饼 方 法
最少所需的'时间(分)
6 9 12
7 8 9 10
21 24 27 30
4、探究规律。
让学生仔细观察表格、小组讨论交流,说一说自己的发现。
(根据情况决定是否给学生启示:
1、仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?
2、仔细观察烙饼的张数不同烙饼的方法有什么不同?)
学生在充分交流探讨的基础上,得出结论:
1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。
得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。(饼数×3=所需最少的时间。)
教师:“谁能很快地说出烙11张饼用多长时间?烙15张饼呢?”
(通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。)
三、实践应用,内化提高
课件出示114页做一做第1题。
教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”
1、引领理解题意。
2、全班交流
四、回顾整理,反思提升
1、这节课你学到了什么?
2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。
《数学广角》教案8
教学内容:
人教版义务教育课程标准实验教科书《数学》三年级下册P108例1及相关练习。
教学目标:
1、通过数学活动让学生体会重复现象在生活中的运用,以及解决重复问题的解决策略,理解集合圈的集合思想。
2、使学生学会借助直观图,利用集合图的思想方法解决简单的实际问题。
3、体验数学的图形美、简洁美,增强学习数学的情感。
教学重难点:
理解集合圈的集合思想,会用集合来解决实际问题。
教学过程:
一、创设情境,生成问题
创设游戏情境,让学生在活动中体验,生成数学问题,先请两生两把椅子玩抢椅子的游戏,发现椅子数和人数一样游戏无法玩?
再通过加四人选一人的猜拳游戏留下一个人的游戏。学生猜拳,抢椅子。
二、探索交流,解决问题
1、质疑
3位同学抢椅子,4位同学参加了猜拳游戏,请这7位同学站起来。怎么是6个人呢?少了一个人,那位同学哪去啦?
学生解释,师故作糊涂状,引导多人解释,辩析。
1、站圈
师出示呼拉圈。请参加抢椅子的同学站到这里来,参加猜拳游戏的站到另一个圈中。发现一个圈中少了一个人,怎么办呢?
提出问题,让学生解决。
等两个呼拉圈交叉后,再请学生解释,明确认识。
2、画图
让学生将呼拉圈抬起来,给大家看。这两个圈怎么样了?左边这个圈表示的是什么?右边呢?中间这部分表示什么?
将它画在黑板上。
生活中的呼拉圈变成了数学圈。认识各部分表示的意义。
3、贴名,理解图
请刚才参加抢椅子的同学将他们的名字贴到相应的位置,参加猜拳游戏的同学也贴。预计会出现两种情况:
A贴对了。指名解释。
B贴了两张。怎么样表示才对呢?引导学生理解“重叠”。
4、理算法
参加这两项活动的一共有多少人?怎么用算式表示呢?引导学生用多种方法列式,并理解其含义。
由此引出课题。
三、巩固应用,内化提高
1、出示教师课前调查的两幅图,引导学生理解图的含义,区别重叠与不重叠两种情况。(喜欢吃肉与喜欢吃菜的同学名单,分别放在两个集合圈中)
2、解决动动物园里的数学问题:你选择哪幅图?为什么?进一步理解重叠现象。
3、文具店里的数学问题。(看书做)
4、运动会上的'数学问题:我们班参加跳绳比赛的有8人,参加跑步比赛的有6人,参加这两项活动的一共有多少人?你是怎么想的?
