比例的应用教案
作为一位杰出的老师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。那么应当如何写教案呢?以下是小编精心整理的比例的应用教案,仅供参考,大家一起来看看吧。
比例的应用教案1
教学内容
教科书第27页的第4~5题,练习六的第4~6题.
教学目的
1.进一步理解用比例知识解答应用题的方法,用比例的方法正确解答有关应用题.
2.沟通整数、分数、比和比例等知识的联系,会用不同知识,从不同角度,多种方法解答有关应用题.
3.通过一题多解,培养学生思维的变通性和灵活性.
教具、学具准备
自制多媒体课件.
教学过程
一、揭示课题
今天我们复习用比例的知识解答应用题.
二、回忆
用比例解应用题,具体步骤有哪些呢?让学生互相说一说,再指名说,最后教师总结如下:
(1)判断.概括出题中两种有关联的量,找出题中隐蔽的`定量,从而确定两种相关联的量成什么比例.
(2)设未知数x,列方程.如果成正比例关系,列式是:x∶y=x1∶y1;如果成反比例关系,列式是:xy=x1y1.
(3)解方程.
(4)验算.
(5)答题.
三、分层练习
1.基本练习.
(1)判断下面每题中的两种量成什么比例.
①速度一定,所行的路程和时间.
②一本书的总字数一定,每行的字数与行数.
③苹果的单价一定,购买的数量和总价.
④工作总量一定,工作效率和魇奔洌?/P>
(2)实际运用.
①晶晶借了一本112页的《安徒生童话》,她4天看了28页.以这样的速度,预计几天可以看完?
学生独立练习后,小组内交流思考的过程,教师巡视指导.
②用一批纸装订同样大小的练习本,如果每本16张,可以装订300本.如果每本18张,可以装订多少本?
学生独立练习后,小组内交流思考的过程,教师巡视指导.
③蚯蚓能消化许多垃圾,有人将7.5吨垃圾运到一个蚯蚓养殖厂,78天后,这些垃圾全部被消化了.这个养殖厂一年可以消化约多少吨垃圾呢?
学生独立练习后,小组内交流思考的过程,教师巡视指导,此题有两种答案.
2.综合练习.
(1)一篇文章原稿每行30个字,共96行,如果改为每行32个字,一页纸35行的版式,那么这篇文章需打印多少行?共需几页纸?
提醒学生理解题目的意思后再独立解答,然后全班交流,教师评价.
解:设需打印x行.
30×96=32x
x=90
90÷35=2(页)……20(行)
答:这篇文章需打印90行,共需3页纸.
(2)扬扬骑车从家经过游乐场到少年宫,全程需1.5小时,如果她以同一速度从家骑车直接到少年宫,可以省多少时间?
学生独立解答后,先在小组内交流思考的过程,再在全班交流,教师评价.
可能出现的答案有:
(1)解:设从家直接到少年宫,要x小时. (2)解:设可以省x小时.
(11+7)∶1.5=15∶x (11+7)∶1.5=15∶(1.5-x)
18x=1.5×15 或 (11+7)∶1.5=(11+7-15)∶x
18x=22.5 解答过程略.
x=1.25
1.5-1.25=0.25(小时)
答:可以省0.25小时.
3.发展练习.
六(2)中队少先队员订《少年科学》杂志,全中队共交了792元,各小队订阅情况如下表,请用自己喜欢的方法算出各小队应交的钱数.
第一小队 10本 ( )元
第二小队 12本 ( )元
第三小队 11本 ( )元
学生独立用各种方法算,算完后互相交流各自的方法及思路,再在全班交流.
可能的方法有:
方法一:792÷(10+12+11)=24(元) 方法二:792×10/33=240(元)
24×10=240(元) 792×12/33=288(元)
24×12=288(元) 792×11/33=264(元)
24×11=264(元) 答(略).
答(略).
方法三:解:设第一小队应交x元.
792∶(10+12+11)=x∶10
x=240
答(略).
比例的应用教案2
教学内容:教科书第6~8页的例4~例6,练习二的第1题。
教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。
教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。
教学难点:设未知数时长度单位的使用。
教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。
教学过程:
一、复习
1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。
1米=( )分米=( )厘米=( )毫米
1千米=( )米=( )厘米
2.什么叫做比?
