圆数学教案

时间:2024-05-19 13:10:28 教案 我要投稿

圆数学教案[优]

  作为一名老师,就有可能用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么大家知道正规的教案是怎么写的吗?以下是小编收集整理的圆数学教案,仅供参考,大家一起来看看吧。

圆数学教案[优]

圆数学教案1

  教学目标

  1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系

  2、进一步理解轴对称图形的特征,体会圆的对称性。

  3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。

  教材分析

  重点

  理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。

  难点

  在折纸的过程中体会圆的特征

  教具

  教学圆规

  电化教具

  课件

  一、 创设情境:

  亮亮借助光盘画了一个圆,剪出了一个圆纸片,这个圆的圆心在哪里呢?他很快找出来了。你有办法找出来吗?

  二、探索活动:

  1、引导学生开展折纸活动,找到圆心。

  (1)自己动手找到圆心。

  (2)汇报交流找圆心的过程,并说出这样做的想法。

  2、通过折纸你发现了什么?理解圆的对称性。

  (1)欣赏美丽的轴对称图形。

  (2)再折纸,体会圆的轴对称性,画出圆的对称轴。

  (3)圆有无数条对称轴。对称轴是直径所在的直线。

  3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。

  (1)边折纸边观察思考同一个圆里的半径有什么特点?

  (2)边折纸边观察思考,同一圆里的直径与半径有什么关系?

  (3)引导学生用字母表示一个圆的直径与半径的关系。

  三、课堂练习。

  1、让学生独立完成试一试做完后交流汇报。

  2、完成练一练进一步巩固圆的半径与直径的关系。

  3、完成填一填

  让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。

  汇报交流,说答题根据。

  4、完成书后第3题。

  四、课堂小结。

  引导学生小结本节内容。

  学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的'半径都相等。

  欣赏美丽的对称图形引导学生对以学过的轴对称图形进行整理,进一步理解轴对称图形的特征,在对比中发现这些轴对称图形的不同特点,从而突出圆具有很好的轴对称性。

  多次折纸的过程中探索,发现,验证。操作中体会交流,体会圆的特征,发展空间观念。

  个别学生做试一试的题目会有困难,注意个别指导。

  板书设计

  圆的认识(二)

  我们的发现

  同一个圆里所有的半径都相等

  同一个圆里d=2r或r=1/2d

  圆有无数条对称轴,对称轴是直径所在的直线

  学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。

圆数学教案2

  教学内容:苏教版实验教科书数学第五册第63-65页

  教学目标:

  1、经历探索长方形和正方形周长的计算过程,并掌握长方形和正方形的周长

  计算方法。

  2、通过观察、测量和计算等活动,在获得直观经验的同时发展空间观念。

  3、在学习活动中体会现实生活中的数学,发展对数学的兴趣,培养交往、合作的

  探究的意识与能力。

  教学重点:探索并掌握长方形周长的计算方法。

  教学准备:课件、边长是1厘米的小正方形6个。

  教学过程:

  一、设疑激趣,引入新课

  在动物王国里,有一对有趣的好朋友。它们是小兔(显示)和小狗(显示)。今天他们俩要沿着草坪进行跑步比赛呢。看,比赛已经开始拉。可是刚跑完,它们却吵了起来。

  (小兔:不算不算,你跑的路程比我少。小狗:不对不对,因为我跑得比你快。)

  引导:看来,如果没人来帮帮忙,它们可能会无休止地吵下去了。同学们,你们来猜一猜,它们走的路程是不是一样长的呢?(指名说)你觉得它们跑步的路线与我们所学的哪一个数学知识有关?

  揭题:你想得真快!老师非常欣赏你对数学的敏感。今天我们就来研究长方形与正方形的周长问题。(揭示课题)

  二、新课展开

  1、提问:刚才出现了三种不同的意见,谁能想出一个科学的办法来验证你的判断是正确的,这样好让大家心服口服。

  预设:(1)用绳子绕一圈,量一量绳子的长度;

  (2)先量出每一步的长度,看看走了多少步,一乘就知道了;

  (3)量出长、宽各是多少,再计算。

  谈话:你们的办法可真多,小组讨论一下,在这里哪种办法比较合适。说说你的想法。(用绳子绕一圈太烦,有局限性;在不要求精确结果时用步测很好,这儿就不合适。)

  2、提问:小狗采用了你们的办法,量出了长方形的长是45米(显示),宽是35米(显示)。

  请你们帮它来算一算这个长方形的周长是多少?可以独立思考,也可以同桌讨论完成。(师巡视)

  3、引导:从你们的脸上我可以看出你们肯定有成果了,谁愿意来展示一下。

  4、指名说一说,并要求说清这样做的道理。

  可能有这四种:

  (1)45+35+45+35=160(米)这是把长方形的四条边一条一条加起来。

  (2)45+45+35+35=160(米)先加两个长,再加两宽。

  (3)45×2=90(米),35×2=70(米),90+70=160(米)。

  (4)45+35=80(米)80×2=160(米)。

  5、小结:现在我们发现计算长方形的周长有这么多的`方法,请你在小组里说说可以怎样算长方形的周长。

  提问:数学中简单明了的东西喜欢的人总是多一些。你比较喜欢哪种方法,说说你的想法。(算法优化一)

  7、解决了小狗的问题,我们该帮小兔了,她量得正方形边长是40米,请你算出它的周长。别忘了算完后可以跟同桌交流交流算法。

  学生汇报。出示两种算法:

  (1)40+40+40+40=160(米)

  (2)40×4=160(米)

  8、提问:原来两人跑得一样多。知道了结果,小兔也对周长产生了兴趣。看,它来到了篮球场(出示书上的图)。

  你们愿意跟小兔一起来解决这个问题吗?学生计算在草稿笨上。

  指名说说是用什么方法计算的?你觉得用你刚才的方法计算简便吗?(算法优化二)

  提问:小兔有点累了,球场服务员兔子女士马上递上手帕,它并不急着擦汗,却问我们:

  显示:正方形手帕边长25厘米,它的周长是多少?