师展示动态集合图,渗透动与不动的观点,拓展学生的思维。
四、评价小结。
评价学生表现情况,简单小结。
《数学广角》教案9
1、主要内容
(1)排列、组合
(2)简单的推理
2、地位于作用
排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。
有关逻辑推理知识也是人们在生活和研究中很重要的知识。在解决问题的过程中,使学生进行简单、有条理的思考。教材在渗透数学思想方面做一些努力和探索,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、试验、猜测等直观手段解决这些问题。并初步培养学生有顺序地、全面地思考问题的意识。
单元教学目标
1、使学生通过观察、猜测、试验等活动,找出最简单的事物的排列数和组合数。
2、培养学生初步的观察、分析及推理能力。
3
单元重点与难点
教学重点:
经历探索简单事物排列与组合规律的过程。经历简单推理的经过。
教学难点:
初步理解简单事物排列、组合的不同。推理依据的叙述。
本单元主要教学与设计
1、教具利用:
投影仪、动物卡片、
各种教科书等。
2、主要方法:
(1)首先通过有趣的故事导入,激起学生的学习兴趣。
(2)通过生动有趣的活动,让学生通过这些活动进行学习。
(3)结合具体例子,让学生动手去做,动脑趋想。
(4)创设真实情景,更加贴近学生生活实际,便于学生理解掌握。
分课时教学目标
第一课时:
1、教师为学生创设观察、猜测、实验的情境,找出最简单的事物排列数和组合数。
2、培养学生初步的`观察、分析及推理能力。
3、培养学生有顺序地、全面的思考问题的意识。
第二课时:
1、通过活动让学生感受简单推理的过程,培养学生的推理能力。
2、培养学生的合作意识和创新精神。
分课时重点与难点
第一课时:
经历探索简单事物排列与组合规律的过程是重点。
初步了解简单事物排列与组合的不同时难点。
第二课时:
经历简单推理的过程是重点。
推理依据的叙述是难点。
分课时作业布置
第一课时:
练习二十三1、2题
第二课时:
练习二十三3、4题
集体备课教案
中心发言人崔振梅时间20xx年9月讨论意见
课题:统计
单元教材分析
1、主要内容
(1)进一步体验数据的收集、整理、描述和分析的过程。
(2)初步认识条形统计图(1格表示2个单位)和统计表。
2、地位与作用
这部分内容是学生学习了一些简单的统计图表知识,初步体验了解数据的收集、整理、描述的和分析的过程,学会运用简单方法收集和整理数据,初步认识了条形统计图和简单的统计表,并能根据图表中的数据提出并回答简单的问题的基础上学习的。通过学习本册的内容,使学生了解统计的意义和作用。
单元教学目标
1、使学生体验数据的收集、整理、描述的过程,初步了解统计的意义,会用简单的方法收集和整理数据。
2、使学生初步认识条形统计图(1格表示2各单位)和统计表,能根据统计图表中的数据提出并回答简单的问题。
3、通过对学生身边有趣事例的调查活动,激发学生学习的兴趣,培养学生的合作意识和实践能力。
单元重点难点
教学重点:
体验数据的收集、整理、描述和分析的过程。
教学难点:
掌握数据的收集和整理方法,根据统计图表回答简单的问题是难点。
本单元主要教法与设计
1、联系学生的生活,激发学生的学习兴趣。
2、让学生经历数据的收集、整理、描述的过程,使学生在这个过程中即学习一些简单的统计知识,又初步了解统计的方法认识统计的意义和作用。
3、通过小组学习,亲自调查家庭人口数,喜欢的玩具等,体会数据的作用,并找出解决问题的办法。
分课时教学目标
第一课时:
1、在数学活动中体验数据的收集、整理、分析数据的过程,初步了解统计的意义。
2、认识条形统计图和统计表,能根据统计图表中的数据提出并回答简单的问题。
3、通过对身边有事例的调查活动,激发学习的兴趣。
第二课时:
1、了解统计的方法,认识统计的意义和作用。
2、认识条形统计图和统计表,能根据统计表中的数据提出并回答简单的问题。
3、通过对学生身边有趣事例的调查活动,激发学生的兴趣,培养学生的合作意识和实践能力。
分课时重点与难点
第一课时:
体验了解统计的方法,并能根据统计图表回答一些简单问题是重点。
学会用1格表示2个单位的条形统计图统计方法是难点。
第二课时:
学会一些简单的收集和描述数据的方法,并回答一些简单的问题是重点。
进一步学会一些简单的收集和描述的方法是难点。
分课时作业布置
第一课时:
练习二十二1、2题
第二课时:
练习二十二4、5题
《数学广角》教案10
教学目标:
1、使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用。
2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
3、使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。
4、使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。
教学重点: 体会优化的思想。
教学难点: 寻找解决问题最优方案,提高学生解决问题的能力。
教案2
教学内容:教科书第115页的例题3。
教具准备: 图片。
教学过程:
一、情境导入:
1、同学们想一想,生活中有哪些事情可以通过合理安排来提高效率?