3.化简下面各比。 12 :8 10厘米:100厘米
2米:140厘米 3米:15千米 16厘米:90千米
二、新课
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。
1.教学比例尺的意义。
(1)教学例4。
设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。
让学生读题。指名回答:
“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)
“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离:实际距离
“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:
图上距离:实际距离
10厘米 : 10米
“10厘米和10米的单位相同吗?能直接化简吗?”
教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。
“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)
“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。
“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“ :”,板书成如下形式:
图上距离:实际距离
10 : 1000
请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:…”。
然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离:实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或
图上距离=比例尺
实际距离
图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。
教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。
最后教师指出:
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。比如,例4中的比例尺通常写成:1:100=
(2)巩固练习。
让学生完成第6页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“ l”。
2.教学根据比例尺求图上距离或实际距离。
教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。
(1)教学例5。
在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米?
指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)
教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。
“这道题的图上距离是多少?”板书:15
“实际距离不知道,怎么办?”(用x表示。)在15的下面板书出x,并在它们中间画上分数线。
“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。
“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:
15= 1
x6000000
指定一名学生到前面求X的值,其他学生在练习本上做。订正后,回答:
“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:90000000厘米=900千米,并写出这道题的答。
之后,再回忆一下解答过程。
(2)巩固练习。
做第7页上的“做一做”。先让学生说出图中的'比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。
(3)教学例6。
出示例6:一个长方形操场,长110米,宽90米,把它画在比例尺是的图纸上,长和宽各应画多少厘米?
指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)
教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少?
然后让学生求x的值,并说出求解过程,教师板书出来。
“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。
三、练习
1、比例尺=( ) 实际距离=( ) 图上距离=( )
2.2.5米=( )厘米 0.00006千米=( )厘米 0.032米=( )厘米 350000厘米=( )千米 3.5千米=( )厘米
独立完成练习二第1题,并订正。
完成练习二的第2题、3题。
第3题,让学生先想想比例尺子表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。
比例的应用教案3
上课解决方案
教案设计
设计说明
本节课主要是应用比例尺的知识解决一些简单的实际问题。遵循“解决实际问题的活动价值不只是获得具体问题的解,更重要的是学生在解决问题的过程中获得的发展”这一理念。本节课在教学设计上重点突出了以下几个方面:
1.面向全体,重视学生对基本解题方法的理解。
在教学中,对于“解比例”,从审题、分析、列比例,到求出的解所表示的实际长度及所用单位,都通过相应的问题加以突出,使学生都能够运用“列比例法”去解决各种相关的问题。
2.拓展思维,重视学生对解题策略个性化和多样化的体验。
在教学中,为学生提供独立思考的机会,结合相关例题,巧妙提出问题,引发学生广泛思考,使学生充分发挥自己的聪明才智,在找到自己个性化的解题策略的同时,也在交流、讨论中感受并理解其他同学的不同解题方法。
3.渗透思想,引导学生实现解题策略的优化。
在教学中,引导学生对不同的解题策略进行比较,使学生在理解不同解题策略的同时,选择比较简捷易懂的解法,从而实现解决问题策略的优化。
课前准备
教师准备 PPT课件
学生准备 地图
教学过程
⊙复习导入
1.复习提问。
(1)什么是比例尺?关于比例尺你了解了哪些内容?
(引导学生从比例尺意义的认识及数值比例尺和线段比例尺的认识等方面回答)
(2)说一说下列比例尺表示的具体意义。
①比例尺1∶250000。
②比例尺80∶1。
③比例尺
。
(引导学生交流后说一说每种比例尺的'实际意义)
2.导入新课。
通过交流,可以看出同学们对比例尺的相关知识掌握得很好,这节课我们就一起来探究如何应用比例尺的知识解决实际问题。(板书:比例尺的应用)
设计意图:全面回顾比例尺的相关知识,为学生应用比例尺的知识解决问题奠定基础。
⊙探究新知
1.教学例2,根据比例尺和图上距离求实际距离。
(1)课件出示教材54页例2。
(2)审题,找出已知条件和所求问题。
预设
生:本题已知比例尺是1∶400000,图上的长度是7.8 cm,求实际长度是多少。
(3)思考、交流:如何求从苹果园站至四惠东站的实际长度?
