《数学广角》教案

时间:2024-05-19 13:48:25 教案 我要投稿

《数学广角》教案

  作为一位杰出的老师,通常会被要求编写教案,借助教案可以让教学工作更科学化。写教案需要注意哪些格式呢?下面是小编精心整理的《数学广角》教案,仅供参考,希望能够帮助到大家。

《数学广角》教案

《数学广角》教案1

  教学目标:

  1.让学生通过观察、猜测、操作、验证等活动,初步体会等量代换的思想方法。

  2.培养学生有序地、全面地思考问题的意识和合作学习的习惯。

  教学重点:

  利用天平或跷跷板的原理,使学生在解决实际问题的过程中初步体会等量代换的思想方法,为以后学习代数知识做准备。

  教学难点:使学生会运用等量代换这一数学思想方法来解决一些简单的实际问题或数学问题。

  教具、学具:卡片、课件

  教学过程:

  一、创设情境、提高兴趣

  1. 师:同学们,我们的童年生活在丰富多彩、游戏多种多样,跷跷板就是其中之一,你们玩过吗?好玩吗?(自由回答)

  师:想一想,玩跷跷板的`两个人在体重上有什么要求?

  生:两人体重不能相差太多。

  师:三四班的甲同学体重50千克、乙、丙分别重25千克,假如甲和乙玩跷跷板会出现什么情况?

  生画图表示。

  师:如何使跷跷板平衡?

  生画图表示。

  2. 介绍天平

  师:天平的工作原理同跷跷板一样,下面请看大屏幕(flash画面伴有声音:同学们,大家好,我叫天平。在实验室里能见到我,当我平衡时,表示左右两边的物体同样重。)

  二、动手合作、探究就知

  1. 故事引入

  (flash画面伴有声音。)森林王国的熊妈妈生病了,小猴和小兔准备买东西去看望他。他们来到水果摊前,小猴对小兔说:“西瓜又大又甜,我们就买它吧。”于是他俩把西瓜放到天平上称了称,发现一个西瓜重4千克,小猴提了提:“哎呀,太沉了,我提不动。”小兔试了试:“我也不行。”正在他们俩不知怎么办时,售货员叔叔说:“西瓜和苹果都是1千克2元钱,你们可以把西瓜换成苹果,这样就一人一半了。”“对呀!叔叔的主意好。”他俩高兴地说:“一个西瓜4千克,4个苹果1千克,假如每个苹果同样重,1个西瓜能换几个苹果?小朋友,你能帮我们算一算吗?”

  ①抓住时机,对学生进行思想教育,学会关心别人;

  ②师:你得到了哪些数学信息?

  生:从第一个图中看出,一个西瓜重4千克,从第2个图中看出4个苹果1千克,问题是一个西瓜和几个苹果同样重?

  师:请同学们用学具摆一摆。(教师巡视,适当指导)

  学生讲思路。

  师:熊妈妈见到两位小客人,心情十分高兴,病也好了一大半,决定邀请小猴和小兔去动物园逛逛,他们看到了什么?请看大屏幕。

  ①P109做一做。

  (flash画面伴有声音:森林王国动物园的跷跷板平衡游戏开始了。“我小猪先坐上去,谁来和我玩呀?”“小猪等等我,我们和你玩,呵,跷跷板平衡了。”“你们玩的这么开心,我也来凑凑热闹吧!”“老牛,我们四头小猪站在一起才能和你玩啊!”同学们,两头牛和几只羊站在一起才能使跷跷板平衡呢?)

  学生找出条件和问题。

  师:2头牛等于几只羊?应怎样思考,自己想一想,再交流讨论。

  师:边播放课件边讲解。

  ②看大屏幕(练习二十四4题)

  (flash画面伴有声音:“小鸡,你比我轻,我不想和你玩。”“臭鸭子,你才比我轻呢!我还不想和你玩呢。”在一旁的鹅听到后,赶紧跑来劝架:“别吵了,我和你们一起玩吧!”孩子们看到这里,你们知道一只鸡和一只鸭谁重一些?)

  学生讨论,汇报结果。

  播放课件,讲解。

  三、拓展内化 解决问题

  师:参观完动物园后,在回家的路上又碰到什么情况了?

  看大屏幕(练习二十四.3)

  (flash画面伴有声音:“灰兔哥哥,今天我们真是大丰收,我采了大萝卜,你采了这么多胡萝卜和白菜,我想用9个大萝卜换3棵白菜,行吗?”“白兔弟弟,行,那我也用6个胡萝卜换2个大萝卜吧。”等量代换游戏开始了,你们知道6棵白菜能换几个胡萝卜吗?)

  师:提示先求1棵白菜能换几个胡萝卜?

  学生可用学具摆一摆。

  课件展示:

  9个大萝卜=3棵白菜→3个大萝卜=1棵白菜

  6个胡萝卜=2个大萝卜→3个胡萝卜=1个大萝卜

  6棵白菜=?胡萝卜→1棵白菜=?胡萝卜

  (54) ← (9)

  四、布置作业(练习二十四.5)

《数学广角》教案2

  教学目标:

  1、通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  2、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学重点:尝试用数学方法解决实际生活中的简单实际问题。

  教学难点:尝试用数学方法解决实际生活中的简单实际问题。

  课时安排:约 2 课时

  课时1找次品

  教学内容:人教版数学五年级下册第134-135页的内容。

  教学目标:

  1、让学生初步认识“找次品”这类问题的基本解决手段和方法。

  2、学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  3、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学重点:让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  教学难点:观察归纳“找次品”这类问题的最优策略。

  教学准备:课件

  教学过程:

  一、情境导入

  电脑出示图片:美国第二架航天飞机,再出示它爆炸的图片。

  电脑解说:1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是生产了一个不合格的零件引起的。

  师:可见,次品的危害有多大,在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,重一点或轻一点的物品。需要想办法把它找出来,我们把这类问题叫做找次品。

  师:下面我们一齐来研究找次品。

  出示课题:找次品

  二、初步认识“找次品”的基本原理

  1、自主探索。

  a 出示口香糖:老师这儿有三盒口盒糖,其中有一盒是吃了两粒的,你说有什么办法帮忙将它找出来吗?

  师:对,我们可以用天平来帮忙找出次品。

  让生根据讨论题同桌互相说说方法:

  电脑出示:同桌说说:(1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?

  b 学生汇报方案并上台边讲边在天平演示。

  师据生回答板:3(1,1,1) 1次

  2、老师又拿来了两盒口香糖,和前面的三盒混在一起,你还能用天平将那盒吃了两粒的口香糖找出来吗?

  a 出示:小组讨论:(1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?(4)至少称几次就一定能找出次品来?

  让生根据讨论题在学习小组讨论交流,把自己的`想法说给小组其他成员听。

  b 学生在投影上演示,边演示边讲。

  师据生回答板:5(2,2,1) 2次

  5(1,1,1,1,1) 2次

  三、从多种方法中,寻找“找次品”的最佳方案 “9”“刚才大家都很聪明,都能在几盒口香糖里找出轻的那盒次品来,那如果有的次品是比是重一些的,那你又能不能把它找出来呢?”

  1、课件出示例2,有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?

  让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、一定。

  2、让学生拿出九个正方体,把它当作这几个零件,自己根据刚才的讨论题,说说方法,如果想到有几种方法的,都将方法说出来。

  然后让生说说方法,师据生回答板:

  零件个数 分成的份数 保证能找出次品的次数

  9 3(4,4,1) 平

  不平4(2,2) 不平2(1,1) 3次

  9 3(3,3,3) 平 3(1,1,1)

  不平3(1,1,1) 2次

  9 5(2,2,2,2,1)平(2,2)平 不平2(1,1)

  不平2(1,1) 3次

  9 9(1,1,1,1,1,1,1,1,1) 4次

  2、观察分析,寻找规律。

  “好,刚才我们在9个零件里找次品,方法就有四种了,如果待测物品更多一些,那方法也会更多,如果每次都这样找的话就比较?(麻烦、复杂)对,那我们能不能找出一些规律呢?”

  “同学们观察表格,那种方法最简便、最快的?称几次就一定能找出次品来?”