  学生口答,并说说是怎样算的。

  三、巩固深化,联系生活

  过渡:掌握了方法,再难的问题我们都能轻而易举地解决,就请你们用已掌握的方法再来解决一些问题吧。

  1、“想想做做”第3题。

  (1)学生做在练习纸上。

  (2)指名回答

  (3)反馈。

  2、出示第1、2题:四个没有显示长度的图形。(让学生提出疑问)

  师:要想计算图形的周长我们必须知道每条边的长度,现在请你选择一个你喜欢的图形,先动手量出需要的数据,再计算。(完成在练习纸上)

  3、生活中经常需要求长方形或者正方形的周长。这不,到了星期天,我们的史诺比又闲不住了。他去效外租了一块边长6米的正方形土地种花,考虑到这块地有可能被践踏,要在四周围栏杆,请你帮他算一算,栏杆一共长多少米?(出示想想做做第5题,让学生完成)

  提问:如果花圃的一面借用这堵墙壁,栏杆需多长呢?(电脑出示图片)

  同桌讨论,指名回答。

  4、出示第6题,动手拼一拼。

  刚才我们根据给定的图形求出了它们的周长,现在让我们一起来动手拼一个你喜欢的图形,然后再算出它的周长,好吗?

  (1)拿出课前准备好的6个边长是1厘米的小正方形,在桌上摆一摆。

  (2)利用实物投影展示学生的作品,并让学生说出自己所摆图形的周长是多少。

  四、总结全课

  谈话:今天这节课你学得开心吗?能把你今天的收获与大家一起分享吗?回家后请选择你喜欢的物体,测量并计算出它的面的周长。

圆数学教案3

  教学内容:

  《人教版六年级上册圆的认识》课本第57、58页的内容。

  教学目标:

  1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的

  特征,初步学会用圆规画圆。

  2、使学生掌握圆的基本特征,理解在同一个圆里直径与半径的

  相互关系,能根据这种关系求圆的直径或半径。

  3、培养学生的观察、分析、抽象、概括等思维能力。

  教学重点:

  理解和掌握圆的特征,学会用圆规画圆的方法。

  教学难点:

  理解圆的有关概念,归纳圆的特征。

  教具准备:

  圆规、直尺、细线、圆形纸片。

  学具准备:

  圆形纸片、圆规、直尺。

  教学过程:

  一、激趣导入

  为什么车轮都要做成圆的?学生可能答:边缘光滑好滚动,半径一样长等。(有的学生可能已经预习了。)(板书课题:圆的认识)

  二、探究新知

  1、体验用不同工具画圆

  教师提问:可以用什么画圆呢?

  学生:圆规、尺子、圆形物品、绳子......

  2、教师指出:圆形是由一条封闭曲线围成的平面图形。

  认识圆的各部分名称

  (1)、学生自学课本58页第一段。

  (2)、自学后填一填。

  1.用圆规画圆时( )所在的点叫做圆心,一般用字母( )表示。

  2.连接( )和( )的线段叫做半径,一般用字母( )表示。

  3. 通过( )并且两端都在( )的线段叫做直径,一般用字母( )表示。

  3、用圆规画圆

  根据圆心到圆上任意一点的距离都相等这一特征,我们可以用圆规画圆。

  1)介绍画圆的步骤。

  (1)把圆规的两脚分开,定好两脚间的距离。(定半径)

  (2)把装有针尖的一只脚定在一点上,这个点就是圆心。(定圆心)

  (3)把装有铅笔的一只脚旋转一周。(旋转一周)

  教师强调:画圆时,一手捏住圆规顶部旋转,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在针尖的一脚。

  2)学生练习画圆

  教师提问:为什么同学们画的圆大小不一样呢?什么决定圆的大小?什么决定圆的.位置?

  教师板书:半径决定圆的大小、圆心决定圆的位置。

  4、圆的特征

  (1)、①小组讨论:同学们可以动手画一画或者折一折,看看半径和直径分别有多少条?再用尺子量一量或者折一折,看看每条半径长度怎么样?你发现了什么?讨论时教师要巡视指导,了解学生讨论情况。教师出示问题:在同一个圆里可以画多少条半径?(无数条)所有的半径都相等吗?(都相等) 在同一个圆里,可以画多少条直径?(无数条)所有的直径的长度都相等吗?(都相等)

  ②小组上台展示他们得到的结果和使用的方法。

  ③教师小结:在同一个圆里,有无数条半径,无数条直径,并且每条半径都相等、每条直径都相等 。

  (2)、①讨论:半径与直径的关系

  教师提问:在同圆或等圆中,半径和直径有什么关系?

  ②小组展示他们的结论和方法。

  ③总结:在同一个圆里,半径的长度是直径的1/2。

  在同一个圆里,直径的长度是半径的2倍。用公式表示:r=d/2或d÷2、 d=2r

  三、全课小结

  1、这节课我们学习了什么?你有什么收获?

  2、现在你能解释一下,为什么车轮是圆的吗?

圆数学教案4

  教学内容:教材69——70页

  教学目标:

  1、通过观察、交流等活动,使学生经历探索长方形和正方形的周长的过程,加深对周长的理解,初步形成计算周长的能力。

  2、使学生在学习活动中体会现实生活中的数学,发展对数学的兴趣,培养自主探究的意识和合作交流的能力。

  3、鼓励学生积极参与探索、交流等活动,获得成功的情感体验。

  教学重难点:理解并掌握长方形及正方形周长的计算方法。

  教具、学具准备:方格图长方形和正方形

  设计理念:《数学课程标准》明确指出:“动手实践、自主探索、合作交流是学习数学的重要方式。”本课设计以这一基本理念为指导,强调“以学生为中心”和“以自主探索、合作交流为主线”,重社学习过程和学习方式,鼓励算法多样化,努力使学生在探索交流中获得新知,同时享受到学习的乐趣。

  教学过程:

  一、情景引入探究新知

  师:今天,老师要带领你们去图形王国,首先,我们要了解的是同学们早就认识的长方形和正方形。(出示方格图中的长方形和正方形,并让学生观察,知道每个小方格的边长都是1厘米)1、不用量,算一算下面图形的周长。(鼓励学生用自己的方法计算)2、交流个性化的算法。重点使学生了解长方形的长边有6个格,它的长是6厘米等。

  二、计算长方形和正方形的'周长

  1、呈现教材中的两个图形,用自己喜欢的方法计算,学生中可能出现的算法有:长方形的周长5*2+3*2(5+3)*2 5+5+3+3

  正方形的周长3+3+3+3 3*4 4*3

  2、交流学生个性化的算法,使学生感受到解决问题的多种策略。

  3、先讨论一下自己喜欢哪种方法,再师生共同总结长方形和正方形的周长的计算公式。

  长方形的周长=(长+宽)*2

  正方形的周长=边长*4

  三、练一练

  1、小鸟回家

  首先让学生说一说长方形和正方形的计算公式,然后,根据公式进行列式计算。

  2、第2题指导学生理解题意,必要时可以画一画剪一剪。首先让学生说一说长方形和正方形的计算公式,然后,根据公式进行列式计算。

  3、问题讨论(先让学生自己思考之后进行交流)

