平均数教案

时间:2024-04-12 18:09:10 教案 我要投稿

平均数教案

  作为一位不辞辛劳的人民教师,编写教案是必不可少的,教案有助于学生理解并掌握系统的知识。我们该怎么去写教案呢?下面是小编精心整理的平均数教案,欢迎阅读与收藏。

平均数教案

平均数教案1

  教学目标:

  1、知道平均数的意义。

  2、掌握求平均数应用题的数量关系和解题方法。

  3、会正确解答简单的平均数应用题。

  4、初步建立平均数的统计思想。

  5、用求平均数的方法解决问题。

  教学过程:

  一、复习

  1、要求下列问题,必须已知哪两个条件,并说出数量关系式。

  (1)平均每天加工零件多少个?

  (2)平均每人植树多少棵?

  (3)平均每组分到几本书?

  (4)平均每筐重多少千克?

  2、导入

  (1)象以上这些问题都是要求平均每一份是多少。类似题

  称之为求“平均数”。所谓平均数,就是把不相等的几个数量,在其总量不变的前提下,通过“移多补少”的`方法,使其相等。

  揭示课题:平均数

  (2)求平均数用什么方法?

  求平均数首先从问题中判断:把什么作为总数平均分;

  是按什么平均分的,即与总数对应的总份数是什么;然

  后用“总数÷总份数=平均数”,求出平均数。

  二、探究

  有4组小长方体,第一组有9个,第二组有5个,第三组有7个,第四组有3个。平均每组有多少个?

平均数教案2

  一、教学内容:

  人教版《义务教育课程标准实验教科书数学》三年级下册P42、43页《平均数》

  二、教学准备:

  直尺、三角板,学生按矮到高的顺序坐好。

  三、教学目标与策略选择:

  以往我们把《平均数》这节课当成是一节应用题的课,侧重读题、分析、计算;从新课程标准出台以后,列入统计与概率的范畴,重视平均数意义的教学,更注重学生估计意识、猜想意识和推理能力的发展。学生已有了相当丰富的统计知识,对于“平均数”这个概念已有所接触,如测试中的“平均分”等。但大部分学生还不能准确理解“平均数”的意义。为此,确定以下教学目标:

  1、通过观察、比较,理解平均数不是一个具体的数(实际的数);

  2、在师生、生生的交流互动中,让学生知道平均数是有一定范围的,培养学生的估计、猜想意识,并产生探究数学知识的积极情感;

  3、学生能掌握求平均数的方法:(1)移多补少;(2)先求总数再平均分等;

  4、体现总体与样本的关系。

  鉴于以上的目标定位,本节课重在学生的体验、参与。在学生互动中,使学生感受够到生活中处处有数学,并会从实际生活中提出数学问题,运用不同的方法加以解决,同时在学生的合作中初步感受统计知识。为此,主要采取了以下教学策略:

  1、以“情”、“趣”开路。

  2、创设生动的生活情境,提供丰富的生活化材料,唤起学生已有的知识经验。

  四、教学流程设计及意图:

  教学流程

  设计意图

  一、活动导入,引出平均数的意义。

  1、创设情境:比身高。

  (1)第一次比较。师:今天进行男女同学比身高。先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

  (2)第二次比较。师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在是男同学高还是女同学高?

  (3)第三次比较。师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

  师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?怎么比呢?生:......

  (4)第四次比较。师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

  师:如果不请男同学上来了,你觉得还有其它比较的办法吗?

  2、同桌学生讨论。生:求出几个同学的平均数。

  3、现场测量台上同学的身高。

  4、学生尝试练一练,指名板书。

  5、比较结果。是男同学高,还是女同学高。

  6、小结:看来平均数(板书课题)还真能帮肋我们解决一些问题。

  二、延伸拓展,形成统计观念。

  1、感悟平均身高。师指着平均身高:这个身高是你们当中times;times;同学的身高吗?那它是什么?

  2、全班的平均身高。师:现在要知道全班同学的平均身高,怎么办?