预设
生1:先设从苹果园站至四惠东站的实际长度是x cm,再根据比例尺的意义,列出比例式,求出实际长度是多少厘米。
生2:根据比例尺的意义,直接用图上长度7.8乘比例尺中的400000,求出实际长度是多少厘米。
生3:根据比例尺的意义计算:400000÷100000=4(km),7.8×4=31.2(km)。
(4)重点理解基本解法。
问题1:为什么设的实际长度要以“cm”为单位?
问题2:列比例的依据是什么?
问题3:“400000”表示什么?
预设
生1:设的实际长度以“cm”为单位,是因为图上的长度单位是“cm”,只有图上的长度单位和实际的长度单位统一了,才能计算出正确的结果。
生2:列比例的依据是“=比例尺”。
生3:“400000”表示图上1 cm的长度相当于实际400000 cm的长度。
(5)学生独立用解比例的方法解决问题后,指名板演并订正。
比例的应用教案4
教学内容:教科书第49页的例7,完成随后的“练一练”和练习十一的第3、5题。
教学目标:
1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
教学重点、难点:能按给定的比例尺求相应的实际距离或图上距离;感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。
教学准备:教学光盘、了解家到学校的大概距离
教学过程
一、复习导入。
1、什么叫比例尺?求比例尺时要注意哪些问题?
2、在一幅地图上南京到上海相距5厘米,实际相距300千米,求这幅地图的比例尺?你能画出这幅地图的线段比例尺吗?
二、教学新课
1、教学例7。
(1)出示例7,明确题意,找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了图上距离,求实际距离。)
(2)说一说比例尺1:8000所表示的意义。
(3)根据对1:8000的理解让学生尝试练习。
(4)交流算法,说说为什么这样算?帮助学生掌握不同算法以及之间的联系。
重点引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?
注意:最后的单位要换算成“米”作单位的数。
2、做“试一试”。
(1)独立算出学校到医院的图上距离。
(2)讨论怎样把医院的位置在图上表示出来。
(3)在图中表示医院的位置。
三、巩固练习。
1、做“练一练”先独立解题,在组织交流
2、做练习十一第4题
重点知道学生在地图上测两地之间的距离和在地图上如何找比例尺。
3、做练习十一第5题。重点帮助学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。
4、将下列各题做在课堂作业本上。
(1)北京到天津的距离是140千米,在一幅比例尺是1:2000000的地图上,两地间的距离是多少厘米?
(2)在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是12.5厘米。甲、乙两城实际相距多少千米?0 40 80 120千米
(3)在一幅比例尺为的地图上,小丽量得某省会城市与北京的距离是32.5厘米。这个城市与北京相距多远?
(4)做练习十一第3题。
(5)学生阅读“你知道吗”,选择两个比例尺说说它们的实际意义。
四、全课小结。
通过本课的学习,你又掌握了什么新的本领?
五、课堂作业
完成补充习题的相关练习
板书设计:
比例尺的应用
5×8000=40000(厘米)解:设明华小学到少年宫的实际距离是x厘米。
40000厘米=400米5:x=1:8000
x=40000
40000厘米=400米
答:明华小学到少年宫的实际距离是400米。
课前思考:
这节课是学生在掌握了比例尺的'含义的基础上展开的,让学生根据比例尺的意义来求实际距离或者是图上距离。解决这类问题学生会有不同的方法,应该允许他们按照自己的思考方法进行解答。在引导学生进一步理解不同算法时,特别要引导学生理解和掌握用比例式求实际距离的方法,帮助学生把握不同算法之间的联系。
根据比例尺=图上距离:实际距离以及学生的不同解法,可以归纳如下:
图上距离=实际距离×比例尺
实际距离=图上距离÷比例尺
在计算的过程中关键还是要让学生注意单位的统一。在用解比例的方法求实际距离时,要和学生强调解设中单位还应该是厘米,因为图上距离的单位就是厘米,所以要统一。
课后反思:
上完这节课,感觉自己课前的准备工作做的不够充分,没有仔细阅读教材。虽然解决这类问题学生会有不同的方法,而且学生基本上都会用计算。但是这节课还是在于引导学生进一步理解和掌握用比例式求实际距离或图上距离的方法。从学生完成的作业质量来看,一开始很有必要让学生用比例式来求实际距离或者图上距离。因为尽管课上一再强调在解设的时候一定要注意单位,但是在练习中仍然有很多学生没有注意。在学生熟练了以后,接下来的练习就让学生选择自己喜欢的方法去完成。
其次,我本来认为根据比例尺的定义可以得出:图上距离=实际距离×比例尺;实际距离=图上距离÷比例尺这两个公式,正如高教导所说上完两节课后,感觉在实际解决问题的过程中根本不需要学生去记忆,学生自己理解了比例尺的含义之后,自然而然会解决。如果强行让学生去记忆,太匡死学生的思维了。
在练习的过程中有时候需要求长方行草坪的面积或者是操场的实际面积,但是题中却没有明确具体的单位,有的学生用平方厘米做单位,有的学生用平方米做单位,我和学生讨论后的想法是是因为没有明确要求,两种答案都可以,但是与实际生活联系起来,用平方米做单位更恰当些,不知道这样的处理是否恰当。
比例的应用教案5
教学目标:使学生对反比例函数和反比 例函数的图象意义加深理解。
教学重点:反比例函数 的应用
教学程序:
一、新授:
1、实例1:(1)用含S的代数式 表示P,P是 S的反比例函数吗?为什么?
答:P=600s (s0),P 是S的反比例函数。
(2)、当木板面积为0.2 m2时,压强是多少?
答:P=3000Pa
(3)、如果要求压强不超过6000Pa,木板的面积至少 要多少?
答:至少0.lm2。
(4)、在直角坐标系中,作出相应的'函数 图象。
(5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。
