高一数学《应用举例》教案

时间:2024-05-10 07:04:10 教案 我要投稿
  • 相关推荐

人教版高一数学《应用举例》教案

  作为一名教职工,总归要编写教案,教案是实施教学的主要依据,有着至关重要的作用。优秀的教案都具备一些什么特点呢?下面是小编精心整理的人教版高一数学《应用举例》教案,仅供参考,希望能够帮助到大家。

人教版高一数学《应用举例》教案

人教版高一数学《应用举例》教案1

  教学准备

  教学目标

  1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路

  1分析,2建模,3求解,4检验;

  2、实际问题中的有关术语、名称:

  1仰角与俯角:均是指视线与水平线所成的角;

  2方位角:是指从正北方向顺时针转到目标方向线的夹角;

  3方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

  3、用正弦余弦定理解实际问题的`常见题型有:

  测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

  教学重难点

  1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路

  1分析,2建模,3求解,4检验;

  2、实际问题中的有关术语、名称:

  1仰角与俯角:均是指视线与水平线所成的角;

  2方位角:是指从正北方向顺时针转到目标方向线的夹角;

  3方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

  3、用正弦余弦定理解实际问题的常见题型有:

  测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

  教学过程

  一、知识归纳

  1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路

  1分析,2建模,3求解,4检验;

  2、实际问题中的有关术语、名称:

  1仰角与俯角:均是指视线与水平线所成的角;

  2方位角:是指从正北方向顺时针转到目标方向线的夹角;

  3方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

  3、用正弦余弦定理解实际问题的常见题型有:

  测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

  二、例题讨论

  一利用方向角构造三角形

  四测量角度问题

  例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。

人教版高一数学《应用举例》教案2

  教学准备

  教学目标

  解三角形及应用举例

  教学重难点

  解三角形及应用举例

  教学过程

  一.基础知识精讲

  掌握三角形有关的定理

  利用正弦定理,可以解决以下两类问题:

  1已知两角和任一边,求其他两边和一角;

  2已知两边和其中一边的对角,求另一边的对角从而进一步求出其他的边和角;

  利用余弦定理,可以解决以下两类问题:

  1已知三边,求三角;2已知两边和它们的夹角,求第三边和其他两角。

  掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

  二.问题讨论

  思维点拨:已知两边和其中一边的'对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.

  思维点拨:三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

  例6:在某海滨城市附近海面有一台风,据检测,当前台

  风中心位于城市O如图的东偏南方向

  300km的海面P处,并以20km/h的速度向西偏北的

  方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增加,问几小时后该城市开始受到

  台风的侵袭。

  一.小结:

  1.利用正弦定理,可以解决以下两类问题:

  1已知两角和任一边,求其他两边和一角;

  2已知两边和其中一边的对角,求另一边的对角从而进一步求出其他的边和角;2。利用余弦定理,可以解决以下两类问题:

  1已知三边,求三角;2已知两边和它们的夹角,求第三边和其他两角。

  3.边角互化是解三角形问题常用的手段.

  三.作业:P80闯关训练

【高一数学《应用举例》教案】相关文章:

比的应用练习数学教案04-12

高一数学教案07-20

高一数学下册教案02-04

高一数学教案10-14

《比的应用》教案11-25

【精】高一数学教案02-25

【热】高一数学教案02-24

【热门】高一数学教案02-24

[精]高一数学教案11-28