  “那这种方法我们分成几份?是怎么分的?”(分成三份,并且平均分)

  “是否所有“找次品”的问题中,都可以将物品平均分成三份呢?”(不是)

  “对,有的数能平均分成3份,如:6、9、12、27等。有的数不能均分成3份,如5。”

  “我们看看前面的5的例子,(师指板5(2,2,1)),我们要分成三份时要分得尽量怎样?”(要分得尽量平均)

  然后再让学生小组讨论:找次品的最好方法是怎样?

  (1)把待测物品分成几份?

  (2)假如待测物品不能平均分,怎么办?

  据生回答出示:最好方法:一是把待测物品分成三份;

  二是要分得尽量平均。

  3、练习:如果零件是10个,你认为怎样分最好?

  让生思考后回答,师电出:10(3,3,4)

  如果零件是11个呢?11(4,4,3)

  四、看书质疑

  五、练习:

  书本第136页的第2题

  六、小结

  “这节课你学会了什么?请跟同桌交流交流。”

  师全课小结:这节课我们主要是学了如何找次品,那找次品的最好方法是什么?

  “同学们这节课上得不错,其实在日常生活中,我们经常会遇到这样的问题,希望同学们多观察、多思考,从而发现更多知识。”

  七、板书设计:

  找次品

  最好方法:一是把待测物品分成三份;

  二是要分得尽量平均。

  3(1,1,1) 1次 零件个数 分成的份数 保证能找出次品的次数

  5(2,2,1) 2次 9 3(4,4,1) 平

  5(1,1,1,1,1) 2次 不平4(2,2) 不平2(1,1) 3次

  9 3(3,3,3) 平 3(1,1,1)

  10(3,3,4) 不平3(1,1,1) 2次

  9 5(2,2,2,2,1)平(2,2)平 不平2(1,1)

  11(4,4,3) 不平2(1,1) 3次

  9 9(1,1,1,1,1,1,1,1,1) 4次

《数学广角》教案3

  一、教学内容

  简单的排列组合和逻辑推理。

  二、教学目标

  1.使学生通过观察、猜测、实验等活动,找出最简单的事物的排列数和组合数。

  2.培养学生初步的观察、分析及推理能力。

  3.初步培养学生有顺序地、全面地思考问题的意识。

  三、编排特点

  1.逐步渗透重要的数学思想方法。

  数学不仅是人们生活和劳动必不可少的工具,通过学习数学还能提高人的推理能力和抽象能力。排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。逻辑推理知识也是人们在生活和科研中很重要的知识,人们从事学习、科研、经济和法律活动(如侦破、审理案件)都要用到推理,计算机就是以数学逻辑为基础的。数学课程标准中指出:在解决问题的过程中,使学生能进行简单的、有条理的思考。传统教材中没有单独编排这部分内容,这方面的知识是新编实验教材新增设的内容之一。本套实验教材试图在渗透数学思想方法方面做一些尝试性的探索,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验、猜测等直观手段解决这些问题。重在向学生渗透这些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。

  一年级下册已经渗透了找规律,本册渗透排列组合、推理的数学思想方法,以后还要进一步学习复杂一点的排列组合、可能性(也就是概率)、运筹、等量代换等高等数学思想方法。

  2.让学生通过生动有趣的活动进行学习。

  如在例1中安排了学生用数字卡片摆两位数的情境,在做一做中安排了学生握手的活动;在例2中安排了猜球游戏。

  四、具体编排

  排列组合

  *例1

  (1)在日常生活中,有很多需要用排列组合来解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等等。排列组合思想是学习概率的基础,也可以讲得很难很深,但这儿只是通过活动,让学生简单地了解一下就可以了,至于排列组合中的乘法原理、加法原理、公式等都不要求学生掌握。

  (2)2张卡片的排列顺序不同,就表示不同的两位数。给出了一幅学生用数字卡片摆两位数的情境图,学生在进行小组合作学习,先用2张卡片摆,学生通过操作感受摆的`方法以后,再用3张卡片摆;然后小组交流摆卡片的体会:怎样摆才能保证不重复不遗漏。

  *P99做一做

  属于组合,选定的一组事物与顺序无关。

  推理

  *例2

  (1)最简单的推理知识,让学生根据已知条件通过活动判断出结论。

  (2)给出了两个活动:第一个活动猜拿的是什么书,第二个活动猜拿的是什么花。通过这两个活动使学生感受简单推理的过程,初步获得一些简单推理的经验。

  *例3

  是在例2的基础上加了一个条件,难度稍有增加。实际上例3可以转化为例2的形式。小红拿的是语文书,说明小丽和小刚拿的是数学和社会书,再根据条件判断,与例2就非常类似了。

  五、教学建议

  1.注意让学生通过操作活动进行学习。

  这部分内容的抽象性比较强,要通过操作活动,深入浅出,化难为易。

  2.注意把握教学要求,不要拨高要求。

  根据学生的实际情况,适当地、有意识地培养学生的思维能力,但要注意因材施教,不要人为拨高要求。例如,讲逻辑推理时,不要向学生讲大前题、小前题等概念,也不要增加条件的数量,教材上最多是让学生根据三个条件来进行推导,教师不要增加到4个,如果处理不好,反而会出现科学性错误。

《数学广角》教案4

  教学内容:

  人教版小学数学二年级下册第九单元《数学广角-数独》第二课时。

  教学目标:

  1.通过观察 、分析等活动,让学生完成简单的数独游戏,能够根据已知条件来进行推理。

  2.经历数独游戏的探究过程,培养学生观察、分析、推理的能力。

  3.体会学习数学的乐趣,提高数学学习兴趣。

  教学重点:

  通过观察、分析、推理完成填数游戏。

  教学难点:

  找到关键格。

  教学过程:

  一、创设情境,激趣导入

  师:同学们,你们喜欢玩游戏吗?(喜欢)那今天这节课易老师就和大家一起来玩填数游戏。

  二、理解规则,寓教于乐。

  师:先来看看游戏规则。(投影出示游戏规则),谁来用自己的话解释一下规则?

  生1:每行每列都有1~4这四个数。每个数在每行、每列都只能出现一次。在2分钟之内确定B是几。

  师:如果这一行已经出现了2,同一行能不能继续填2?(不能),这一列有3这个数,同一列能不能再填3?(不行。)都明白游戏规则了吗?(明白了。)

  师:你能不能在3分钟之内确定B是几呢?先请大家先试一试吧。计时开始。

  师:时间到。得出结论了吗?B是几?

  生2:B是2。

  师:你是怎么想的?

  生3:凭感觉猜的。

  师:要猜也必须有根据的猜想,别的同学还有什么好方法吗?

  生:边试边填,假设2的后面是1……

  师:噢,原来你是采用了推理假设的方法,真是个爱动脑筋的孩子。那你得出B是几了吗?

  生:还没有,时间不够。

  师:有没有更快更简单的方法呢?

  师:老师给你们一点提示。(投影出示A点),仔细观察,A所在的位置有什么特点吗?

  生 一时看不出来 。

  师:大家仔细看一看,A有没有可能是3?

  生1:不可能,因为A所在的列已经出现了3,游戏规则里有“每个数在每行、每列都只能出现一次”这一条,所以A不可能是3。

  师:你观察得真仔细。

  师:那A没有可能是2呢?

  生2:也不可能。因为A所在的这一行里已经有2了,不能重复出现。

  师:那3可能吗?

  生3:也不可能,3也在A的这一行里,道理跟之前一样。

  师:A既不是 4也不是3和2,那A可能 是几啊?

  生4:A只能是1。

  师:为什么?

  生4:因为我们在表格里只能填1-4这四个数,4、3、2都 被排除了,所以A只能是1。

  师:哇,你们的推理能力真强啊,这么快就得出A是1了。那按照刚才的方法,你能快速确定B是几了吗?为什么?

  生5: A是4,那么B所在的'行和列已经出现了4、2、3,所以B只能是1。

  师:其他同学也这么认为吗?

  生:没错!

  师:那填数游戏的诀窍是什么?

  生6:找到关键的格子。只要这个格子所在行和列里有了其他几个数,就能确定这个格子是几。

  师:大家都听明白了吗?