  这是一道具有一定难度的题,在做第1题的时候可以让学生想一想32能不能整除4,因为正方形的边长是相等的。在做第2题的时候一定让学生明确长方形的对边是相等的。

圆数学教案5

  教案点评:

  采用游戏引入的形式,寓教于乐,即感知了圆的形成过程,渗透了集合思想,初步领悟了画圆的要领,同时密切了师生情感。根据几何知识的特点和儿童的认知规律,通过看、想、说、画、议等形式多种感官参与学习的实践活动。不但从感性到理性认识了圆,同时还发展了空间想象力、动手操作能力和口头表达能力。

  教学目标

  1.使学生认识圆,知道圆的各部分名称.

  2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.

  3.初步学会用圆规画圆,培养学生的作图能力.

  4.培养学生观察、分析、抽象、概括等思维能力.

  教学重点

  理解和掌握圆的特征,学会用圆规画圆的方法.

  教学难点

  理解圆上的概念,归纳圆的特征.

  教学过程()

  一、铺垫孕伏

  (一)教师用投影出示下面的图形

  1.教师提问:这是我们以前学过的哪些平面图形?这些图形都是由什么围成的?

  2.教师指出:我们把这样的图形叫做平面上的直线图形.

  (二)教师演示

  一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来.

  1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)

  2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识.(板书课题:圆的认识)

  二、探究新知

  (一)教师让学生举例说明周围哪些物体上有圆.

  (二)认识圆的各部分名称和圆的特征.

  1.学生拿出圆的学具.

  2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)

  教师说明:圆是平面上的一种曲线图形.

  3.通过具体操作,来认识一下圆的各部分名称和圆的特征.

  (1)先把圆对折、打开,换个方向,再对折,再打开……这样反复折几次.

  教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)

  仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)

  教师指出:我们把圆中心的这一点叫做圆心.圆心一般用字母 表示.

  教师板书:圆心

  (2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

  (圆心到圆上任意一点的距离都相等)

  教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母 表示.(教师在圆内画出一条半径,并板书:半径 )

  教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

  在同一个圆里可以画多少条半径?

  所有半径的长度都相等吗?

  教师板书:在同一个圆里有无数条半径,所有半径的长度都相等.

  (3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?

  教师指出:我们把通过圆心并且两端都在圆上的.线段叫做直径.直径一般用字母 来表示.(教师在圆内画出一条直径,并板书:直径 )

  教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

  在同一个圆里可以画出多少条直径?

  自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?

  教师板书:在同一个圆里有无数条直径,所有直径的长度都相等.

  (4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的

  长度都相等;有无数条直径,所有直径的长度也都相等.

  (5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

  如何用字母表示这种关系?

  反过来,在同一个圆里,半径的长度是直径的几分之几?

  教师板书:在同一个圆里,直径的长度是半径的2倍.

  (三)反馈练习.

  1.用彩色笔标出下面各圆的半径和直径.

  2.填表.

  r(米)

  0.24 1.42 2.6

  d(米)

  0.86 1.04

  (四)圆的画法.

  根据圆心到圆上任意一点的距离都相等这一特征,我们可以用圆规来画圆.

  1.学生自学

  2.教师示范画圆.

  3.教师归纳板书:1.定半径;2.定圆心;3.旋转一周.

  教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚.

  4.学生练习

  (五)教师提问

  为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?

  教师板书:半径决定圆的大小,圆心决定圆的位置.

  (六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?

  三、全课小结

  这节课我们学习了什么?通过这节课的学习你有什么收获?

  四、课堂练习

  (一)判断

  1.画圆时,圆规两脚间的距离是半径的长度.( )

  2.两端都在圆上的线段,叫做直径.( )

  3.圆心到圆上任意一点的距离都相等.( )

  4.半径2厘米的圆比直径3厘米的圆大.( )

  5.所有圆的半径都相等.( )

  6.在同一个圆里,半径是直径的 .( )

  7.在同一个圆里,所有直径的长度都相等.( )

  8.两条半径可以组成一条直径.( )

  五、课后作业

  (一)按下面的要求,用圆规画圆.

  1.半径2厘米.

  2.半径2.5厘米.

  3.直径8厘米.

  (二)怎样测量没有圆心的圆的直径?

  六、板书设计

圆数学教案6

  课 题:

  复习圆、轴对称图形,数学教案-复习圆、轴对称图形。

  教 学目标:

  1、使学生进一步掌握相关图形的特征及运算。

  2、使学生的空间观念和想象能力得到培养。

  教学重点:公式及计算。

  教学难点:技能技巧。

  教具准备:小黑板 幻灯机

  教学过程

  一、基本训练:

  1、口算:

  在听算本上听算《口算卡片》(38 )。

  (1) 统计3分钟以内做完的同学加以表扬,然后指名报答案。

  (2)全班统一核对,老师选重点点拨,集体订正。

  2、口答:

  指名回答上一节课所学知识。解答百分数应用题应该注意什么?

  二、进行新课:

  1、复习圆的概念。设计如下问题:

  (1)圆的圆心是如何确定的?

  (2)什么是半径、直径,同一个圆的半径和直径有什么关系?

  (3)不同的圆有不同的.圆周率吗?

  (4)什么是圆的周长?什么是圆的面积?

  2、复习圆的周长和面积的计算:

  (1)做143页的第11题。

  (2)集体讲评,让学生说一说圆周长的计算公式及面积的计算公式。

  (3)教师和学生一起回忆公式推导过程,小学数学教案《数学教案-复习圆、轴对称图形》。

  (4)在小黑板上出示如下问题:让学生口答。

  A、填空:圆周长是其直径的( )倍。

  大圆的半径是小圆的3倍,大圆的圆周长是小圆的( )倍。

  B、判断:圆周率等于3。14 ( )

  圆的面积大小只与半径的长短有关。 ( )

  集体讲评。

  3、复习轴对称图形。做练习三十五的第二十六题。然后集体讲评。

  三、巩固练习:

  1、做练习 三十五 的第23 题:

  (1)全班座练,指名板演。教师巡视,指导补偿生。

  (2)统一讲评,集体订正。重点讲清:图形的特点。

  2、做练习三十五 的第24 题:

  (1)全班座练,指名板演。教师巡视,指导补偿生。

  (2)统一讲评,集体订正。重点讲清:运用的公式。

  四、当堂检测:(当堂效果验收,是课堂作业)

  在A本上做练习 三十五 的第30 题。

  五、当天检测: (当天效果验收 ,是家庭作业)

  在B本上做练习三十九 的第28、29 题

  教后感:

  数学教案-复习圆、轴对称图形

圆数学教案7

  教学 目标:

  (1)掌握圆的一般方程及其特点.