2、这节课我们继续来学习数学广角。
板书课题:数学广角
二、探究新知:
教学例3
1、出示情境图片:码头上现在同时有3艘货船需要卸货,但是只能一条一条地卸货,并且每艘船卸货所需的时间各不相同,那么按照怎样的顺序卸货能使3艘货船等候的总时间最少呢?
2、观察图,说说可以得到哪些信息?
问:要使三艘货船的等候时间的'总和最少,应该按怎样的顺序卸货?(学生讨论)
3、可以有哪些卸货的顺序?每种方案总的等候时间是多少?
列出表格,问:从表中你有什么发现吗?(引导学生思考汇报)
4、找出最优方案。
三、巩固新知:
1、书后做一做
小名、小亮、小叶同时来到学校医务室。要使三人的等候时间的总和最少,应该怎样安排他们的就诊顺序?
2、有210人选举大队长,有三位候选人甲、乙、丙,每人只能选之中1人,不能弃权。前190张票中甲得75张,乙得65张,丙得50张,规定谁的票最多谁当选。若甲要当选,最少还需要多少张票?
四、小结:这节课你有什么收获?
五、作业:补充练习
教学目标:
1、使学生初步体会运筹思想在解决实际问题中的应用。
2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
3、使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。
4、使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。
教学重点: 体会优化的思想。
教学难点: 寻找解决问题最优方案,提高学生解决问题的能力。
《数学广角》教案11
教学目标:
1、通过调查身边的电话号码、邮政编码、身份证号码等实践活动,帮助学生初步了解一些简单的数字编码的方法;体会数字编码可以表达一定的信息,并知道数字编码的一般特点。
2、通过开展对相关编码信息的探索和交流活动,帮助学生积累一些数学活动经验,感受数字编码的思想及其应用价值,初步体验数字编码的思想和方法。
教学重点:
感知数字表达信息的最基本方法和作用,尝试应用数字来处理信息。
教学难点:
感知数字表达信息的最基本方法和作用,尝试应用数字来处理信息。
教学过程:
一、谈话导入(感受数字与信息的联系)
引入:同学们,在生活中,我们常常要与数字打交道。比如说,(出示“1”)提问:一件礼物,一个苹果,一张报纸……这里的“1”表示什么?
提问:可以表示数量和顺序么?你又分别想到了什么?
(小结:数字组成一个数,可以用来表示数量和顺序,它向我们传递了一些信息,也可以用来编码,同样传递了一些信息。今天这节课,我们就一起来研究,板书——数字和信息。
二、初识编码,感知特点(说一说)
交流电话号码信息――感受数码
⑴师:像110这样特殊的电话号码,生活中还有很多,你能说一说吗?
老师也搜集了一些资料,我们一起来看一看。
小结:其实不管是特殊的电话号码,还是普通的电话号码,这些由数字组成的编码都给我们的生活带来了方便。
三、探索编码,感悟方法(看一看)
观察:跟上一封相比,有什么区别?(多了邮政编码)
问:你知道为什么要加上邮政编码呢?(学生回答后放录像)
问:看完录像谁再说说为什么需要加上邮政编码?
谈话:邮政编码也是一种数字编码,它是由几个数字组成的?别小看这6个数字,它可是表达了丰富的'信息呢。谁大胆试着说说看这6个数字都表达了哪些信息呢?
介绍邮编的相关信息
⑴师:21表示江苏省苏南地区;210表示江苏省苏南地区南京邮区;2100表示南京市邮局表示江苏省苏南地区南京邮区; (板书)规律
四、解读编码,感受价值(比一比)
研究身份证数码
⑴出示身份证图片
师:从邮政编码我们知道了一个人所在地的相关信息,如果想了解这个人的个人信息,需要知道什么编码?