二、做一做
1、(1)蓄电池的电 压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压U=36V , I=60k
2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?
R() 3 4 5 6 7 8 9 10
I(A )
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )
(1)分别写出这两个函 数的表达式;
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;
随堂练习:
P145~146 1、2、3、4、5
作业:P146 习题5.4 1、2
比例的应用教案6
设计说明
1.注重培养学生学习的自主性。
引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。
2.培养学生的解题能力。
本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。
课前准备
多媒体课件
教学过程
⊙创设情境,提出问题
1.介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。
2.呈现问题。
同学们算一算,14个玩具汽车可以换多少本小人书?
设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。
⊙尝试解决,体会联系
1.想一想。
师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。
2.说一说。
教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的.数量之间存在的关系。
预设
方法一 14÷4=3.5,3.5×10=35(本)。
方法二 10÷2=5,14÷2=7,5×7=35(本)。
方法三 4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。
方法四 4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。
⊙自主学习,探究新知
1.提出新的要求。
师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?
2.学生尝试列式。
预设
方法一 4∶10=14∶x。
方法二 10∶4=x∶14。
方法三 14∶4=x∶10。
方法四 4∶14=10∶x。
3.交流汇报写出比例的主要依据。
4.学生独立解比例。
5.汇报结果。
预设
生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。
生2:我是这样计算的:
4∶10=14∶x
解:4x=140
x=35
6.出示课堂活动卡,组织学生先和同伴交流,再独立解决。
(师巡视,适时指导)
7.验算:把求出的结果代入比例验算一下,看等式是否成立。
(学生自主验算)
8.教师小结。
解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。
设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。
比例的应用教案7
教学目标:
1、初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。
教学重点:
会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点:
会根据正比例的意义判断两种相关联的量是不是成正比例。
预习指导:
一、自学教材。
阅读教材第62~63页。
二、检查学习。
1、怎样两个量成正比例?
2、完成"试一试"。
教学准备:
课件和口算题。
教学过程:
一、导入
谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。
二、教学例1 1、课件出示例1的表
⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的?
⑵表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。
2、那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。
3、我们可以写出这么几组路程和对应时间的比。
⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?
⑵这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律
⑶同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
课件出示:路程和时间成正比例。
⑷现在你能完整地说一说表中路程和时间成什么关系吗?
4、刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目。
⑴课件出示"试一试"
⑵请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?
课件出示表中的数据。
⑶从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。
集体交流:
⑷我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=0.3、=0.3…它们的比值相等,你写对了吗?
⑸再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。
小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。
⑹你能完整地这样说给你的同桌听一听吗?