  (2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.

  (3)能用待定系数法,由已知条件求出圆的一般方程.

  (4)通过本节课学习,进一步掌握配方法和待定系数法.

  教学 重点:

  (1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.

  (2)用待定系数法求圆的方程.

  教学 难点:

  圆的一般方程特点的研究.

  教学 用具:

  计算机.

  教学 方法:

  启发引导法,讨论法.

  教学 过程

  【引入】

  前边已经学过了圆的标准方程

  把它展开得

  任何圆的方程都可以通过展开化成形如

  ①

  的方程

  【问题1】

  形如①的方程的曲线是否都是圆?

  师生共同讨论分析:

  如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得

  ②

  显然②是不是圆方程与 是什么样的数密切相关,具体如下:

  (1)当 时,②表示以 为圆心、以 为半径的圆;

  (2)当 时,②表示一个点 ;

  (3)当 时,②不表示任何曲线.

  总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.

  圆的一般方程的定义:

  当 时,①表示以 为圆心、以 为半径的圆,

  此时①称作圆的一般方程.

  即称形如 的方程为圆的一般方程.

  【问题2】圆的一般方程的特点,与圆的标准方程的异同.

  (1) 和 的系数相同,都不为0.

  (2)没有形如 的二次项.

  圆的.一般方程与一般的二元二次方程

  ③

  相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.

  圆的一般方程与圆的标准方程各有千秋:

  (1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.

  (2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.

  【实例分析】

  例1:下列方程各表示什么图形.

  (1) ;

  (2) ;

  (3) .

  学生演算并回答

  (1)表示点(0,0);

  (2)配方得 ,表示以 为圆心,3为半径的圆;

  (3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.

  例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.

  分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.

  解:设圆的方程为

  因为 、 、 三点在圆上,则有

  解得: , ,

  所求圆的方程为

  可化为

  圆心为 ,半径为5.

  请同学们再用标准方程求解,比较两种解法的区别.

  【概括总结】通过学生讨论,师生共同总结:

  (1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.

  (2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.

  下面再看一个问题:

  例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.

  解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.

  ∵

  ∴

  即

  化简得

  点 在曲线上,并且曲线为圆 内部的一段圆弧.

  【练习巩固】

  (1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)

  (2)求经过三点 、 、 的圆的方程.

  分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .

  (3)课本第79页练习1,2.

  【小结】师生共同总结:

  (1)圆的一般方程及其特点.

  (2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.

  (3)用待定系数法求圆的方程.

  【作业】课本第82页5,6,7,8.

  【 板书 设计】

  圆的一般方程

  圆的一般方程

  例1:

  例2:

  例3:

  练习:

  小结:

  作业:

圆数学教案8

  教材分析:

  初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。

  学情分析:

  学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

  教学目标:

  1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

  2、培养学生观察、分析、推理和概括的`能力,发展学生的空间观念,并渗透极限、转化的数学思想。

  3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。

  4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

  教学重点:

  通过观察操作,推导出圆面积公式及其应用。

  教学难点:

  极限思想的渗透与圆面积公式的推导过程。

  教学过程:备注:

  活动一:创设情景,提出问题

  1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?

  2、圆的面积--含义:圆所占平面的大小叫做圆的面积。

  3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?

  活动二:猜想比较:

  出示图

  师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?

  活动三:自主探究,验证猜想

  1、引导转化:

  师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?

  以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?

  2、动手操作:

  (1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。

  操作引导:A、剪--怎样剪?剪成几份?B、拼--怎样拼?拼成什么?

  (2)展示交流并介绍,选出最合理的剪法。

  (3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?

  想象一下,平均分成64份、128份、256份......会是什么情形?(课件演示)

  (4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。

  3、自主推导

  (1)小组合作,选择喜欢的1~2个图形,尝试推导公式。

  (2)学生展示、介绍自己的推导过程

  (3)教师板演圆面积的推导过程

  4、情景延续:

  (1)如果绳长为5米,计算圆的面积和周长。

  (2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?

  5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)

  活动四:实践运用,体验生活

  1、量出自己带来的圆形物体的直径,并计算出面积。

  2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。

  活动五:全课小结

  通过本节课的学习你有哪些收获?

  板书设计

圆数学教案9

  活动目标

  1、观察由“长条”变“圆圈”、由“小”变“大”的过程,感知圆及大小的含义。

  2、体验游戏的快乐。

  活动准备

  彩色塑料打包带一根。

  活动过程

  1、教师故作神秘地说:

  我有一根细细长长的'东西,你们想看看吗?

  2、出示包装带:

  别看它细细长长、简简单单的样子,它的本领可不小,它会变戏法呢!

  请小朋友闭上眼睛,它要开始变了。

  3、教师把打包带接成一个小圆圈,一、二、三!

  睁开眼睛看一看,它变成什么?

  气球太小了,我们一起来打气,好吗?

  4、教师让“气球”一点点变大,带幼儿边做打气动作、边说:

  气气气,变大喽!气气气,变大喽!……

  5、当“气球”不能变大时,教师放开打包带的一端让它弹起,并说:啪——气球破掉了!

  6、同上形式,反复游戏。

圆数学教案10

  教学内容:

  教材第59页及相关题目。

  教学目标:

  1、在前面所学轴对称图形的基础上,进一步认识圆的轴对称特性。

  2、培养学生的动手操作能力,加深对所学平面图形的对称轴的认识。

  3、培养学生观察周围事物的兴趣,提高观察能力。

  教学重点:

  认识圆的对称轴。

  教学难点:

  用圆设计图案的方法。

  教学准备:

  多媒体课件、圆规、直尺等。

  教学过程:

  学生活动(二次备课)

  一、复习导入

  1、课件出示轴对称的物体,想一想:这些图形有什么特点?让学生观察图形,找出这些图形的特点。

  师生共同回顾总结:如果一个图形沿着一条直线对折,两侧的`图形能够完全重合,这个图形就是轴对称图形。折痕所在的直线叫做这个图形的对称轴。

  2、你能画出下面两个圆的对称轴吗?能画多少条?学生尝试画出圆的对称轴,并观察。你发现了什么?