1、你能从这几张身份证号码中看出他们的出生日期吗?
2、猜一猜,哪个是爸爸的?哪个是妈妈的?哪个是小明的?
⑵练习解读身份证信息。(出示一张身份证)
师:你能把身份证上的信息填写完整吗?
师:你觉得身份证上的数字编码有哪些用处?
五、总结收获,介绍数字编码在生活中的其它运用。
谈话:在生活中,有时候人们还用字母或文字、和数字来组合成编码表达信息?比如……(出示相关图片)
介绍:条形码火车票Z表示直达车,车牌苏A表示南京,图书I表示文学,/前表示出版社编号,/后表示图书馆流水号。
⑵提问:用这些编码来表达信息有什么好处?
你还在哪里见过用数字编码的呢?
假如生活没有数字,将会……
师:数字编码在我们的生活中发挥了这么重要的作用,那同学们想不想自己也来编一编呢?编的时候我们要做到在一定范围里,简洁,唯一,有规律。
⑴ 出示第1个问题
师:房间的编号中要包含哪些信息?
一楼第三个房间该怎样编?四楼第十个房间呢?十楼第九个房间呢?
⑵ 出示第2个问题
明确小组活动要求。
⑶集体汇报交流。
请在小组内讨论出方案,再试着编码!交流时写出代表你自己的编码。
(学生讨论交流,尝试自主编码,同时让部分学生到黑板前展示自己设计的编码,并解释说明,其他学生进行点评!)
六、回顾过程,总结经验
师:今天我们共同研究了数字与信息。在活动中你觉得有什么收获?
《数学广角》教案12
设计说明
1.加强动手操作训练,促进学生的思维。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本设计积极引导学生理解天平平衡的原理,加强对用天平称物和画图的动手操作训练。使学生经历称物、分轻重的过程,了解和思考称物的不同情况,逐步把思维条理化、逻辑化,并想办法用图示表示出来,从而促进学生逻辑思维的发展。
2.自主探索,体会优化思想。
本设计给予学生充分的自主探索的空间,通过试验、汇报不同的解决问题的方法,发现如何分份是优化“找次品”方法的关键,从而总结出最佳的分份方法和最佳的图示方法,渗透优化思想。
课前准备
教师准备 PPT课件 天平 药瓶
学生准备 天平
教学过程
情境导入,激发兴趣
1.你们每天上学通常要走哪条路?为什么要选择这条路?
(生自主回答)
2.你们真聪明,在平时做事的时候就能选择最简便的方法。在数学学习中,解决问题的方法是多种多样的,但通常都有一种最有效、最简便的方法,我们把它叫最优化的方法。这节课就让我们带着优化的思想走进课堂。(师出示2瓶钙片)
师:老师这里有2瓶钙片,其中有1瓶少了3片,你们能不能想办法帮我把它找出来呢?(生回答想法)
师:老师准备了一架天平。如果在天平左右两边的托盘里放上质量相同的物品,天平就会平衡;如果一边重一边轻,那重的'一边就会沉下去,轻的一边就会翘起来。今天我们就借助天平来完成本节课的学习内容。
设计意图:引导学生根据次品的特点发现用天平“称”的方法,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡情况对托盘两端的物品进行判断就可以了。
实践操作,自主探究
1.提出探究要求。
师:同学们很容易就从2瓶钙片中把这瓶次品找到了,如果是3瓶钙片,你还能从中找到这瓶次品吗?同桌可以用学具摆一摆,试一试。
2.动手操作,汇报方法。
学生动手试验后汇报。(先在天平的两端分别放上1瓶钙片,如果天平平衡,剩下的一瓶就是次品;如果天平不平衡,轻的那端就一定是次品了)
3.总结归纳记录的方法。
组织学生把用天平称的过程用图表记录下来。
合作交流,研究探讨
师:同学们真聪明,这么容易就从3瓶钙片中找到了次品,其实你们已经用自己的聪明才智解决了教材中例1所提出的问题。那么,例2又向我们提出了哪些问题呢?