  生:明白了。

  师:你真是太棒了,表达得真清楚,我们一起表扬他。

  师:那你们能不能填出其他方格里的数了呢?(能)我们一起来填一填。

  师指方格中的位置,点名回答,说出理由。

  三、游戏来源,板书课题

  师:同学们真棒!这么短的时间内就掌握了方法,完成了填数游戏。其实早在19世纪70年代就它就已经在美国的一本杂志上刊登过,到1984年4月,日本一家游戏杂志提出“独立的数字”概念,意思是“这个数字只能出现一次”,并将这个游戏命名为“数独”。(板书课题:数独)??

  四、巩固练习

  师:刚刚大家玩得开心吗?想不想继续玩?(想)那就请你打开书110页,完成下面的做一做。

  ?? 集体校正答案?

  师:先填哪一格?A。再确定B,

  五、课堂

  师:在今天的数独游戏中,你有什么收获?

  六、教学反思

  同学们认识数独的并不多,这种游戏全面考验做题者观察能力和推理能力,虽然玩法简单,但数字排列方式却千变万化,数独是训练头脑的绝佳方式。部分学生的推理能力和观察能力强。在活动结束前,请做得快的同学说方法。有少部分学生跟不上,没有完全理解,还要多练习。

  从备课的角度来说,我在备课时设计的难度较大,整节课大部分学生积极思考,努力解决问题,但有少数同学还是没能彻底明白数独游戏的规则,无法顺利地找到突破口,所以解决问题的积极性不够高,出现了轻微的两极分化现象。接下来的备课我准备降低知识内容的难度,并将引导转换成学生能理解的语言。

《数学广角》教案5

  教学内容:

  人教版五年级上册数学第七单元数学广角植树问题

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的'情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数+1=棵数,棵数-1=间距数

  教学过程:

  一、设计情景、引入课题

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  (课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、理解间隔数,引入课题。

  在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

  二、探索新知,探究规律

  1、出示招聘启事

  在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

  2、出示例题,理解题意:

  师:(课件出示例题。)

  师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

  (课件解释关键词语,加深学生理解)

  师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

  3、出示合作要求。

  (1)教师讲解小组合作要求。

  (2)学生4人小组开始合作学习,利用学具设计出植树方案。(可

  以用不同的形式表达)

  (3)教师巡视,指导学生小组合作。

  (4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

  (5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

  4、以小组为单位探究棵数与间隔数间的关系:

  (1)数一数:数出棵数和间隔数。

  (2)比一比:比较出棵数和间隔数之间的规律。

  两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

  只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

  两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

  三、课堂小结、反馈练习

  1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  2、广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

《数学广角》教案6

  教学目标:

  1、通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。

  2、学习用图形、符号等直观方式清晰、简明地表示数学思维的过程,培养逻辑思维的能力。

  3、通过解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学重、难点:

  让学生经历“比较——猜想——验证”的过程,寻求找次品的最优策略。

  学情分析:

  “找次品”的教学内容在“奥数”活动中时有出现,用图形帮助思考,对培养学生动手能力和思维能力都是比较好的,学生虽然是初次接触,但只要通过动手实践、小组讨论、探究等方式来解决问题,掌握一题多解的方法还是不难的。关键是最优化的解决策略,学生总结方法时有些难度,教师要适时引导。

  教学过程:

  一、弄清问题题意,激发探究欲望

  师:今天这节课,我们就从某公司招聘员工的一道题目开始,假定你就是应聘者,想不想接受一下智慧的挑战?(出示课件)

  问题是:假如你有81个外观完全一样的玻璃球,其中有一个球比其它的球稍轻,属于次品,如果只能利用没有砝码的天平来断定哪一个球轻,请问你最少要称几次才能保证找到较轻的那个球?

  (一分钟思考)学生汇报:1次丶2次…

  师:请只用1次的同学说一说,你是怎样想的?

  生1:

  生2:

  师:看来,1次虽少,但只是有可能,不能保证找到那个次品球,所以我们在思考这个问题的时候,不光要最少,还要以保证能找到为前提。

  师:如果以“保证能找到”为前提,在同学们这么多的答案中,哪个次数是最少的呢?这一节课我们就一起来研究这个问题一一找次品。

  二、简化问题,经历问题解决基本过程。

  对于从81个小球中找次品的问题,比较复杂,那么怎样开始我们今天的研究呢?

  生:可以从最少的试一试。

  师:如果从最简单的入手研究,2个小球至少称几次?

  生:1次。

  师:如果是3个呢?

  生猜测:2次?3次?1次?

  师:老师这里有3瓶口香糖,其中有一瓶少了3粒,你觉得应该怎样称?

  生汇报:先把其中的2瓶放在天平的两侧,如果左边下沉,就说明右边的是次品;如果右边的下沉,就说明左边的是次品;如果天平平衡,则没称的是次品。(学生边说老师边配合进行称量演示。)

  师边演示课件边带领学生进一步感受推理过程:虽然有3瓶,而天平只有两个托盘,但是只需要把其中的2瓶放在天平的两侧,可能平衡,也可能不平衡,如果平衡如果不平衡不论是否平衡,利用推理,只要称1次肯定能将那个次品找出来。

  师小结:看来2个和3个虽然数量不同,但是都只称1次就可以将次品找到。(将探究结果记录在表格中)

  三、再次探究“关键数目”,初步感知、归纳规律

  1、探究4个小球的情况。

  (1)师:如果再增加一个球,现在有4个球,其中有一个是次品,一次可以保证找到次品吗?

  生猜测:4次?3次?

  师:纸上得来终觉浅,绝知此事要躬行。咱们还是亲自动手探究一下吧。请同学们与自己的同桌共同讨论一下。可以借用小方块摆一摆,也可以在纸上画一画,不论用什么样的方式,都要将思考过程简要记下来。

  (生分组研究)

  师:4个小球时,你们称了几次?

  (生边汇报师边板书枝状图)

  师:4个球有两种不同的测量方法,但结果测量的次数都一样,至少要2次才能保证找出次品。(把结果记录在表格中)

  师:如果球的`个数再多一些,例如9个,至少需要几次才能保证找出次品呢?请同学们用学具摆一摆,用笔画一画。

  (生汇报师出示课件)

  师:为什么把9个球分成(3,3,3)只要2次就可以找到次品呢?

  (引导学生发现规律,把结果填入表格中)

  师:4个球只需要2次就可以保证找到次品,9个球也只需要2次就能保证找到次品,那么大胆猜测一下,在4与9之间的5、6、7、8个球,至少需要几次就能找出次品呢?现在我们分组来研究一下:第1大组的同学研究5个小球的情况,依次研究6、7、8个球。

  (生汇报,重点是8个球)(把结果填入表格中)

  师:我们来比较一下,我们将8个小球分成(3,3,2)三组称2次,可是把8个小球分成(4,4)两组却称了3次,多称了1次,多称的1次多在哪儿呢?

  生:小球数是2和3个时只用一次,把8分成(3,3,2)每组是3个或2个,3个或2个都只需要称1次就能找到次品。

  师:你们明白他的意思吗?你们看,称(3,3)或(4,4),都只称1次就能确定次品在哪边,可是接下来,第一种是在3个或2个里找,只需一次,第二种要在4个里找,要用2次,所以会多一次。

  师:大家最后称的次数不同,原因是什么呢?

  生:分的组数不同,每组数量也不同。

  师:那到底怎么分,才能既保证找到次品,又能使称的次数尽可能少呢?

  (生分组讨论后汇报)

  生1:应该分3组,因为天平有2个托盘

  生2:每组的数目还要少。

  生3:尽可能让每组数目比较接近,每次称完,次品就被确定在更小的范围内。

  师:你们太了不起了,通过我们刚才的试验、讨论、交流,不仅解决了问题,而且发现了其中分组的秘密规律。

  (师板书:分3组,尽量平均分。)

  四、进一步发现规律

  师:现在我们就应用分组的规律,再来一次实验,如果小球个数是10个(课件),该怎么分?称几次?