  学生汇报后师生共同总结:圆有无数条对称轴,每一条过直径所在的直线都是它的对称轴。

  3、导入:我们可以利用圆的这一特点去设计很多漂亮图案来装点、美化我们的生活。本节课我们继续研究有关圆的知识。

  二、预习反馈点名让学生汇报预习情况。

  (重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)

  三、探索新知

  1、设计美丽图案——花瓣。

  (1)课件出示教材第59页最上方的图片。观察思考:4个花瓣由几个半圆组成,这几个半圆的圆心分别在哪里?半径怎么找?

  (2)想一想,自己尝试画一画。可参考课本第59页的步骤。

  (3)交流画法。在讲述过程中要重点说出:圆心的位置在哪里,是如何找到的?半径是如何找到的?学生讲述,教师在黑板上画。

  小结:画图时首先要找出图中包含的各个圆或半圆,找到它们的圆心、半径。

  2、设计美丽的图案——风车图。

  (1)观察图案,想一想如果画这个图案,应按怎样的步骤。

  (2)在小组内交流后动手完成。展示自己画出的图案,并说一说画图步骤:

  ①先画一个圆,在圆内画两条互相垂直的直径。

  ②分别以这4个半径的中点为圆心,以大圆半径的一半为半径向同一方向画半圆。

  ③把所画半圆涂上颜色。

  3、设计美丽的图案——太极图。

  指名说一说画太极图的步骤:

  (1)画一个圆,在圆内画一条直径。

  (2)分别以组成这条直径的两个半径的中点为圆心,以大圆半径的一半为半径,分别向上、下两个方向画半圆。把大圆分成上、下两部分。

  (3)把圆的一半涂上颜色,如图所示。

  四、巩固练习

  1、完成教材练习十三第6题。

  2、完成教材练习十三第8题。

  3、完成教材练习十三第9题。

  五、拓展提升

  观察图案,说一说下面两个图案的画法。

  六、课堂总结

  让学生说一说这节课的收获。

  七、作业布置

  教材练习十三第7题和第10题的第1、4个图案。

  画一画,看一看,想一想。教师根据学生预习的情况,有侧重点地调整教学方案。在小组内交流后再汇报。观察图案,找到各个圆、半圆的圆心和半径。观察图案,想一想,说一说,画一画首先要对图案进行“分解”,知道每一部分是怎么来的。难度较大,可在课下完成。

  教学反思

  成功之处:本节课学生通过观察、操作、比较、思考、交流、讨论等一系列活动,主动获取知识,并且体会到探索之趣,经历成功之乐,培养了学生的学习兴趣,发展了学生的能力。不足之处:学生的创新能力没有体现。教学建议:教学时,在学生掌握了基本方法后,让学生用自己的思维方式自由开放地去创造,以张扬他们的个性,培养他们的动手操作能力和创新能力。

圆数学教案11

  1、教学目标

  1.理解和掌握圆面积的计算公式,沟通圆与其它图形之间的联系,增强观察、操作、分析、概括的能力以及逻辑推理能力。

  2.学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;感受极限、转化、以直代曲等数学思想方法。

  3.认真观察、深入思考,面对困难勇于克服、弃而不舍。

  2、学情分析

  《圆的面积》一课是小学数学第十一册第五单元第四小节的起始课。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。以往主要教学方法是:教师先带领学生将圆沿半径剪开,将若干个小扇形拼成长方形,借助长方形面积公式来推导圆面积的公式。然后在教师的引导下部分学生再将圆转化成平行四边形,甚至梯形、三角形,借助已知图形的面积公式推导圆面积的公式。一节课至少展现三、四种转化方法,教学容量较大、内容较难。

  看到这样的教学过程我产生了一些困惑:

  1.学生能想到这样的转化的方法吗?——这使我想到了学生学习平面图形的历程。学生第一次学习最基本的图形的面积:长、正方形。可以看出使用面积单位拼摆的方法得到的图形面积其实是最为直接的方式。学生学习的所有直线段图形,可以看出它们之间有着非常直观地联系,易于转化。作为第一个曲边图形“圆”,面对以上学习的转化发过程,学生怎么就能想到把圆等分成小扇形并拼出学过的图形呢?这无疑需要一个思维的飞跃,如果这个飞跃的过程是属于学生自己的,那样才是真正有价值的。

  2.在老师的讲授下又有多少学生能理解多种转化方法呢?

  我先在自己班进行了多种转化方法的试验,发现还真有孩子的思维水平让我刮目相看,可我也发现有80%的孩子这节课没有参与真正的实验研究,只是跟着别人看、听,下课时有一半的孩子还不认可圆面积转化的过程。

  一节课是只为20%的孩子服务,还是应尽可能让每一个孩子都有不同层次的体验与收获呢?

  3、重点难点

  教学重点:运用转化思想探索圆面积的解决办法。

  教学难点:如何将曲线图型转化成直线型图形以及对极限思想的渗透。

  4、教学过程

  活动1【导入】引入课题

  同学们圆是我们在小学阶段接触的第一个曲边图形,它在生活中也有广泛的应用,我们来欣赏一下生活中的圆吧!(ppt到泳池)

  今天我们一起要来研究的是圆的面积。(板书课题:圆的面积)

  活动2【导入】交流困难

  我看到有同学已经有了自己的想法,但是,面对“圆”这么特殊的图形也有了一些问题,我们先暂停手中试验,一起来分享一下!

  (1)有同学在圆里画出了一个正方形,请这样的同学来介绍一下?教师操作

  ppt提问:我们学过了这么多种平面图形,可你们怎么就想到在圆里画正方形了。

  生1:因为他和圆最接近,

  师:你能想一想,为什么说正方形和圆最接近吗?

  生2:正方形正正方方的,四边都一样长,

  生3:在圆中画正方形会让剩下的部分最少,而且剩下的部分都是一样的。

  生4:正方形和圆最像了,正方形的对称轴最多,圆有无数条对称轴。

  师:看看同学们多么善于思考呀,通过你们的发言让我感受到,和其他学过的图形相比正方形和圆真的非常接近,你们的数学直觉真敏锐,太了不起了。

  (2)在圆里画出了很多的小方格,请这样的同学来介绍一下?。

  提问:看看同学们的想法多有创意呀,但是你们是怎样想到用小方格来解决问题的呢?