理解题意,动手操作。
(1)先让学生读题,说说“至少”的含义。
(2)小组分工合作:用学具摆一摆,并尝试用图示和表格表示摆的过程,完成下表。
(合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学填表)
《数学广角》教案13
【教材分析】
重叠问题,学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的重叠问题有较简单的,也有一题多法的,还有课后让学生继续研究重叠问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;又由于重叠问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作学具中领会重叠问题的基本结构,并让他们借助实物图等帮助思考。
【学情分析】
学生从一开始学习数学,其实就已经在运用集合的思想方法了。如学习数数时,把2个三角形用一条封闭的曲线圈起来。而以后学习的平面图形之间的关系都要用到集合的思想。集合是比较系统、抽象的数学思想方法,针对三年级学生的认识水平,应让学生通过生活中容易理解的题材去初步体会集合思想,为后续学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
【教学目标】
1.通过观察、猜测、操作、交流等活动,让学生在自主探究活动中感知集合图形的过程,体会集合图的优点,能用集合图分析生活中简单的有重复部分的问题。
2.结合具体情境体会用“韦恩图”解决有重复部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重复部分的问题。
【教学重难点】
重点:理解集合图的各部分意义,能用集合图分析生活中简单的有重复部分的问题。
难点:借助直观图解决集合问题。
【教学准备】
课件。
【教学流程】
【情境导入】
1.看电影:两位妈妈和两位女儿一同去看电影,可她们只买了3张票,便顺利地进了电影院,这是为什么?
2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?
师:在生活中这种现象很多,我们经常会遇到,今天我们就一起走进数学广角,来研究一下这有趣的重复现象。(板书课题)
【探究新知】
1.巧妙设疑,直观感悟,初步感知重复现象。
(1)调查本班学生参加数学小组、作文小组的情况。
(2)游戏:参加数学小组、作文小组的`学生分别站在两个呼啦圈里。
问题:当有同学既参加数学小组,又参加作文小组时怎么站?
引出问题,学生想办法解决。
(3)说说呼啦圈里各部分学生所表示的意思。
2.自主绘图,加深理解。
课件出示:
三(1)班参加数学、作文课外小组的学生情况表
数学
小明丁旭小小小强小兵小东张伟赵军
作文
小平刘红小东于丽小史陶伟小小卢强小光
(1)提问:参加数学课外小组的学生有几人?参加作文课外小组的学生有几人?参加数学、作文课外小组的学生共有多少人?(学生意见不统一,请学生说说理由)
师:能不能设计一幅图,把学生的姓名写在合适的位置,让我们能一眼就看出参加数学的、参加作文的和两个项目都参加的有哪些同学呢?
(2)学生小组合作,自主绘图。教师巡视指导。
3.学生汇报交流,逐步整理出简洁明了的直观图(韦恩图)。
师:你们知道吗?这个图是一个名叫韦恩的科学家创造的。你们刚才也像科学家一样,把这个图创造出来了,真了不起!
4.读图训练。教师引导学生用准确的语言表述图中的各种信息。
5.观察图表,算法探究。
师:你们能很快地算出参加数学、作文课外小组的一共有多少人吗?怎样列式?
学生回答列式。
6.比较图与表格,突出韦恩图的优点,肯定学生的科学创造过程。
【巩固应用】
教材第106页练习二十三第1、2、3题。
【课堂小结】
通过今天的学习,你有什么收获?
【板书设计】
既……又……
8+9-2=15(人)8-2+9=15(人)
9-2+8=15(人)6+7+2=15(人)
《数学广角》教案14
今天我当家
——数学广角《怎样安排合理》
教学内容:人教版《义务教育课程标准实验教科书·数学》四年级上册第112-114页“数学广角”。
教学目标:
1.通过对做早餐、沏茶、烙饼等家务劳动的分析、研究,体会如何安排节省时间。
2.了解运筹思想、尝试用数学方法解决实际问题。
教学准备:
教师准备多媒体课件。
每组学生准备1口“锅”、3个“饼”(硬纸模型)。
教学过程:
一、当家中的“省时”策略
1、早餐
课件播放小学生明明在“叮叮”的闹钟声中起床,一边忙乱地做事,一边自言自语:“今天我自己当家,一定要做得像妈妈那样好。怎么安排呢?先洗脸刷牙吧!哦,该点火煮鸡蛋啦!(做等待状)快熟吧!噫,不能急,平常妈妈说鸡蛋要多煮一会儿,才能预防禽流感呢!只有再耐心等一会儿啦!呀,还要用微波炉热牛奶呢!终于可以吃饭啦!好香呀!不好,要迟到啦!快走!”