⑺同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?
课件出示课题。
⑻回顾一下,我们是根据什么来判断两种数量能成正比例的?
指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。
5、完成"练一练"
⑴请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?
⑵生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。
小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的量是否成正比例的方法了吗?
三、练习
1、完成练习十三第1题。
请大家继续看课本66页第1题
2、完成练习十三第2题
⑴继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?
⑵同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的.比值都是三分之五,是一定的。
3、完成练习十三第3题(课件出示题目)
⑴课件出示放大后的三个正方形、
⑵大家看一看,你是这样画的吗?
⑶接着请同学们对照表格计算出放大后每个正方形的周长和面积。
校对学生做的情况。
⑷请大家根据表中的数据讨论下面两个问题。
①正方形的周长与边长成正比例吗?为什么?
②正方形的面积与边长成正比例吗?为什么?
四、总结。
通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。
板书设计:
正比例的意义
路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
比例的应用教案8
教学目标:
1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题
2、能根据实际问题中的条件确定反比例函数的解析式。
3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
教学重点、难点:
重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题
难点:根据实际问题中的条件确定反比例函数的解析式
教学过程:
一、情景创设:
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例.药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后关于x的函数关系式为_______.
(2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
二、新授:
例1、小明将一篇24000字的'社会调查报告录入电脑,打印成文。
(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?
(2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为 的长方形蓄水池。
(1)蓄水池的底部S 与其深度 有怎样的函数关系?
(2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米?
(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)
三、课堂练习
1、一定质量的氧气,它的密度 (g/3)是它的体积V( 3) 的反比例函数, 当V=103时,=1.43g/3. (1)求与V的函数关系式;(2)求当V=23时求氧气的密度.
2、某地上年度电价为0.8元&nt;/&nt;度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8.
(1)求与x之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)×(用电量)]
3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=.求与x之间的函数关系式及自变量x的取值范围.
四、小结
五、作业
30.3——1、2、3
比例的应用教案9
教学目标:
1、 结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、 培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。
3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:
进一步掌握按比例分配应用题的结构特点和解题思路。
教学难点:
正确分析解答比例分配应用题。
教学过程:
一、复习。
1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。
2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)
二、新授。
1、教学例2。
(1)出示例2:
(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)
(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)
(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)
① 稀释液平均分成的份数:1+4=5
浓缩液的体积:500× =100(ml)
水的.体积:500× =400(ml)
答:稀释液100ml,水400ml。
(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4
(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)
2、补充练习
(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)
(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)
(4)怎样分别算出各班应种的棵数?引导学生解答:
① 三个班的总人数:47+45+48=140(人)
② 一班应栽的棵数: 280× = 94(人)
③ 二班应栽的棵数: 280× = 90(人)
④ 三班应栽的棵数: 280× = 96(人)
答:一班栽树94棵,二班栽树90棵,三班栽树96棵。
(5)学生进行检验。
(6)学生试做“做一做”中的第2题。
三、巩固练习。
练习十二的第1、3题。
四、布置作业。
练习十二第2、4、5、6、7题。
教学反思:
本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。
比例的应用教案10
教学目标:
1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解
2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。
3、培养学生的判断分析推理能力。
教学重点:
使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题
教学难点:
学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
一、旧知铺垫
1、下面各题两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从甲地到乙地,行驶的速度和时间。
(3)每块地砖的面积一定,所需地砖的块数和所铺面积。
(4)书的总本数一定,每包的本数和包装的包数。
过程要求
①说一说两种量的变化情况。
②判断成什么比例。
③写出关系式。
2、根据题意用等式表示。
(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。
(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。
二、创设情境引入内容
1、出示例5
画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?
学生回答后引出求水费的实际问题。
你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。
引入:这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。
出示以下问题让学生思考和讨论
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
明确
因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
学生讨论交流
演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。让学生检验所求的未知数x是否合乎题意。检验的方法是把求出的数代入原等式(即方程),看等式是否成立。把求出的16代入等式,左式==1、6,右式==1、6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。
问题:王大爷家上个月的`水费是19、2元,他们家上个月用多少吨水?
要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。
2、出示例题6的场景。
同样先让学生用已学过的方法解答,然后学习用比例的知识解答。
师:想一想,如果改变题目的条件和问题该怎样解答?