  生:先把所有的身高加在一起,再除以有40人。

  师:是个办法,能解决这个问题。如果想知道全校四年级同学的平均身高,有什么办法?

  生:......

  3、选取样本。师:但是现在在课堂里没办法解决这个问题。有没有更好的办法呢?

  (1)学生参考选取第一排或第五排。

  (2)选取第一组的学生比较有代表性。

  4、估计。

  师:你们先估计一下,第一组5个同学的平均身高是多少?

  生:......(不会比最大的大,比最小的小)

  5、学生计算。

  6、进一步感悟平均数。

  师:是times;times;同学的身高吗?我们可以推测全班的同学身高,全校四年级同学的.身高,甚至是更大范围的四年级同学的平均身高。

  7、小结方法。

  师:我们来观察一下,刚才我们是怎样求平均数?

  生:先求总数(板书),除以人数,等于平均身高。

  三、应用提高,深化统计观念。

  1、举例。师:其实生活除了求平均身高外,还有很多地方用到平均数,能举个例子吗?......

  2、你觉得有危险吗?

  小朋友说:我身高140厘米,在这里游泳不会有危险。

  2、猜猜看:

  3根小棒,平均3根小棒,平均

  每根长10厘米每根长15厘米

  (1)猜测。师:如果从第一个袋子里拿一根(标上序号),第2个袋子里也拿一根,哪个袋子里拿出的长一些?

  (2)举例。师:能举个例子吗?同桌商量一下。

  (3)汇报。

  3、变式练习。

  (1)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天、第三天共印87万张,他们平均每天印多少万张?

  ①(39+87)divide;2=63(万张)

  ②(39+87)divide;3=42(万张)

  (2)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天上午印22万张,下午印23万张。他们平均每天印多少万张?

  ①(39+22+23)divide;2=42(万张)

  ②(39+22+23)divide;3=28(万张)

  质疑:为什么两个数要除以3?三个数相加要除以2呢?

  小结:像这样的天数、人数,我们可以称为份数。(平均每天的张数、平均身高可以称为平均数)

  4、读信息,了解最新动态,解决实际问题。

  (1)你在这幅图上了解到哪些信息?根据这些信息,你能提出什么数学问题?

  (2)计算前,你先估计一下,第二十五届到第二十八届平均每届获金牌的块数?并介绍你是怎么估计的?

  (3)计算--课件验证。

  (4)根据这幅图的发展趋势,你能预测一下20xx年能获多少块?

  四、全课总结。

  以“比身高”作为本节课学生的学习主题,通过现场简单的两人比较,四人,六人,七人的比较,使学生在观察中发现比较的量在不断的变化,结果也不断在变化,在矛盾迭起的活动中,不断寻找平衡,寻求合理的比较方法。

  通过教师言语的引导,制造在大范围的情况下,求平均身高这么一个矛盾,怎么办?促使学生经历寻求“样本”的过程,致使合理的解决这个问题。

  在本节课的练习设计中,突出对平均数意义的理解,体现开放性,变通性,实效性。促进学生的思维不断深入、发展。

  五、教学片断实录:

  片断一:

  开场白:今天我们进行一场比赛--比身高。板书:男、女

  师:同学们的想法都很好!但是今天先进行男女同学比身高。我先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

  师:你们说谁比较高?

  生:男同学。

  师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在谁比较高?

  生:还是男同学。(男同学似乎很得意)

  师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

  此时学生大笑。

  师:你们笑什么呢?

  生:这个男同学这么矮?

  师:你们听过一句话吗,浓缩就是--精华。更何况,你们现在正是长身体的时候,过几年后,他可能会长得比你们高呢。

  师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?

  生:是男同学。生:是女同学。生:一样高。

  师:怎么比呢?

  生:把男同学高的部分“切下来”补到矮的身上,女同学也用这种办法,再比较。(还没等这位同学说完,其它同学就大笑,一致认为这是不可能的。)

  生:可以把男同学或女同学的身高加起来,再比较。

  另一学生似乎心领神会:找一个男生和一个女生比较,求出相差数,再找第二、第三个男生和女生比,最后比一比相差数的办法。

  ......