  生1:我们最开始学习长方形、正方形的面积时就是用面积单位拼摆的方法研究。

  生2:我们以前学习的很多图形的面积,比如平行四边形、三角形、梯形其实都可以用方格来计算,可以数有多少1平方厘米的小方格,就可知道图形的面积了。

  师:你们真是了不起,我们最初学习的面积单位,它是一个最基本的研究图形面积的方法,后来我们又学习了不同的`研究图形面积的方法,比如像拼摆、割补等方法,运用面积单位寻找图形面积就不太常用了,今天同学们面对圆面积的时候又想到了它,你们的好方法让我想起了我的一位老师说过的话:退回到原始,不失其本质!

  (3)还有一种想法也来和大家分享。

  他发现原来学习的图形之间都是有关系的,可以相互转化。想到了我们在研究图形面积时最常用的方法“转化”,你们认为转化不精确是吗?

  活动3【讲授】小结

  同学们你们开动脑筋,用你们的智慧已经能够解决圆面积中绝大部分的问题,同时也遇到了想要更精确地得到圆的面积,需要解决剩余面积的问题。对于这些不可知的地方,我们是否可以继续去研究它,让这些不可知的地方越来越小,是否就越来越接近圆的面积了呢?困难就摆在这里,但研究的智慧与方法在你们的头脑中。选择你感兴趣的研究方案,赶快动手试试吧!回到Iteach,可以继续研究,也可以删除重画。完成之后拍照提交到讨论二!学生操作

  活动4【活动】全班交流

  师:我想同学们一定像数学家一样非常投入地在研究圆的面积,老师从心里钦佩你们。有句话说:倾听是分享成功的最好方法,那么我们就一起来看看同学们是如何来解决圆面积的问题。教师操作

  (1)刚才在圆中画正方形的同学先让我们看看他们后续的研究吧!

  生1:我在空余部分补了补了三角形。

  还有同学发现空余的部分还可以继续在上面补三角形会更接近圆。

  师:看来他真的有了属于自己的研究成果。对于这位同学的研究过程,同学们有什么疑问或是感想吗?

  生1:总是这样补三角形真的可以越来越接近圆的面积,就是有点麻烦。

  生2:如果只看图形最外面一圈,我发现是一个正多边形。

  师:同学们仔细观察一下,最外面一圈是一个什么样的图形?这个图形有什么特点吗?你还有其他的发现吗?

  生:的确是正多边形,如果正多边形的边数更多一些,几乎就是一个圆了。

  师:这位同学用了“几乎”,你们能想象到了吗?请看投影,看到这样的变化过程能谈谈谈你们有什么感受吗?

  同学们一定发现了多边形边数越多越接近圆。

  ppt有这样一句名言:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。这句话是什么意思呢?这里“割”就是分割的意思;“失”指误差。这就是说,圆内接正多边形的边数无限增加的时候,它的周长会越来越接近直到等于圆周长,它的面积也会越来越接近直到等于圆面积。这句话出自我国魏晋时期的数学家刘徽,曾用圆内接正多边形计算出π的近似值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。短暂的时间你们都和大数学家有了相同的发现,多了不起呀!(贴)

  (2)我们再来看看刚才画小方格的同学们后面的研究吧!

  生:可以把剩下的地方画更小的方格就可以算出准确的面积了。

  师:这位同学也有了自己的研究成果,可以非常准确的解决圆面积的问题了。对于这位同学的研究过程,你有什么疑问或是感想吗?

  生:有同学会问:这样就真准确了吗?是不是永远都会有曲边存在呢?

  小结:同学们想一想,既然可以画更小的格,曲边小了方格可以画的更小,是不是可以这样无限的画下去呢?

  生:这样画下去倒是可以,但是算起来太麻烦了。

  师:的确会让我们感觉计算起来比较麻烦,但其实只是我们缺少一些更好的计算方法而已,等你们以后学了更多的知识,计算就不再是问题了。同学们用了最为普遍的方法,虽然看似简单,却能解决这个很难的曲边图形的面积,如果以后再遇到更特殊的图形面积,你们有没有信心解决呢?我想一定是没问题的。

  (3)我们再来看看第三位同学又有了什么新的发现吧!

  生1:将圆等分成16分,拼成一个近似的平行四边形,平行四边形的底边长度其实就是圆周长的一半,而平行四边形的高就是圆的半径,所以,平行四边形的面积是底乘高,那么圆的面积就可以用圆周长的一半乘半径得到。

  师:对于他们的方法你有什么疑问或是受到什么启发吗?

  生:圆看似很特殊,其实和其他图形也是有联系的,

  生:这是真正的平行四边形吗?他的上下两条底边都是弯弯曲曲的。教师操作

  的确现在看来还是有点曲边的,但要是细分下去,16份,32份、64份,你觉得会怎样?

  Ppt:那样就会越来越行四边形,曲边越来越直。但是无论分多少份其实道理是一样的,平行四边形的底是圆周长的一半,平行四边形的高是圆的半径。

  师:让我们再来看一看圆面积的转化过程,将圆沿半径剪开,拼成平行四边形,圆的面积等于平行四边形的面积。平行四边形的底是圆周长的一半,平行四边形的高是圆的半径,圆周长的一半可以表示为c/2=2

  活动5【讲授】总结

  看看你们是多么的了不起呀,对于圆这么特殊的图形,同样能够找到它与学过图形之间的联系,从而寻找到圆面积的计算公式,可以帮助我们方便快捷的得到圆的面积。面对这样的方法对你有什么启发吗?你还有其他的想法吗?

  前几节课我们已经认识了圆并学习圆的周长,那么对于圆你能说说你的感受吗?

  我们曾经感受到了圆的圆润和完美,在今天这个探究的过程中,我们不仅再一次体会到圆的完美和神奇,而且还发现了圆和正方形、正多边形,以及学过的很多图形之间有着千丝万缕的联系。其实在圆中还有许多的美妙与神奇,有待我们今后继续探索。

圆数学教案12

  一、三维目标

  1、知识与技能

  (1)理解圆与圆的位置的种类;

  (2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长;

  (3)会用连心线长判断两圆的位置关系、

  2、过程与方法

  设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:

  (1)当时,圆与圆相离;

  (2)当时,圆与圆外切;

  (3)当时,圆与圆相交;

  (4)当时,圆与圆内切;

  (5)当时,圆与圆内含;

  3、情态与价值观

  让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想、

  二、教学重点、难点:

  重点与难点:用坐标法判断圆与圆的位置关系、

  三、教学设想

  问题

  设计意图

  师生活动

  1、初中学过的平面几何中,圆与圆的位置关系有几类?