出示以下问题让学生思考和讨论
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。
让学生演示解题过程,集体修正。
3、完成做一做,直接让学生用比例的知识解答
问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。
总结应用比例知识解答问题的步骤
(1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。
(2)依据正比例或反比例意义列出方程。
(3)解方程(求解后检验),写答。
比例的应用教案11
教学内容
教科书第59页例2及练习十三4~6题。
教学目标
1.能运用反比例知识解决简单的实际问题,培养学生的数学应用意识和解决问题的能力。
2.经历探索反比例应用的学习过程,体会反比例知识与生活的联系。
3.使学生感受事物的普遍联系,受到辩证唯物主义观点的启蒙教育。
教学重点
根据反比例的意义解决有关反比例的实际问题。
教学难点
理解反比例应用题的解题思路。
教学准备
教师先准备好复习题和增加的练习题。
教学过程
一、激趣引入,复习铺垫
1.运一堆煤
车的载重量(t)
辆数(辆)
根据表格中的内容,你能写出多少个等量关系式?
2.判断
(1)当速度一定,路程和时间成什么比例?为什么?
(2)当时间一定,路程和速度成什么比例?为什么?
(3)当路程一定,速度和时间成什么比例?为什么?
教师:运用反比例和以前学过的知识,我们可以解决生活中的一些问题。
板书课题:反比例的应用
二、合作学习,探索方法
1?教学例2
引导学生理解题意,找出题中的两种量。
反馈:速度和时间是两种相关联的量。
教师:看到这两种量,你还联想到了哪种量?(路程)
教师:上题中路程是一定的量吗?
着重引导学生明白:"青年突击队"参加泥石流抢险,从出发到目的地的路程是一定的。
教师:路程一定,速度和时间成什么关系?为什么?
反馈:速度和时间是两种相关联的量,速度扩大或缩小几倍,时间反而缩小或扩大相同的倍数,它们的积(路程)一定,所以速度和时间成反比例。
2.解答例2
(1)接着出示例2后面的内容:"出发时接到紧急通知要求3时之内必须到达,他们每时至少需行多少千米?"
让学生说出,现在增加的这个条件和问题应该对应在表的`哪个位置?突出让学生找准对应关系。
(2)合作学习:要求学生独立思考后,再试着用多种方法解答这个问题,然后在小组内交流。
交流要求:把思路和解答方法说给自己小组的成员听,把同组同学认为正确的解答方法,请组长板书在黑板上。如果有其他组长已经写在黑板上了,另一组长就不再板书同样的解决方法。如果你用的解答方法,同组的同学不能准确判断对错,或者引起了争议的解答方法,可以自己上来把它板书在黑板上。
学生活动,教师巡视指导。(把黑板分成3大块,供学生板书解答方法)
(3)集体交流,结合黑板上的板书,师生共同理解解法:
预设方法1:6×4÷3=8(km)
抽生说出,算式6×4表示什么意思?
预设方法2:解:设他们每时至少行x km。
3x=6×4
x=24÷3
x=8
教师:这样列式的根据是什么?
反馈:根据速度和时间成反比例,它们的路程相等,列出等量关系。
预设方法3:解:设他们每时至少行x km。
6∶x=3∶4或x∶6=4∶3
这种列式的方法有时会在学生中出现,应该由写这种解答方法的同学来说说他的想法。在这里主要还得根据课堂上学生出现的各种解法来引导他们理解解题思路。
三、巩固应用,促进发展
1.基本练习
(1)将例2的最后一句话改编成2道应用题。
如果要想2时到达,他们平均每时需行多少千米?
如果每时行8 km,要几时才能到达目的地?
(2)练习十三第4题,先独立完成,再集体订正。
2.对比练习
(1)完成练习十三5题和6题。
教师引导提示:题中有哪两种相关联的量?哪种量是一定的?根据一定的量找出它们的等量关系,再解答。
(2)补充练习:修一条路,原计划每天修400 m,25天完成。实际前4天修 m,照这样的速度,修完要用多少天?(沟通区别与联系)
小组讨论后反馈:
①每天的米数--天数 ②总米数--天数
反比例知识解答:÷4×x=400×25
正比例知识解答:∶4=(400×25)∶x
提问:为什么一道题既能用正比例解答又能用反比例解答呢?