  师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

  生:女同学或不公平。

  生:还得再叫一位男生上来。

  师:如果不请男同学上来了,你觉得还有其它比较办法了吗?

  同桌讨论。

  生:求出男、女生的平均身高。......

  六、教学反思:

  1、情境的设置不应仅仅起到“敲门砖”的作用,也即仅仅有益于调动学生的学习积极性,还应在课程的进一步开展中自始至终发挥一定的导向作用(郑毓信语)。开课这一情境的创设,并不仅仅是为了引出平均数这一概念。从第一次、第二次简单的进行比较,学生一看就明白,当出现三人比较时,学生开始犯难了,有的学生觉得男生高,有的觉得女生高,有的认为一样高等,出现意见不一,怎么办?有的学生想到了用“切”的办法(当然这种方法不近合理,但也是学生对移多补少的形象化解释)、求和比较的方法(这一方法为求平均数打下铺垫)、还有的学生受到“移多补少”方法的影响,想出了求相差数的方法等,把学生的思维不断引向深入。通过第四次身高的比较,出现不合理的因素,逐步把学生的视线引向平均数,从而学生自发解决了求平均身高,也初步掌握了求平均数的方法。

  2、新课程倡导用具体的、有趣味的、富有挑战性的素材引导学生投入数学活动。在“比身高”的情境中,让学生在一次次的观察、比较中迎接挑战,这样一个活动,在平时课堂中可以信手拈来的一个情境,在学生的争论中完成数学化的过程,并不需要花费过多的时间。在这种以情、趣开路的情境中,学生学得主动。

平均数教案3

  素质教育目标:

  1。知识目标:使学生理解平均数的含义,初步学会简单的求平均数的方法。

  2。能力目标:理解平均数在统计上的意义。

  3。情感目标:体会数学与生活的密切联系,培养学生的实践能力。

  重点难点

  重点:理解平均数的含义。

  难点:初步学会简单的求平均数的方法。

  教具准备:多媒体课件

  教学过程

  一、创设情境,提出问题

  上周的作业,有三位同学做得最好,今天老师带来些铅笔想奖励给他们。大家看统计图,哪三位做得最好,分别获得了几支铅笔?(叶雨7支、叶茹5支、李新3支)(课件展示)

  师:你们觉得这样分公平吗?怎样才能公平?

  学生讨论,指名汇报。

  (把叶雨的7支拿2支给李新,这样每人都是5支。课件展示)

  很好。谁能给这种方法取个名字?(“移多补少法”。板书)

  (先把三个人的铅笔全合起来有15支,再平均分给这3个人,这样每个人都是5支。)

  这种方法也很好!我们也给它取个名字。(“先合再分”板书)。

  刚才我们用不同的方法,都能使这三个人铅笔的支数从不等变成相等,都是5。

  教师指出:这里的“5”就是“7、5、3”这三个数的平均数。板书课题:平均数

  通过刚才的学习,同学们能简单的说一说什么是平均数吗?(学生思考或者讨论,教师在听取汇报后总结。)

  几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。

  师:说到平均数,同学们能联想到我们以前学的哪个数学概念。(平均分)是呀,平均数是5,那么他们每人的铅笔支数应该都是5,是这样吗?(质疑,区分平均数和平均分)

  师:难道,老师真的不公正吗?他们的铅笔到底要不要重新平均分配呢?告诉你们,不能。这样做是因为叶雨书写最干净,而且明显进步,而李新最近书写有些下降了。同学们觉得老师做得公平吗?刚才的'平均数只是一个反映今天奖品发放总体情况的数,不是真的把奖品平均分了。

  同学们在生活中还听到过哪些平均数?说一说。(见课件)

  看来平均数的用处还真大,同学们要好好学习哟!