  结合学生已有知识以验,启发学生思考,激发学生学习兴趣、

  教师引导学生回忆、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流、

  2、判断两圆的位置关系,你有什么好的方法吗?

  引导学生明确两圆的位置关系,并发现判断和解决两圆的位置

  教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法、

  问题

  设计意图

  师生活动

  关系的方法、

  学生观察图形并思考,发表自己的解题方法、

  3、例3

  你能根据题目,在同一个直角坐标系中画出两个方程所表示的圆吗?你从中发现了什么?

  培养学生“数形结合”的意识、

  教师应该关注并发现有多少学生利用“图形”求,对这些学生应该给予表扬、同时强调,解析几何是一门数与形结合的学科、

  4、根据你所画出的图形,可以直观判断两个圆的位置关系、如何把这些直观的事实转化为数学语言呢?

  进一步培养学生解决问题、分析问题的能力、

  利用判别式来探求两圆的位置关系、

  师:启发学生利用图形的特征,用代数的方法来解决几何问题、

  生:观察图形,并通过思考,指出两圆的交点,可以转化为两个圆的方程联立方程组后是否有实数根,进而利用判别式求解、

  5、从上面你所画出的图形,你能发现解决两个圆的位置的其它方法吗?

  进一步激发学生探求新知的精神,培养学生

  师:指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置、

  生:互相探讨、交流,寻找解决问题的方法,并能通过图形的直观性,利用平面直角坐标系的.两点间距离公式寻求解题的途径、

  6、如何判断两个圆的位置关系呢?

  从具体到一般地总结判断两个圆的位置关系的一般方法、

  师:对于两个圆的方程,我们应当如何判断它们的位置关系呢?

  引导学生讨论、交流,说出各自的想法,并进行分析、评价,补充完善判断两个圆的位置关系的方法、

  7、阅读例3的两种解法,解决第137页的练习题、

  巩固方法,并培养学生解决问题的能力、

  师:指导学生完成练习题、

  生:阅读教科书的例3,并完成第137页的练习题、

  问题

  设计意图

  师生活动

  8、若将两个圆的方程相减,你发现了什么?

  得出两个圆的相交弦所在直线的方程、

  师:引导并启发学生相交弦所在直线的方程的求法、

  生:通过判断、分析,得出相交弦所在直线的方程、

  9、两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系的判定呢?

  进一步验证相交弦的方程、

  师:引导学生验证结论、

  生:互相讨论、交流,验证结论、

  10、课堂小结:

  教师提出下列问题让学生思考:

  (1)通过两个圆的位置关系的判断,你学到了什么?

  (2)判断两个圆的位置关系有几种方法?它们的特点是什么?

  (3)如何利用两个圆的相交弦来判断它们的位置关系?

  作业:习题4、2A组:4、7、

圆数学教案13

  教学难点:

  综合应用。

  学情分析

  重点提高学生实际的解题能力。

  学习目标

  进一步理解和掌握圆的周长和面积的计算方法,能熟练地计算圆的周长和面积。

  导学策略

  导练法、迁移法、例证法

  教学准备

  投影仪、自制投影片、小黑板

  教师活动

  学生活动

  一.引入

  1.问:这个单元我们一起学习了哪些知识?师生一起归纳、整理本单元所学内容。

  2.揭示课题。

  二.展开

  1.求圆面积的练习

  先小黑板出示P20练习1--2再指名板演,然后让板演者说说计算过程。最后再次复习圆面积在各种条件下的'计算公式:S=πr2=π()2=π()2

  2.综合应用。

  投影出示P20练习3--4先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程,最后,教师讲解。

  三.总结

  四.作业

  回答问题

  巩固练习

  教学反思

  在这些题中,第5题是最难的,学生理解上比较难,我想如果题目在从1时走到2时加上时针两个字学生理解起来就更容易了。

圆数学教案14

  学材分析

  教学重点:

  面积计算公式的正确运用。

  教学难点:

  面积公式的推导过程。

  学情分析

  学生对圆面积公式的推导过程理解有一定的难度。

  学习目标

  1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.会用圆面积的计算公式,正确计算圆的面积。

  导学策略

  导练法、迁移法、例证法

  教学准备

  圆的面积模型、圆规、投影仪、投影片

  教师活动

  学生活动

  一.引入

  1.什么叫做圆面积?

  2.出示大小略有不同的两个圆,让学生比较哪个圆的面积大?大多少?(学生口答后把两圆重叠,比较大小。)相差多少呢?

  3.引出课题。

  二.推导

  1.问:小正方形面积怎样计算?(半径半径)圆面积与小正方形面积的3倍谁大谁小?圆面积与小正方形面积的4倍呢?2倍呢?

  2.师生共同操作:拿出一张正方形纸,按要求对折4次(注意第4次折的折法,是按角对分地折),然后拿尺量出一等腰三角形剪一刀,展开,得到一个近似于圆的纸片。

  3.教师操作:拿一张正方形纸,对折5次,剪一刀展开。与前一次剪的作比较,使学生知道,随着折的次数不断增加,剪下的图形也就越接近圆。

  4.分析推导。师生共同拿出剪好的图形分析:这个图形等分成若干块,每一块都是什么形状?(等腰三角形)这个图形的面积怎么求?随着折的次数不断增加,剪下的图形的面积也就越接近什么图形的面积?

  板书:图形面积=等腰三角形面积n=底高2n=Cr2n

  =2rn

  圆的面积=r2

  边板书边提问:等腰三角形的底是多少?(C)等腰三角形的高相当于圆的'什么?(半径r)

  5.在上面推导的基础上,让学生分4人小组动手把准备的圆分成相等的16个小扇形,再拼成其他图形,推导出圆面积公式。教师巡视,取学生拼成的各式各样的图形,贴在黑板上,选其中两个进行分析。

  三.巩固

  试一试。

  四.总结

  五.作业

  学生口答

  师生共同操作

  师生共同操作

  教学反思

  已经是第2次教毕业班了记得第1次教的时候,还是幼儿园的院长一早每天都要过去一下,课前准备就不够充分,上课就照本宣科。而现在教这个知识的时候,不仅教具演示而且学生实际操作,所以教学效果就好多了,可以说连中下生都能灵活应用这个知识。

圆数学教案15

  教学目标:

  (1)巩固正多边形的有关概念、性质和定理;

  (2)通过证明和画图提高学生综合运用分析问题和解决问题的能力;

  (3)通过例题的研究,培养学生的探索精神和不断更新的创新意识及选优意识。

  教学重点:

  综合运用正多边形的有关概念和正多边形与圆关系的有关定理来解决问题,要理解通过对具体图形的证明所给出的一般的证明方法,还要注意与前面所学知识的联想和化归。

  教学难点:

  综合运用知识证题。

  教学活动设计

  (一)知识回顾

  1。什么叫做正多边形?