引导学生明白:因为题中既有速度(照这样的速度)一定,也有总米数(一条路长度)一定。
:在解答时,一定要认真审题,具体问题具体分析。
说一说生活中还有哪些问题可以用反比例来解答。
四、
今天这节课你有什么收获?说听听。
比例的应用教案12
教学内容:教科书第35页的第45题,练习九的第46题。
教学目的:使学生进一步掌捏用比例解答应用题的方法,提高解答应用题的能力。
教具准备:小黑板。
教学过程:
一、复习用比例解答应用题
教师:我们学习了比例的知识,有些应用题就可以用比例的知识来解答。现在我们就来复习一下。
1,用小黑板出示第35页第4题:
我国发射的科学实验人造地球卫星,在空中绕地球运行6周需行10.6小时,运行14周要用多少小时?
教师解释:运行一周就是绕地球一圈,人造卫星的速度是一定的。
提问:
这道题有几个相关联的量?它们成什么关系?为什么?(有两个相关联的量,因图为 =速度,而速度是一定的,所以转的周数同时间成正比例关系。)
指名说说这道题用比例的知识怎样解答。当学生说出后,教师板书出解答过程:
解:设运行14周要用X小时。
6:10.6=14:X
6x=10.614
X=
x 24、7
答:运行14周要用24.7小时。
2.用小黑板出示第35页第5题:
一个农业专业组乎整土地,原来打算每天平整0.4公顷,15天可以完成任务。结果12天完成了任务,平均每天平整多少公顷?
指名学生读题,并说出这道题的两个相关联的量成什么比例,当学生说出每天平整的公顷数与时间成反比例后,让学生完成这道题。教师板书出解答过程。
3.总结。
教师:像上面这样的题在解答时,先要判断两个相关联的量成什么比例,然后列出含有未知数x的等式,再进行解答。
二、课堂练习
完成练习九的`第46题。
1。第4题,先说明一下,农药是药液和水合起来的重量,再提示:第(1)小题。要求配制这种农药750.5千克,需要药液与水多少千克,要先算出农药和药液的比、农药和水的比。
2.第5题,让学生说一说根据什么来判断方砖的面积与方砖的块数成什么比例。
3.第6题,让学生独立完成,集体订正时,说说解答思路。
比例的应用教案13
判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间。
2.路程一定,速度和时间。
3.每小时耕地的公顷数一定,耕地的总公顷数和时间。
4.全校学生做操,每行站的人数和站的行数。
我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些生活中的实际问题。这节课我们就来学习比例的应用。(板书:比例的应用)
(一)教学例1
例1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
1、学生读题。
2、学生利用以前学过的方法独立解答。(归一法、倍比法)
3、利用比例的知识解答。
(1)出示问题,学生思考:
①这道题中涉及哪三种量?
②哪种量是一定的?你是怎样知道的?
③行驶的路程和时间成什么比例关系?
学生回答后,教师板书:速度一定,路程和时间成正比例。
(2)教师追问:两次行驶的路程和时间的比相等吗?
(3)师:根据正比例的意义,怎样列出等式?根据学生回答,教师板书:
解:设甲乙两地间的公路长x千米。
140:2=x:5
x=14052
x=350
答:两地之间的公路长350千米。
(4)怎样检验这道题做得是否正确?
4.变式练习
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(二)教学例2
例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时要行多少千米?
1.学生利用以前的方法独立解答。
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:
这道题里的路程是一定的,_________和_________成_________比例。
所以两次行驶的_________和_________的_________是相等的。
3.如果设每小时需要行驶x千米,根据反比例的意义,谁能列出方程?
学生尝试解答。
4.变式练习
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行87.5千米,需要几小时到达?
用比例知识解答应用题的关键,是正确找出题中的'两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。
请你们按照刚才学习例题的方法分析,只要列出式子就行。
1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
(1)修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?
(2)用边长是15厘米的方砖给一间教室铺地,需要20xx块,如果改用边长25厘米的方砖,只需要多少块?
教学目标:
1、使学生能正确判应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
3、培养学生的判断分析推理能力。
4、引导学生利用已有的知识,自己探索,解决实际问题,培养学生勇于探索的精神
教学重点:
使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式,正确运用比例知识解答应用题。
教学难点:
利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路.