电脑出示明明一大早耗时43分所做家务情况。
(1)师:“明明为什么会迟到?你能帮他出个主意吗?”
生答,教师出示改进方案:
(2)师:“为什么要把洗脸刷牙、热牛奶与煮鸡蛋同时进行呢?”
生:“因为利用等待鸡蛋煮熟的时间洗脸刷牙和热牛奶,就可以节省13分钟,现在总共只要30分。”
师:“真是当家才知‘时间’贵呀!不过,只要合理巧妙地安排,时间是可以节省下来的。明白了这一点,明明以后做早餐完全不必那样慌慌忙忙了。”(板书课题:怎样安排合理)
2、沏茶(教科书例题2)
课件展示:中午,家里来了客人,妈妈让明明烧水沏茶。明明小声嘀咕:“这次我得好好安排安排。
我们来看看明明沏茶需要干些什么。电脑出示沏茶所需的工序(略)。
(1)师:“沏茶的工序这么多?怎样安排才能尽快让客人喝上茶呢?”
(2)学生先独立思考,然后小组间交流。
(3)全班交流。
[预设:]
生1:“我们认为只用9分钟就能让客人喝上茶。先烧水,在等待水烧开的8分钟里就可完成洗水壶、接水、洗茶杯、找茶叶四件事,然后用开水沏茶花1分钟,共用9分钟。”
生2:“我们不同意他们小组的意见。水壶还没洗、里面又没有水,能放到锅里烧吗?所以我们认为应该先洗水壶、接水,再烧水,烧水的同时只能做洗茶杯、找茶叶两件事,然后用开水沏茶花1分钟,共需要11分钟。”
(4)师:“你们觉得哪一组讲得有道理?”
教师根据学生回答出示下图。
(5)教师小结:“对!我们首先得分清这些工序中哪些事情必须先做,哪些事情可以与其它事情同时做,再作出相应安排。”
3、烙饼(教科书例题1)
师:“看来,当家真不那么简单!烙饼中又有什么学问呢?”
电脑出示关于烙饼的一些要求。
(1)师:“烙1个饼要用多少时间呢?”
生齐:6分钟。
(2)师:“烙2个饼最少要用多少时间呢?怎样烙?”
生齐:“还是6分钟。把两个饼一起放进锅里,先烙正面,再烙反面。”
(3)师:“如果烙4个饼最少要用多少分钟?怎样烙?”
(4)师:“6个饼呢?8个饼呢?当饼的个数是双数时,所需时间与烙2个饼所需时间有什么关系?”(饼的个数是2的几倍,就要用几个6分钟。)
学生充分发表意见后,教师小结:“刚才我们都是每次烙两个饼,前两个饼的两面都烙熟后,再烙后两个饼。为了进一步研究的方便,我们暂且把这种烙法称为一次成型法。”
(5)师:“现在明明要烙3个饼,最少要用多少时间呢?怎样烙?”
(指名一位学生上台演示)
[预设:]
如有学生提出反对意见:“不对!烙3个饼不应该是12分钟,只要9分钟。”
师:“你为什么认为只要9分钟?”