  (生汇报,师板书:10(3,3,4)3次)(课件)

  师:如果是27个呢?(课件)

  (生汇报,师板书:27(9,9,9)3次(课件)

  师:这位同学说的太好了,他先是分成了3组,然后用转化的思想把问题变成我们前面解决的9个小球的找次品问题了。

  看来大家都掌握了分组规律。最开始的招聘问题,81个小球,大家能解决了吗?谁有了答案?把结果直接写在黑板上。

  (生讨论并汇报结果)(课件)

  师:你能发现它和前面我们解决的27个,9个,3个,有什么关系吗?

  (小组研究)

  生汇报:被测小球数目是几个3相乘就称几次,比如4个3相乘是81,81个小球就只需称4次。

  师:你们很了不起,既解决了公司“招聘”问题,又发现了“被测物品数目与称的最少次数之间”神秘的规律。

  五、课堂小结

  随着招聘问题的解决,今天的课也即将结束,回顾我们整节课的经历,从最初的招聘问题,回归到解决2、3的问题,再到研究8、9发现分组规律,直至研究了更大的数目,像27、81这样的数目,发现了被测物品数目与称的最少次数之间的一些关系。

  在这一路的探究过程中,我们不断思考,不断实践,不断发现,我想大家在收获知识的同时,一定收获了更多的智慧。最后有两句话与大家共勉:(课件出示)

  探究问题,学会化繁为简

  解决问题,要有优化意识

《数学广角》教案7

  一、教学内容

  简单的排列组合

  二、教学目标

  1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。

  2.培养学生有序地、全面地思考问题的意识和习惯。

  三、编排特点

  1.借助操作活动或学生易于理解的事例来帮助学生找出排列数或组合数。

  2.利用学生已有的知识让学生逐步建构新的知识。

  衣服搭配、摆几位数、求比赛场次等例子在二年级上册都出现过。

  3.利用直观图示帮助学生有序地、不重不漏地找出排列数或组合数。

  四、具体编排

  1.例1(简单的组合)

  (1)隐含了分步计数的原理,但这儿不要求用分步计数的方法(乘法)来求组合数。只要能用图示的方法来求出组合数就可以了。

  (2)教材上提供了两种图示表示法,引导学生用画简图的方式来表示抽象的数学知识。实际上还有其他的方法,例如每条裙子或裤子分别可以搭配两件上衣(分步时,可以把确定上衣作为第一步,也可以把确定裙子和裤子作为第一步),教学时要充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。

  (3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示衣服,圆形表示裙子和裤子,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。

  (4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。

  2.“做一做”

  通过活动的方式让学生不重不漏地把所有两位数写出来。

  3.例2(简单的排列)

  学生已经有了拿三张数字卡片摆两位数的经验,摆三位数可以用类推的方式让学生自己解决。在这儿的重点是引导学生有序地思考,怎样摆才能不重不漏。学生一开始可能是无规律地摆,但经过一定的观察后,会逐渐走向有序。要让学生经历一个从无序到有序、从实际摆卡片到脱离卡片直接写出这些三位数的过程。

  4.“做一做”

  借助学生喜爱的西游记的故事情境让学生直观地找出排列数。

  5.例3(简单的组合,两两组合)

  (1)利用20xx年世界杯足球赛的题材,除了教学组合知识以外,还可以适当进行爱国主义教育。

  (2)用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的'情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。(原来教材上是有的,但由于版面的原因,送审后删去了。)

  6.练习二十五

  设计丰富的情境让学生练习,巩固排列和组合的知识。

  五、教学要求

  1.要借助于操作活动帮助学生求排列数或组合数。

  排列、组合是很抽象的数学知识,要用操作活动把这些抽象的知识直观化、具体化。

  2.注意把握教学要求。

  在这儿还只是用图示的方式把所有的排列或组合情况罗列出来(即有哪些排列或组合),不是抽象地计算一共有多少种排列数或组合数。要允许学生用自己喜欢的方式去求排列数、组合数。至于排列、组合等名词,排列与组合的区别,分类计数原理、分步计数原理等,都不要求学生掌握。

  实践活动掷一掷

  一、利用的数学知识

  1.组合(两个骰子上的数字之和)

  2.事件的确定性和不确定性、列举所有可能出现的结果(每个骰子上可能的结果是1至6六个数,组成的和可能是2至12的所有数,不可能是1或13等数。)

  3.可能性大小(组成的和是2至12中任一个数,但发生的可能性大小是不同的。)

  二、活动步骤

  (一)示范游戏

  1.体验确定现象与不确定现象,列举所有可能的结果。(运用组合的知识,判断哪些和不可能出现,哪些和可能出现。)

  2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。

  3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。

  (二)小组内游戏,探索结论。

  通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。

  (三)理论验证

  通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。

《数学广角》教案8

  教学内容:

  人教版三年级上册,第九单元《数学广角》例1、例2及相关练习

  教学目标:

  1、学生通过观察、猜测、实验等活动,了解生活中的一些简单搭配现象,提出不同的搭配方案。找出简单事物的排列数及排列的有效方法。

  2、在解决问题的过程中,初步学会用数学语言表达解决问题的大致过程和结果。

  3、学生在数学活动中养成与他人合作的良好习惯。感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。渗透符号化思想,以及有序全面地思考问题的意识。

  教学重点:

  自主探究,掌握有序搭配方法和有效排列方法并用所学知识解决实际问题。

  教学难点:

  怎样搭配、排列可以不重复、不遗漏。能有顺序地、全面地思考问题,

  并能清楚表述思维过程。

  教学准备:

  多媒体课件,学具卡片,小组活动记录单等

  教学程序:

  一、激趣导入:

  1、交代本节课内容,板书课题。

  2、明确数学广角与生活的联系,激发学生学习本节课的兴趣和学好的信心。

  二、探究新知:

  (一)例1(搭配问题)

  1、课件出示例1,创设情境:聪聪过生日,参加生日聚会,有几种搭配衣服的方法呢?

  2、学生小组合作,利用手中的.学具摆一摆,找出有几种搭配方法,并试着用连线的方式表示搭配的结果。

  3、汇报小组活动结果,学生边汇报教师边演示课件

  4、教师点拨:怎样保证不重复不遗漏,怎样算出有多少种搭配方法。

  5、完成做一做:学生小组活动,填写记录单汇报,课件演示。

  6、完成115页1题,课件出示,学生快速算出有几种搭配方法,再分别说一说,课件演示

  (二)例2(排列问题)

  1、教师提出问题:课件出示例2,引导学生小组活动

  2、学生小组合作学习:利用手中数字卡片摆一摆,填写小组活动记录单。

  3、汇报交流,想一想:怎样记录更清楚,保证不重复不遗漏。

  4、教师点拨:排列的注意事项

  5、完成做一做:学生小组交流后汇报

  6、完成116页4题:小组内利用卡片摆一摆,填写记录单后汇报。

  (三)小结:搭配和排列的方法及注意事项。

  三、巩固练习

  1、115页2题:学生回答,课件演示

  2、115页3题:课件出示,学生口答

  3、116页6题:学生操作后汇报,课件演示。(视时间而定,可口答,

  也可留在课后)

  4、智慧闯关(4关):课件出示,学生口答

  5、机动题(根据时间,可留在课后)

  四、总结:

  谈谈本节课学习收获。

《数学广角》教案9

  情感、态度和价值观:

  使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。教学重点体会优化的思想教学难点寻找解决问题最优方案,提高学生解决问题的能力。

  教具准备图片

  教学过程

  一、情境导入:

  1、同学们想一想,生活中有哪些事情可以通过合理安排来提高效率?

  2、这节课我们继续来学习数学广角

  二、探究新知

  教学例3

  1)出示情境图片:

  3艘货船需要卸货,但是只能一条一条地卸货,并且每艘船卸货所需的时间各不相同,那么按照怎样的顺序卸货能使3艘货船等候的总时间最少呢?

  2)观察图,说说可以得到哪些信息?

  学生讨论

  3)可以有哪些卸货的顺序?每种方案总的等候时间是多少?

  引导学生思考汇报

  4)找出最优方案

  1、书后做一做

  2、有210人选举大队长,有三位候选人甲、乙、丙,每人只能选之中1人,不能弃权。前190张票中甲得75张,乙得65张,丙得50张,规定谁的票最多谁当选。若甲要当选,最少还需要多少张票?