比例的应用教案14
教学内容:教材第37页例5、“试一试”和“练一练”,练习七第4~日题。
教学要求:
1、使学生进一步认识比例尺,学会根据比例尺求图上距离或实际距离。
2、使学生体会数学在实际生活里的应用,提高解决简单实际问题的能力。
教学重点:进一步认识比例尺。
教学难点:根据比例尺求图上距离或实际距离。
教学过程:
一、揭示课题
1、提问:什么是比例尺
2、出示一些数据比例尺,让学生说一说比例尺前项、后项的倍数关系和比例尺的实际含义。
3、说明:利用比例尺,可以解决一些简单的`实际问题,这节课就学习。
二、教学新课
1、教学例5。
出示例5,读题。提问:题里已知什么,要求什么?按照比例尺的意义,你能解答吗?让学生自己讨论并进行解答,通过巡视看一看不同的解法。指名口答解题过程,老师板书。其间结合说明设未知数x的单位与图上距离的单位统一,用厘米,解题后再化成米数。提问:用不同方法解答这道题的过程是怎样的?指出;已知图上距离求实际距离,可以按照实际距离与图上距离的倍数关系来解答,也可以按“图上距离:实际距离=比例尺”列出比例,用解比例的方法就可以求出结果。
2、做“练一练”第1题。
指名板演,其余学生做在练习本上。集体订正,指名学生说一说怎样想的,要注意什么问题?
3、教学“试一试”。
出示“试一试”,读题。提问;题里已知什么,要求什么?你能自己解答吗,让学生自己做在练习本上。指名学生口答解题过程,老师板书。用比例解的指名学生说一说根据什么列比例的,应该设谁为x。指出:已知实际距离求图上距离,可以把实际距离缩小相应的倍数,也可以按“图上距离:实际距离=比例尺”列出比例,再解比例求出结果。
4、做“练一练”第2题。
指名扳演,其余学生做在练习本上。集体订正,指名学生说说怎样想的,解答时还要注意什么。
5、做练习七第4题。
让学生做在练习本上,然后口答,老师板书。
6、做练习七第5题。
学生完成在练习本上。
三、课堂小结
这节课学习了什么内容?你学到了些什么?
四、布置作业
课堂作业:练习七第6、8题。
家庭作业:练习七第7题。
比例的应用教案15
教学内容:P51-52例1、例2,正、反比例应用题
教学目的:认识正、反比例应用题的特点,理解掌握这种应用题的解题思路和解题方法,能正确解答,发展学生的思维。
教学过程:
一、复习
判断下面的量各成什么比例
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
二、导入新课
说数量关系,判断成什么比例,列出等式。
一台抽水机5小时抽水40立方米,照这样计算,9小时可抽水X立方米。
三、学习新课
1、学例1
(1)将导入题中的“X立方米”改成“多少立方米?”
(2)讨论:怎样用比例的知识来解这道题止的导入题的`想法能给我们启示吗?
(3)试一试:学生练习讲解例题,教师根据情况作点拨。
(4)小结:说一说用正比例知识解答这道应用题要怎样想?怎样做?
2、数学“想一想”
放手让学生自己做,并说说列等式的依据。
3、教学例2
(1)出示例2,读题
(2)讨论并试一试:能仿照例1的解题过程用比例的知识解答例2吗?
(3)说一说:将自己的解法及想法告诉大家。
教师作点拨
4、学习“想一想”
独立练习后班次讲
5、小结:解题思路
(2)判断比例关系
(3)找出对应数值
(4)列出等式解答
追问:你认为解题关键是什么?
四、巩固练习
1、做“练一练”
2、练习十第1题
评讲时比较异同
五、课堂小结:
这节课你学习了哪些内容?你认为哪些是重点?
六、作业
P53——54第2题,第10题。
七、课后作业
P53第3题
【比例的应用教案】相关文章:
比例的实际应用教案04-23
《比例的应用》说课稿11-08
《比例的意义》教案03-02
《解比例》教案09-14
解比例教案09-20
《反比例》教案03-07
初中比例教案01-23
《比的应用》教案11-25
反比例函数教案03-23