生:“如果像他这样烙,在烙第三个饼的时候,锅的一半位置是空着的,这不浪费了时间吗?我把前两个饼烙熟一面后,马上换上第三个继续烙;然后将取出的那一个放回锅里和第三个一起烙另一面。锅就不会有空位,所以只要9分钟。”
师:“你们听明白他的意思了吗?这种方法是不是行得通呢?大家动手试一下吧!为便于操作,建议各小组在试验中给每个饼编号、并安排专人记录烙饼步骤及所需时间。”
如没有学生想出这种最佳的方法,教师可以让学生小组讨论然后汇报。
(6)各小组策划安排,再交流,并请一个小组上台用“锅”和“饼”演示。
根据学生汇报,老师小结:
第一步:烙1、2号饼的正面,用3分钟。
第二步:把2号饼暂时取出,把3号饼放入,烙1号饼的反面和3号饼的正面,又用3分钟。
第三步:取出1号饼,放入2号饼,烙2、3号饼的反面,用3分钟。
一共用9分钟。
(7)师:“只烙熟某个饼的一面,就换上其它饼继续烙。我们也给这种烙饼方法起个名好吗?”
生:“交替成型法、两次成型法、替换法……”
师:“好!姑且叫它‘交替成型法’吧!这种烙法与一次成型法有什么不同?为什么会节省时间呢?”
(8)师:“那么烙5个饼最少要用多少时间呢?烙7个饼呢?……”
生答,教师板书:
张数
1
2
3
4
5
6
7
8
……
分钟
6
6
9
12
15
18
21
24
……
(9)师:“当饼的个数是单数时,所需时间有什么规律?怎么烙?”
[预设:]
生1:“饼的个数是单数时,都可以先两个两个地烙(一次成型法),最后剩下3个饼,是单数个,采用交替成型法来烙。”
生2:“我发现饼的个数是单数时,有几个饼,所需时间就是几个3分钟,它的规律和烙双数个饼时一样。”
生3:“除了1个饼以外,烙饼所需的分钟数都等于饼的个数乘3。”
(10)师:“生2和生3的发现很有价值,那为什么无论饼的个数是双数还是单数,所需分钟数都等于饼的个数乘3呢?”
[预设:]
生1:“只有烙1个饼时锅才空着一部分,而烙两个以上的饼都有可通过合理安排始终不让锅里出现空位。所以每增加一个饼,时间只增加3分钟。”
生2:“实际上一次成型法也好,交替成型法也好,都是为了使这口锅在烙饼时一直不会有空位。”
二、实践运用策略
1、师:在生活中还有哪些合理安排可以节省时间的事例呢?
生相互交流。
生:我打开电脑边听音乐边上网下载资料;
在家拖地板和用自动洗衣机洗衣服可同时进行;
在车站等车时记英语单词;
……
2、你对下面几件事情有什么好的建议?
(1)两个小孩到肯德基餐厅吃饭,甲说:“我们快去排队买吃的`吧!”乙说:“我们应该赶快去寻找座位才对!”
(2)如何安排炒菜顺序?
(4)教材第114页“做一做”的第1题:怎样给餐厅里的三位客人安排炒菜顺序才合理?
(题略,教科书第114页“做一做”第一题。)
小组1:“可以安排两个厨师给1、2号桌分别炒一个菜;再分别给2、3号桌炒一个菜;再分别给1、3号桌炒一个菜。这样就比较公平,不会让任何一位客人等待的时间特别长。”
小组2:“我们不同意。因为2号桌是位老人,所以先让两个厨师都给2号桌炒菜;再分别给1、3号桌的客人炒菜。这样对两位年轻顾客还是公平的。”
……
师:刚才我们有的从客人等待时间长短的角度,有的从尊敬老人的角度谈了各自的意见,都很有道理。
三、提升“合理”、拓展认识
你曾经有过这样的行为吗?你对此有何想法?
1、为了节省时间,强强在乘车时认真看书。
2、为了提高学习质量,红红边吃饭边看《少儿英语电视》节目。
……
教师小结:合理安排不但要考虑节省时间,也要考虑人的安全和身体健康。
《数学广角》教案15
教学内容:义务教育课程标准实验教科书(人教版)三年级上册第三者112页例1简单的组合。
教学目标:
1、通过观察、猜测、操作等活动,找出最简单的事物的组合数。
2、经历探索简单事物组合规律的过程。
3、培养学生有顺序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,激发学生学好数学的信心。
教学重点:经历探索简单事物组合规律的过程。
教学难点:能用不同的方法准确地计算出组合数。
教具准备:教学课件学具准备:每生准备主题图中相关的学具卡片或实物。
教学过程:
(一)创设问题情境:
师:小朋友,你们喜欢老师漂亮一点呢还是喜欢老师丑一点?