  这节课你有什么收获?

  五、作业:

  补充练习

  个人修改

  为什么时间节约了?

  教后反思:

  教案

  第三课时

  课题数学广角课型新授教学目标知识与技能:1、使学生初步体会对策论方法在解决实际问题中的应用。2使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。3、培养学生的应用意识和解决实际问题的能力。

  过程与方法:使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。

  情感、态度和价值观:

  使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的.简单问题。教学重点体会优化的思想教学难点寻找解决问题最优方案,提高学生解决问题的能力。教具准备图片教学过程一、情境导入:

  1、你们听过“田忌赛马“的故事吗?田忌是怎样赢了齐王的?谁能给大家讲一讲这个故事?

  2、问:田忌的马都不如齐王的马,但他却赢了?这是为什么呢?

  3、这节课我们就来研究研究。

  二、探究新知

  1、把田忌在赛马中使用的方法在给出的表格中补充完整。出示表格

  田忌

  本场胜哲

  第一场

  上等马

  下等马

  齐王

  第二场

  中等马

  上等马

  田忌

  第三场

  下等马

  中等马

  田忌

  2、思考:田忌所用的这种策略是不是唯一能赢秦王的方法?讨论

  3、引导学生:看一看田忌一共有多少种可采用的应对策略?把田忌所有的可以采用的策略都找出来,填如表中。

  4、展示各组汇报的结果

  6种,但只有一种是唯一可以获胜的。

  5、说一说:田忌的这种策略在生活中还有哪些应用?结合实际说一说。

  数学游戏:1、两人轮流报数,每次只能报1或2,把两人报的所有数加起来,谁报数后和是10,谁就获胜。

  说明游戏规则

  2、两人轮流报数,必须报不大于5的自然数,把两人报的数依次加起来,谁报数后和是100,谁获胜。:如果让你先报数,为了获胜,你第一次报几?以后怎么报?

  这节课你有什么收获?

  五、作业:

  写一篇数学日记个人修改

  像同学们刚才这样,把解决问题的所有可能性一一找出来,并从中找到最好的方法,这是数学中的一种很重要的方法。

《数学广角》教案10

  教学目标:

  (一)通过观察、猜测等活动,让学生经历简单的推理过程,理解逻辑推理的含义。初步获得一些简单的推理经验。

  (二)能借助连线、列表等方式整理信息,并按一定的方法进行推理。

  (三)在简单的推理过程中,培养学生初步的观察、分析、推理和有有条理的进行数学表达的能力。

  (四)使学生感受推理在生活中的广泛运用,初步培养学生有顺序的全面的思考问题的意识。

  教学重点:

  理解逻辑推理的含义,经历简单的推理过程,初步获得一些简单的推理经验。

  教学难点:

  初步培养学生有序的,全面的思考问题及数学表达的能力。

  教学过程:

  (一)激情导入

  游戏:猜猜我的年龄?

  来猜一猜吧!哦,有这么多答案,看来大家没办法确定老师的年龄,给你一个提示:36、37这两数中有一个是老师的年龄。

  有两种可能,老师再给你一个信息,我今年不是36岁,现在答案一样,说说你是怎么猜的。

  像这样根据一些信息提示,得出一些结论,这样的方法叫推理!

  认识他吗?著名侦探柯南,他就是通过自己敏锐观察力和逻辑推理侦破了一个个扑朔迷离的案件,今天他也给我们带来了数学推理挑战题,有信心尝试吗?

  (一)初级挑战

  生活中的推理;

  (二)中级挑战

  教师利用课件呈现例1,出示例题1

  师:同学们,我们认真阅读,然后告诉老师,从题目中你发现了哪些信息?

  生:有三本书,语文、数学、道德与法治。

  生:有三个小朋友,分别是:小红、小丽、小刚。

  生:他们三人各拿一本。

  师:下面三人各拿一本,这个信息是什么意思呢?

  生:他们三人拿的书都不相同。

  师:下面我们来看看三个小朋友都说了什么话?

  生:小红说:我拿的是语文书。小丽说:我拿的不是数学书。

  师:题目中要让我们求什么?〔问题:小丽拿的是什么书?小刚呢?〕

  师:很好,那他们到底拿的是什么书呢?

  1、选择自己喜欢的方法来完成学习单

  2、完成后,和同桌说说你是怎么想的。

  学生活动,汇报

  学生自主学习完成,教师巡视。

  学生汇报:

  生 1:小红拿的是语文书,那小丽和小刚拿的 就是数学与道德与法治,小丽又说她拿的不是数学书,她肯定拿的就是道德与法治了,剩下的小刚拿的就是数学书了。

  生 2:用连线的方法

  我把人名和书名写成两行,然后根据小红拿的是语文书,所以小红就与语文书连在一起了,剩下的小丽和小刚就只能连数学和道德与法治了,小丽又说,她拿的不是数学书,那小丽肯定拿了道德与法治了,再连上线,最后小刚拿的就是数学书了,再连上线。

  生3:用表格法(小红拿的是语文书,所以先在小红下打勾,那小丽和小刚拿的 就是数学与道德与法治,小丽又说她拿的`不是数学书,她肯定拿的就是道德与法治了,剩下的小刚拿的就是数学书了

  师:孩子们,再来回顾解决问题的过程,找完数学信息后,部分同学选择了用连线法跟表格的方式来进行整理,这样做可以让我们把信息整理得更加地〔清楚、简洁〕。

  先从哪个条件开始呢?

  三个同学都是从“小红拿到是语文书”找到关键条件,把能确定的就先确定。〔板书:先确定〕

  师:接下来呢?就剩下数学书和道德与法治书了,而小丽又说:〝我拿的不是数学书〝,小丽拿的肯定是道德与法治书了;又在剩下的条件中,根据已给的条件,能排除的先排除。〔板书:排除〕

  最后因为小红拿的是语文书,小丽拿的是道德与法治书,所以小刚拿的就是数学书。最后我们推出结论。

  刚才同学们很厉害,表现这么棒,柯南送给大家一首儿歌,一起念念。

  掌握了推理技巧和方法,我们一起练练手:

  1、试一试

  指明学生读题后,认真思考,同时让学生说一说:你是怎么想的呢?用什么方法?并且请一名同学展示自己是怎么做的,怎么考虑的?

  生:用连线法,把三只狗的名称和重量分别写成两行,因为笑笑是最轻的,所以笑笑和5千克连在一起,乐乐比欢欢重,乐乐就与9千克连在一起,剩下的欢欢就与7千克连在一起。师:同学们,说的真好!

  2、猜一猜

  师:从题目中,我们知道了哪些信息呢?

  生:信封里有一个圆,一个三角形,一个长方形,他们分别是三种颜色中的一个。

  师:哪个图形,我们最能先判断出来,为什么?

  生:绿色的是圆形,因为绿色露出来的是半圆,下面肯定也是半圆,

  师:发现的非常好!那红色和蓝色能不能判断?生:不能。

  师:下面请听老师一个提示:〔出示课件:蓝色说:我不是三角形。〕现在请同学们用喜欢的方法写下来。

  学生展示结果并说一说自己是怎么想的。〔?让学生尽量说出直接阅读后就知道的和连线法,以及表格法〕

  师:下面我们一起来看看到底是不是这样的。〔教师点击课件把信封拿掉,显示结果〕

  师:小朋友真棒!太厉害了!同学们现在跟老师一起说一说,绿色的是圆形,剩下三角形和长方形,蓝色的不是三角形,所以红色的是三角形。最后蓝色的一定是长方形。

  (三)终级挑战

  读题后,同桌两人利用学习单里的卡片摆一摆,验证你的想法,写下数字密码。

  并指名一位同学上台演示,说说你的推理过程。

  恭喜同学们,闯关成功。

  (四)小游戏

  三人游戏,三顶不同颜色的帽子,闭眼,每人分别戴上一顶,根据同伴帽子的颜色,猜自己帽子的颜色,

  (五)课堂总结

  师:同学们,开心吗?通过这节课的学习,你有哪些收获呢?是呀,我们个个都成为了小侦探。推理是一个非常重要的数学思想方法,希望同学们在今后的学习中,能善于观察,勤于思考,用推理解决更多的问题。

《数学广角》教案11

  教学目标

  1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。

  2、比较正确地计算小数乘法,提高计算能力。

  3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。

  教学重点

  小数乘法的计算法则。

  教学难点

  小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。

  教具准备

  投影、口算小黑板。

  教学过程

  一、引入尝试

  1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8 ×1。2)

  2、尝试计算

  师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?