  2。什么是正多边形的中心、半径、边心距、中心角?

  3。正多边形有哪些性质?(边、角、对称性、相似性、有两圆且同心)

  4。正n边形的每个中心角都等于。

  5。正多边形的有关的定理。

  (二)例题研究:

  例1、求证:各角相等的圆外切五边形是正五边形。

  已知:如图,在五边形ABCDE中,∠A=∠B=∠C=∠D=∠E,边AB、BC、CD、DE、EA与⊙O分别相切于A’、B’、C’、D’、E’。

  求证:五边形ABCDE是正五边形。

  分析:要证五边形ABCDE是正五边形,已知已具备了五个角相等,显然证五条边相等即可。

  教师引导学生分析,学生动手证明。

  证法1:连结OA、OB、OC,

  ∵五边形ABCDE外切于⊙O。

  ∴∠BAO=∠OAE,∠OCB=∠OCD,∠OBA=∠OBC,

  又∵∠BAE=∠ABC=∠BCD。

  ∴∠BAO=∠OCB。

  又∵OB=OB

  ∴△ABO≌△CBO,∴AB=BC,同理BC=CD=DE=EA。

  ∴五边形ABCDE是正五边形。

  证法2:作⊙O的半径OA’、OB’、OC’,则

  OA’⊥AB,OB’⊥BC、OC’⊥CD。

  ∠B=∠C∠1=∠2=。

  同理===,

  即切点A’、B’、C’、D’、E’是⊙O的5等分点。所以五边形ABCDE是正五边形。

  反思:判定正多边形除了用定义外,还常常用正多边形与圆的关系定理1来判定,证明关键是证出各切点为圆的等分点。由同样的方法还可以证明“各角相等的圆外切n边形是正边形”。

  此外,用正多边形与圆的`关系定理1中“把圆n等分,依次连结各分点,所得的多边形是圆内接正多边形”还可以证明“各边相等的圆内接n边形是正n边形”,证明关键是证出各接点是圆的等分点。

  拓展1:已知:如图,五边形ABCDE内接于⊙O,AB=BC=CD=DE=EA。

  求证:五边形ABCDE是正五边形。(证明略)

  分小组进行证明竞赛,并归纳学生的证明方法。

  拓展2:已知:如图,同心圆⊙O分别为五边形ABCDE内切圆和外接圆,切点分别为F、G、H、M、N。

  求证:五边形ABCDE是正五边形。(证明略)

  学生独立完成证明过程,对B、C层学生教师给予及时指导,最后可以应用实物投影展示学生的证明成果,特别是对证明方法好,步骤推理严密的学生给予表扬。

  例2、已知:正六边形ABCDEF。

  求作:正六边形ABCDEF的外接圆和内切圆。

  作法:1过A、B、C三点作⊙O。⊙O就是所求作的正六边形的外接圆。

  2、以O为圆心,以O到AB的距离(OH)为半径作圆,所作的圆就是正六边形的内切圆。

  用同样的方法,我们可以作正n边形的外接圆与内切圆。

  练习:P161

  1、求证:各边相等的圆内接多边形是正多边形。

  2、(口答)下列命题是真命题吗?如果不是,举出一个反例。

  (1)各边相等的圆外切多边形是正多边形;

  (2)各角相等的圆内接多边形是正多边形。

  3、已知:正方形ABCD。求作:正方形ABCD的外接圆与内切圆。

  (三)小结

  知识:复习了正多边形的定义、概念、性质和判定方法。

  能力与方法:重点复习了正多边形的判定。正多边形的外接圆与内切圆的画法。

  (四)作业

  教材P172习题4、5;另A层学生:P174B组3、4。

  探究活动

  折叠问题:(1)想一想:怎样把一个正三角形纸片折叠一个最大的正六边形。

  (提示:①对折;②再折使A、B、C分别与O点重合即可)

  (2)想一想:能否把一个边长为8正方形纸片折叠一个边长为4的正六边形。

  (提示:可以。主要应用把一个直角三等分的原理。参考图形如下:

  ①对折成小正方形ABCD;

  ②对折小正方形ABCD的中线;

  ③对折使点B在小正方形ABCD的中线上(即B’);

  ④则B、B’为正六边形的两个顶点,这样可得满足条件的正六边形。)

  探究问题:

  (安徽省20xx)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:

  甲同学:这种多边形不一定是正多边形,如圆内接矩形;

  乙同学:我发现边数是6时,它也不一定是正多边形。如图一,△ABC是正三角形,形,==,可以证明六边形ADBECF的各内角相等,但它未必是正六边形;

  丙同学:我能证明,边数是5时,它是正多边形。我想,边数是7时,它可能也是正多边形。

  (1)请你说明乙同学构造的六边形各内角相等。

  (2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图二)是正七边形(不必写已知、求证)。

  (3)根据以上探索过程,提出你的猜想(不必证明)。

  (1)[说明]

  (2)[证明]

  (3)[猜想]

  解:(1)由图知∠AFC对。因为=,而∠DAF对的=+=+=。所以∠AFC=∠DAF。

  同理可证,其余各角都等于∠AFC。所以,图1中六边形各内角相。

  (2)因为∠A对,∠B对,又因为∠A=∠B,所以=。所以=。

  同理======。所以七边形ABCDEFG是正七边形。

  猜想:当边数是奇数时(或当边数是3,5,7,9,……时),各内角相等的圆内接多边形是正多边形。

【圆数学教案】相关文章:

圆数学教案05-19

(集合)圆数学教案05-19

五年级数学教案:圆的面积04-10

圆与圆的位置关系教案03-13

圆与圆的位置关系说课稿03-11

六年级数学教案圆的认识04-04

六年级数学教案圆的面积04-10

圆和圆的位置关系教案03-21

关于圆的周长教案圆的周长教案稿05-12

圆的认识教案01-28