生:大多数的小朋友说喜欢老师漂亮。
师:那你们帮助老师打扮打扮。我最喜欢红色体恤和这三件下衣,到底怎样搭配最漂亮呢?请小朋友们给老师出出主意。小朋友们纷纷发表自己的意见,并说出了自己的理由。
师:谢谢。你们的建议都不错。那我这一件上衣、三件下衣能有多少种不同的穿法呢?
老师接着问:那我有两件上衣、三件下衣又有多少种不同的穿法呢?有说4种、有说5种、也有说6种的,到底有几种呢?
(二)1.自主合作探索新知试一试
师:请同学们也试着想一想,如果你觉得直接想象有困难的话可以借助手中的`学具卡片摆一摆。
学生活动教师巡视。
2.发现问题
学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复了,有的漏写了。
3.小组讨论
师:每个同学算出的个数不同,怎样才能很快算出两件上衣、三件下衣有多少种不同的穿法呢?并做到不重复不遗漏呢?
学生以小组为单位交流讨论。
4.小组汇报汇报时可能会出现下面几种情况:
(1)、无序的。用学具卡片或实物摆,然后再数。
(2)、用连线的方法算出。
(3)、用图式的方法算出。
引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。
5.小结教师简单小结学生所想方法引出练习内容见课本112页。
(三)拓展应用
数字2、3、4、5、6、7写出不同的两位数?写完交流。(或者也可用这样一道题:用△○□能摆成6种排法,例如:□○△
请你试着摆出其他几种排法。
教学反思:
简单的排列(二)
教学内容:义务教育课程标准实验教科书(人教版)三年级上册第九单元的例题2。
教学目标:
1、通过观察、猜测、操作等活动,找出最简单的事物的排列数。
2、经历探索简单事物排列规律的过程。
3、培养学生有顺序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,激发学生学好数学的信心。
教学重点:经历探索简单事物排列规律的过程。
教学难点:初步理解简单事物排列与组合的不同。
教具准备:教学课件
学具准备:每生准备3张数字卡片,学具袋。
教学过程:
(一)创设问题情境:
师:森林学校的数学课上,猴博士出了这样一道题(课件出示)用数字1、2能写出几个两位数?
问题刚说完小动物们都纷纷举手说能写成两个数:12、21。
接着猴博士又加上了一个数字3,问:用数字1、2、3能写出几个两位数呢?
小猪站起来说能写成3个,小熊说6个,小狗说7个,到底能写出几个呢?
小朋友们回答能写6个。
请问:用数字1、2、3能写出几个三位数呢?
(二)1.自主合作探索新知
师:请同学们也试着写一写,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。
学生活动教师巡视。
2.发现问题
学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复写了,有的漏写了。
3.小组讨论
师:每个同学写出的个数不同,怎样才能很快写出所有的用数字1、2、3组成的三位数,并做到不重复不遗漏呢?
学生以小组为单位交流讨论。
4.小组汇报汇报时可能会出现下面几种情况:
(1)无序的。
(2)从高位到低位,数字由小到大。先写出1在百位上的有123、132;再写出2在百位上的有213、231;再写出3在百位上的有312、321。
(3)从高位到低位,数字由大到小等方法。
5.小结教师简单小结学生所想方法引出练习内容:课本113页例2,小组讨论完成。
(三)拓展应用1、数字2、3、4、5写出不同的三位数?写完交流。
请你试着摆出其他几种排法。
【《数学广角》教案】相关文章:
《数学广角》教案05-19
《数学广角》教案(经典)05-19
《数学广角》教学教案04-04
广角数学教案04-04
上册数学数学广角教案05-08
【经典】《数学广角》教案15篇05-19
【集合】《数学广角》教案15篇05-19
《广角》教案09-15
《数学广角》教学反思10-22