  师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算1。2×0.8呢?

  如果能,应该怎样做?(指名口答,板书学生的讨论结果。)

  示范:

  1。 2扩大到它的10倍1 2

  × 0. 8扩大到它的10倍× 8

  0.9 6缩小到它的1/100 9 6

  3、1。2×0.8,刚才是怎样进行计算的?

  引导学生得出:先把被乘数1。2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。

  4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:6。05×0.82的积中有几位小数?6。052×0.82呢?

  5、小结小数乘法的计算方法。

  师:请做下面一组练习(1)练习(先口答下列各式积的小数位数,再计算)(2)引导学生观察思考。

  ①你是怎样算的?(先整数法则算出积,再给积点上小数点。)

  ②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)

  ③计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)通过通过以上的学习,谁能用自己的话说说小数乘法的'计算法则是怎样的?

  (3)根据学生的回答,逐步抽象概括出P。5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)

  (4)专项练习①判断,把不对的改正过来。

  0.0 2 4 0.0 1 3

  × 0.1 4 × 0.0 2 6

  9 6 7 8

  2 4 2 6

  0.3 3 6 0.0 0 0 3 3 8

  三、应用

  1、在下面各式的积中点上小数点。

  0 。 5 8 6 。 2 5 2 。 0 4

  × 4。 2 × 0 。 1 8 × 2 8

  1 1 6 5 0 0 0 1 6 3 2

  2 3 2 6 2 5 4 0 8

  2 4 3 6 1 1 2 5 0 5 7 1 2

  2、做一做:先判断积里应该有几位小数,再计算。

  67×0.32.14×6。2

  3、P。8页5题。

  先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。

  四、体验回忆这节课学习了什么知识?

  五、作业:P8 7、9题。P9 13题。个人修改

  口算:

  5.2×0.2

  7。3×0.01

  76×0.03

  75×0.05

  0.05×6

  79。2×0.2

  ②根据1056×27=28512,写出下面各题的积。

  105.6×2.7= 10.56×0.27= 0.1056×27= 1。056×0.27=

  板书设计:

  教后反思:小数乘小数的乘法是本单元的难点,学生在计算时错误较多,要继续多练,重点练习点小数点。

《数学广角》教案12

  教学目标:

  1、使学生通过观察、猜测、操作等活动,找出简单事物的排列数和组合数。

  2、培养学生初步的观察、分析能力及有序地、全面地思考问题的意识。

  3、通过活动进一步培养学生的合作交流意识,感受数学与生活的紧密联系,激发学生学好数学的信心。

  教学重点:探索巧妙搭配、有序排列的方法,并用所学知识解决实际生活中的问题。

  教学难点:面对实际问题,能初步构建解决问题的数学模型。

  教学过程:

  一、导入新课

  谈话引入:同学们,今天我们一起参加数学广角的活动,解决生活中的有关数学问题,大家愿意吗?

  [设计意图]开门见山创设情境,直接揭示学习任务,迅速投入学习活动。

  二、创设情境

  情境一:穿衣服

  l、尝试猜想

  师:现在我们挑选了7位小小志愿者,为他们准备了2种颜色的上衣和3种颜色的裤子。问:要使每人穿得不一样,能做到吗?请你猜一猜。学生可能猜测:做不到。

  2、思考讨论

  (l)引导思考:要知道能不能使每人穿得不一样,关键要知道什么?用上衣和裤子搭配,到底可以有多少种不同的搭配方法?请大家用简便的方法把各种穿法快速记录下来。

  (2)学生独立思考,尝试表示。

  (3)小组交流:把你的想法在小组内进行交流。教师巡视,参与指导小组活动。

  3、展示汇报。师:现在哪组来汇报,你们怎么想的?用什么方法记录的'? 学生可能想法: ①从上衣出发,1件上衣可以搭配3条裤子,2件就可搭配6条裤子。②从裤子出发,1条裤子可与2件上衣连,3条裤子就有3个2。追问:说说他是用什么方法记录的?还有不同想法吗?对他的方法有意见吗?

  学生在投影上展示、介绍搭配方案。

  4、观察比较:(1)师:经过刚才的讨论我们发现:要解决这个问题,我们可以有两种想法,一种是从上衣出发,另一种是从裤子出发考虑。请看大屏幕(媒体演示两种思考过程)。大家还发现了哪几种记录的方法?根据学生回答用媒体演示不同的记录方法。我们可以用画图表示、也可以编号连线、文字说明、算式等不同形式来记录。

  (2)小结:你认为哪一种记录方法能既快速又方便地表示出来?

  师:看来,有顺序地连一连线或排一排能帮助我们不重复、不遗漏地把所有的搭配方法找出来。

  5、拓展延伸。

  (1)师:现在你认为能不能做到每人穿得不一样? 那该怎么办?

  (2)师:请你增加一种颜色的上衣或一种颜色的裤子,想一想有几种不同的搭配方法?把各种穿法快速记录下来。同桌交流,挑选两种情况展示汇报:你是怎么想的。媒体演示:连线法;编号列举等。现在,你觉得哪种记录方法既快又简便?

  6、小结:同学们,刚才我们通过连一连、排一排、算一算的方法来解决衣服的搭配问题。

  (二)情境二:游乐活动中的数学问题

  出示教科书第115页第2题图

  1、引导观察:我们来到儿童乐园,从儿童乐园经过百鸟园到猴山去玩,有几条不同线路?

  2、学生独立思索,指名回答,师:你是怎么想的?这样说大家听得不太明白,有什么办法使别人一听就明白?(编号)。师:儿童乐园到百鸟园有几条路?从百鸟园到猴山有几条路?在媒体上出示编号①②③④⑤ 。

  3、师:现在你能说出有哪几条不同的线路?

  4、反馈:根据学生的回答课件展示线路。

  5、小结:通过编号后列举、或用乘法能帮助我们快速解决问题。

  (三)情境三: 拍照

  1、师:从猴山出来,聪聪、明明在数学乐园欢迎同学们到来,让我们用刚才学到的方法来当一回摄影师。

  (1)出示问题1:同学们都想单独和聪聪、明明各合一张影,一共要照多少张?学生在书上表示。

  (2)反馈交流:你是怎样想的?(连线或乘法)

  (3)课件演示学生的想法。

  2、出示问题2。师:每人和聪聪、明明单独拍完照后,小明还想和聪聪、明明合影留念,三个人站成一行,一共可以拍多少张不同排法的照片?可以想什么办法清楚地表示出来?

  (1)独立思考。(2)小组交流问题的解决方法。(3)交流汇报:你可以想什么办法来表示?生1:可以列举;生2:可以编号。师:编号是个好办法!我们给三个人编上号码①②③,请你用数字卡片排一排,然后把各种排法记录下来。

  (4)汇报交流:挑选不同排法的学生在黑板上展示,说说是怎么排的,有不同的排法吗?讲评:怎样排列才能做到既不重复也不遗漏?(媒体演示排的过程)排在1号位上有几种情况,确定好1号位后,排在第2、3号位又有几种情况?所以得到6种排法。

  (5)小结:解决这个问题时首先考虑想什么办法,接着想第一步有几种情况,再考虑第二步有几种情况,然后进行搭配或用乘法表示。

  [设计意图]虽然都是拍照的情境,问题1着重巩固解决搭配问题的不同思维形式。问题2着重联系生活实际,构建解决排列问题的数学模型。要解决三人合影的排列问题,实际将其转化为1、2、3这三张卡片有几种不同的排法。让学生通过动手操作、有序思考来解决。

  (四)情境四:破译密码

  1、(课件出示密码门)师:我们来到数学乐园门口,发现门紧锁着,想要出门必须先破译门锁上的密码。这密码是由三个数字7、8、9 组成的一个三位数,猜一猜可能是哪个密码。

  问:如果不告诉你正确的密码,至少需要试几次才能保证把门打开?

  2、师:要求至少需要试几次才能保证把门打开,实际要知道什么?(用7、8、9可以摆出几个不同的三位数。)

  3、师:请大家把结果记录在练习纸上。

  4、汇报交流,挑选不同的排法在黑板上展示,说说是怎么想的。

  5、小结:(媒体演示)在排列要做到有序,可以先确定百位上的数,再依次确定十位和个位上的数。现在你知道至少需要试几次才能保证把门打开?

  师:(媒体出示)这个密码是由7、8、9三个数字组成的最大的三位数,那么它是多少?987。[设计意图] 此环节对拍照情境中问题2的应用,创设破译密码的情境,激发学生的好奇心。由于问题比较宽泛,给学生探索和想象的空间,从学生的动手操作,交流汇报到策略的总结,注重有序思考方法的渗透,体验、经历数学活动的过程。

  三、小结拓展

  1、师:今天我们参加了数学广角活动,你有什么收获?生活中哪些地方可用到搭配中的学问?

  2、师:在今后的学习和生活中,还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决。有兴趣的同学可以上网继续参与数学广角活动,提供活动资源链接。

  [设计意图]小结收获,把学生的眼光引向生活,感受生活中的数学,尤其是课外活动资源的链接把学生引入新的境界,充分实现课程资源的开发和利用。

  四、做一做

  1、完成115页第1题

  2、完成116页第4、5、6题

  3、完成112页“做一做”

《数学广角》教案13

  教学目标

  1、通过日常生活中的最简单的事例,让学生进行分析、推理得出结论,培养学生初步观察、分析与推理的能力。

  2、培养学生的观察、操作及归纳推理的能力。

  3、培养学生有顺序地、全面思考问题的能力。

  教学重难点

  教学重点

  培养学生分析、推理的思维过程及有顺序地、全面思考问题的能力。

  教学难点

  培养学生分析、推理的思维过程及有顺序地、全面思考问题的能力。

  教学过程

 一、创设情境,导入新课

  师:老师知道同学们最喜欢做游戏,上课之前我们先来做个游戏,好吗?

  生:好。

  1、

  师:听老师口令,同学们做动作。

  拍拍你的肩,不是左肩,那是哪个肩?摸摸你的耳,不是右耳,那是哪只耳?捂住你的眼,不是右眼,那是哪只眼?伸伸你的手,不是左手,那是哪只手?

  师:同学们很聪明,刚才在游戏中我们顺利的做出正确的动作。谁来说一说你是怎么做对的?

  生:不是......就是......

  2、老师今天带来了《经典故事书》和《科学世界》中的一本书,你能一下就猜准是哪本书吗?

  不能。

  是《科学世界》。

  可能是《经典故事书》。

  师:这位同学总结的非常好,当出现两种情况的时候,我们可以用不是......就是......可能是.....的方法来判断。通过刚才的游戏,我们根据已知条件,推出结论的过程,在数学上称为推理。这种方法就是我们今天要学习的简单的推理。

  教师板书课题:数学广角--推理

  二、合作探究,经历体验推理过程

  同学们,老师遇到了问题你们愿意帮帮老师吗?

  1、动态,呈现问题。教师利用课件动态呈现例1。

  (1)先出示例1的前半部分:有语文、数学、品德与生活三本书,下面三人各拿一本。

  师:请同学们猜一猜:小丽拿的是什么书?小刚拿的是什么书?猜的出来吗?

  生:猜不出来。

  (2)再出示小红和小丽说的话,再出示问题。

  引导孩子梳理信息:

  “仔细读题,你知道了什么信息?要我们解决什么问题?”

  2、自主,探究问题。

  提问“到底他们三个人分别拿着什么书呢?”

  (1)请同学们独立思考,把解决这个问题的过程用自己喜欢的方式记录下来,(2)把你的想法和同桌同学交流一下,说说你是怎样想的。

  (3)汇报时教师要注意引导学生说自己是怎么想的

  3、合作,交流提升。

  4、交流后,孩子们有的阅读思考后用语言描述直接得出结论,有的用连线的方法,有的用列表法。

  强化,推理过程

  小红拿的是()书。

  小丽拿的.不是()书,就是()书。

  只剩下()书,所以小刚拿的一定是()书。

  5、质疑,求同引思。

  连线法和列表法可以让我们的推理过程更加直观。“几位小朋友在汇报自己的推理过程时为什么都要从小红说的话开始思考呢?”

  6、教师小结:通过分析同学说的话,推理得出正确的答案,这种思考问题的方法就叫做简单的推理,推理是依据所给条件通过分析、推理、判断出正确的答案。师如果我们只分析小刚说的话,而不看小红说的话,能得正确的答案吗?

  7、小结:在简单推理时,一定要全面地分析,进行判断,才能得到正确答案。

  8、做一做。

  (1)欢欢、乐乐和笑笑是三只可爱的小狗。体重分别是7千克、5千克、9千克。乐乐比欢欢重,笑笑最轻。你能写出他们的名字吗?

  (2)游戏--猜图形。

  信封里有一个圆,一个三角形,一个长方形。露出一部分,你能猜猜它们是谁吗?

  (3)连一连

  第1台电脑最便宜。

  三、巩固练习。

  1、游戏--帮小动物找家。森林里的小鹿、熊猫、小羊、猫和小兔分到了新房子。小鹿说:猫在我的左边。

  小羊说:我家的左边是熊猫家,右边是小兔家。

  小兔说:右数第3家就是我家。

  你能帮他们找到各自的新家吗?说说你是怎样想的?

  2、猜一猜下面小动物各住几号房间。

  公鸡、小羊、熊猫、梅花鹿和松鼠去旅游,它们住在宾馆里的1-5号房间,服务员告诉他们:熊猫住的不是1、3、5号,梅花鹿住的号码比熊猫多一倍,小羊住在梅花鹿的右边,公鸡住的离熊猫最近,熊猫住在公鸡的右边。

  猜一猜,这几只动物各住几号房间。

  四、动笔练习。

  让学生自己说出已知的信息,然后解答。

  思考题:甲、乙、丙三位老师分别教语文、数学和英语。

  已知:

  1、每个老师只教一门课。

  2、甲上课全用普通话。

  3、外语老师是一个学生的哥哥。

  4、丙是一位女教师,她比数学老师年轻。请问三位老师各教什么课?

  五、小结。

  今天我们学习的什么内容?你有什么收获吗?

  板书设计

  推理

  例1小刚拿的是(数学)书熊猫、羊、兔、猫、鹿

  小丽拿的是(英语)书

  教后反思:

《数学广角》教案14

  教学内容:人教版三年级下册第九单元P108例1

  教学目标:

  1、结合具体情境体会用“韦恩图”解决重叠问题的价值,掌握用“韦恩图”解决一些简单的重叠问题题目的方法,培养学生的思维能力。

  2、进一步渗透集合的思想,在解决实际问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,提高学习数学的兴趣。

  教学重难点:理解集合图的各部分意义及解决简单问题的计算方法。

  教具、学具:课件、带有学生姓名的小贴片。

  教学过程:

  一、问题情境,导入新课

  师:出示下面统计表

  师:朝阳小学三(1)班选出8人参加学校的语文活动小组,又选出9人参加数学活动小组。参加两个小组的一共有多少人?

  生:8+9=17人,

  师:同意吗?一定吗?

  生:齐说同意、一定。

  师:出示图1集合圈,

  语文组 数学组

  师:你能把参加语文组和数学组人的姓名图片贴在下面两个圈里吗?

  师:相机出示带有17个同学姓名的图片。

  【评析:尊重学生的认知基础,唤醒学生已有的知识经验,找准了学生已有的知识经验与新知的衔接点,为新知的学习巧搭“脚手架”,也使问题的引出顺理成章。】

  二、探究新知

  1、问题的引出

  师:出示例题中的统计表

  师:仔细观察这张表格提供的信息与前面的表格提供的信息有什么不同?

  生:有几个同学重复了。

  生:有三个同学既参加参加了语文小组又参加了数学小组。

  师:刚才这位同学说“重复”是什么意思?

  生:重复,就是一个人参加了两项活动。

  师:在实际生活中你们遇到过这种情况了吗?

  生:遇到过,比如我既参加了象棋小组又参加了绘画小组。

  生:我参加了三个兴趣组。

  师:如果还用两个圈来表示参加语文组和数学组的人数你认为下面那幅图能代表你们的意思?

  生:图2。因为图2有重复的部分。

  师:只能用图2来表示来表示重复的关系吗?

  生:两个长方形(正方形、三角形)交叉在一起也行。

  师:谁来说说重复的部分是什么意思?

  生:重复部分就是两项活动都参加人。

  师:同意吗?

  生:同意。

  师:参加语文组的有几个人?参加数学组的呢?

  生:语文组有8人,数学组有9人。

  师:根据表中提供的信息,你觉得用哪副图来表示参加两个小组人数之间的关系比较合适?请同学们贴一贴。

  【评析:把学生探究“集合图”的过程,变为教师直接给出两幅“集合图”,并让学生结合自己的生活经验,说说两个集合图所表示的实际意义,同时又拓展了学生对集合图的认知,为建构抽象的数学模型搭建了平台,也体现了基于学生认知基础出发的教学理念。】

  2、交流汇报

  师:展示学生的作品并强调不管圆圈中学生姓名怎么放,但这三个重复的同学都放在重叠的部分上。

  师:怎样计算参加两个小组的人数一共有多少人?

  生:一共是14人,我是数出来的。

  生:8+9=17 17-3=14

  师:第一个表格为什么直接用8+9=17就算出参加两个小组的人数,而这一次8+9后还要再减去3呢?

  生:因为如果还是17的话就把杨明、李芳、刘云多算了一次,因此要减去3。

  生:第一个表格没有重复参加的,第二个表格有重复参加的。

  师:不管用数的方法还是用算式计算都要注意什么?

  生:不能把重复的三个人多算了一次。

  【评析:在展示学生的作品时,对圆圈中学生的姓名位置不同的贴放,教师引导学生及时归纳、小结,这既能让学生体会出集合图本身各部分之间所存在的关系又能让学生直观地感知各个数据与集合图之间的关系。同时让学生反思、比较由前后两个表格所出现的不同的`计算方法,这既沟通了已有的知识经验与新知间的联系,又彰显出解决新问题的关键点。】

  3、明确“韦恩图”各部分表示的意思,感受其的价值。

  师:刚才我们通过数一数,算一算的方法,得出了参加两个小组的人数。现在谁来说说这个集合图有几部分组成?每部分各表示什么意思?

  生:三部分,左边一小部分表示只参加语文组的人数,中间一部分表示两个小组都参加的人数,右边一小部分表示只参加数学组的人数。

  师:相机在集合图上标示出“只参加语文组”、“既参加语文组又参加数学组”、“只参加数学组”的字样。

  师:简单介绍“韦恩图”来历。

  师:在实际生活中,往往提供的信息不会像表格中那样的。

  师:相机把例题呈现在统计表中的学生姓名打乱。

  师:如果给的是现在这样的信息,你觉得“韦恩图”和文字所提供给的信息,哪一个更能清晰地表示出只参加“语文人的”、“只参加数学的”、“两项都参加的”这三者中间的关系呢?

  生:用“韦恩图”来表示。

  师:用“韦恩图”不仅能清晰的表示出各部分之间的关系,还便于我们计算。

  师:你认为在什么样情况下使用“韦恩图”来解决问题呢?

  生:有重复关系的,

  师:相机板示课题:数学广角——重叠问题。

  【评析:让学生表述“韦恩图”各部分之间的关系,给了学生一个完整的认知,同时使学生对“韦恩图”中的认知更趋于明朗化。而把例题中提供的信息打乱,让学生在反思中比较,就为学生体会“韦恩图”的价值提供了更具有说服力的素材。】

  三、巩固应用,落实“双基”

  1、教材p110练习二十四第1题

  2、教材P110练习二十四第2题

  四、拓展延伸,发展能力

  师:改动教材例题中提供的信息方式为:三(1)班由8人参加语文活动小组,有9人参加数学活动小组,参加两个小组的一共有多少人?

  师:请同学读题,并与原例题进行比较

  师:请同学拿出第二组供贴图用的学具片

  师:结合生活实际,展开想象,在教师提供的集合圈中摆一摆,之后再在小组里交流一下,并算出每一种情况下,参加两个小组的人数共多少人?

  交流回报:

  生:8+9=17人,我是把两个圆圈分开摆的

  生:8+9=17人 17-2=15,我是把两个圆圈交叉在一起的,并且交叉的部分是2人。

  生:参加两个小组的一共只有9人,我是把参加语文组的人数全部圈在数学组里面的。

  师:结合学生的口述,相机展示学生的作品

  师:重点引导学生交流结果是9人的集合图各部分之间的关系。

  师:为什么同样是8人参加语文组、9人参加数学组结果会出现不同的情况呢?

  生:因为上一道题告诉我们有几人重复的,而这道题没有告诉有几人重复的,结果就有几种可能性。

  生:这个题目没有前面两个题目讲的清楚,不知道会有什么情况。

  师:也就是说这道题没有确定语文组和数学组之间的具体关系。

  师:那你认为做这样的题目首先要注意什么?

  生:搞清重复的人数。

  生:在画图时要确定相交的部分应该是几人。

  生:考虑问题要全面些。

  师:通过刚才我们解决的这个题目,比较一下结果,你有什么发现?

  生:重复的部分越多,参加两项活动的人数就越少。

  生:要想参加两项活动的人数多最好互不交叉。

  生:当参加两项活动的人数最少时,这个数就是其中一个较大的数。

  师:配合学生的讲解,相机用课件动态演示两个集合图变化的过程。

  五、全课总结

  师生交流:这节课我们解决了什么问题?在解决这一问题的过程中用到了什么策

  略?这一策略以前你用过吗?

《数学广角》教案15

  第九单元整理与复习

  第5课时应用广角

  教学内容:

  教材第104——105页。

  教学目标:

  1、能读懂题意,了解解决实际问题类型的题目的含义。

  2、能利用所学知识解决日常生活中常见的问题。

  3、能正确地评价自己本册书知识的掌握的情况。

  教学重难点:

  周期现象的理解

  教学准备:

  多媒体。

  教学过程:

  一、复习回忆,引入内容

  1、你在生活中发现了哪些数学问题?

  2、你能运用所学的数学知识和方法解决这些问题吗?

  二、组织练习

  1、简单的周期现象P105页第25题。

  指名学生读题,从题中你知道了什么?

  你能从图中看出第4、5秒照明灯是亮的还是暗的?

  几秒后亮灯的情况开始和前面重复?照明灯发光的规律是什么?

  第39、40称照明灯是亮的还是暗的?

  如果让照明灯每5秒以固定的规律变化,你会设计吗?像上图那样画一画。

  2、学生独立完成P104页第23、24两题。

  指名板演,其余学生独立完成

  指名学生说说他每步的运算想法

  综合算式是如何列的,符合题意吗?

  3、调查你们小组同学每家的.图书本数,制成统计表。

  你能说说小组同学家图书本数的平均数最少不会少于多少,最多不会大于多少?并算出这个平均数吗?

  三、自我评价

  回顾自己本学期学习的表现,能得几个★,就把几个☆涂上颜色。

  四、课堂总结

  通过今天的学习,你有什么收获呢?

  板书设计:

  简单的周期现象:

  亮亮暗亮暗暗亮亮暗亮暗暗亮亮暗亮暗暗

  教后反思:

【《数学广角》教案】相关文章:

《数学广角》教学教案04-04

广角数学教案04-04

上册数学数学广角教案05-08

《广角》教案09-15

《数学广角》教学反思10-22

数学广角教学反思01-07

五年级数学教案:数学广角04-03

数学广角推理的教学反思12-16

《数学广角—找次品》教学反思04-12

数学广角《重叠问题》教学反思02-20