  二、寻找方法,解决问题。

  同学们,上个月我们班每个同学都通过自己的努力,获得了很多小红星。我们来看一下第一小组和第二小组的统计结果。

  第一小组上月获小红星个数统计表

  单位:个

  叶茹李新吴玉刘超

  14111013

  第二小组上月获小红星个数统计表

  单位:个

  叶雨付涛张新江南夏丽

  15128119

  其中,叶雨的个数最多,我宣布第二小组为优胜组,你们同意吗?

  生1:不同意,她一个人怎能代表全组,就算叶雨最多,可是张新才8个。

  师:那你们说怎么比呢?

  生2:可以把每个组的个数加起来,看哪个组的个数最多,哪个组就好。

  生3:可第一小组比第二小组少了一个人呀!怎么能比?

  同学们认为怎样比最合适呢?(平均数)

  对,把几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,也就是把两个小组的平均数分别求出来再比较。(大家领悟到比较平均数最公平,从而认识平均数在统计中的用处。)

  下面,我们就各显神通,先求出第一小组的平均数吧!

  小组讨论、汇报。

  (将叶茹多的两个分给吴玉,刘超多的一个分给李新,这样,她们每个人都得到了12个,也就是第一小组的平均数是12个。)

  不错,方法很简洁,他用的什么方法?有不同的方法吗?

  (先求出四个人的总个数,再求出平均每人的个数。)

  他用的方法就是——先合再分法。

  看来,大家都非常聪明,第二小组的平均个数会求吗?

  你们觉得这时我们求平均数用哪种方法比较合适?为什么?

  学生在练习本上计算,指名板演,集体订正。

  为什么这里求得的总数除以的是5而不是4?

  (先合再分法)

  小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少法比较简单;人数多,差距大,用先合再分的方法比较简单。

  我们看,第一小组的平均数是12,可是14、11、13、10这几个数里,没有一个是12的,它们有的比12大,有的比12小;第二小组的平均数是11,可是15、12、8、11、9这几个数里面也只有一个11,并不是每一个数都是11,它们有的比11大,有的比11小。所以说平均数反映的是一组数据的总体情况。

平均数教案4

  教学内容:

  练习十一1—3题,教材42页例1

  教学目标:

  1、掌握平均数的意义和求平均数的方法

  2、知道移多补少求平均数的方法

  3、会根据数据列出算式求平均数

  教学重点:

  掌握求平均数的方法

  教学难点:

  正确计算平均数

  教具准备:

  课件,小黑板,统计表

  教学流程:

  一、导入

  拿8枝铅笔,指4名同学,要平均分怎样分?

  每人2枝,每人手中一样多,叫平均分。2是平均数

  二、学习交流

  1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图

  (1)从图中,你知道了什么信息?

  (2)他们四人怎样分才能一样多?

  (3)平均分后是多少个?

  2、课件展示统计图的变化过程

  (1)指名展示

  (2)这种方法叫什么?

  点拨:移多补少

  3、要求平均数,还可以怎样想?

  (1)要把4人收集的`矿泉水瓶平均分成4份,必须先求出什么?

  14+12+11+15=

  (2)平均分成4份,怎么办?

  52÷4=

  4、归纳

  要求平均数,可以先求出( )数,再平均分几份

  5、算一算你们小组的平均身高,交流展示求平均数的方法和过程

  6、算出各小组的平均体重,说说你们是怎么算的?

  三、交流展示

  展示自己的学习成果,说清求平均数的方法和过程

  四、达标测评

  1、练习十一第2题

  (1)什么是最高温度?什么是最低温度

  (2)你知道了哪些信息?

  (3)填写统计表:本周温度记录

  (4)计算出一周平均最高温度和最低温度

  (5)说说你是怎么算的?

  2、测量小组跳远成绩,求平均数

  五、总结

  通过这节课的学习活动,你有什么收获?

平均数教案5

  一、内容和内容解析

  (一)内容

  加权平均数.

  (二)内容解析

  学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平均数,体会权的意义、作用,并进一步体会平均数是刻画一组数据集中趋势的重要的统计量,是一组数据的“重心”.

  教科书设计了以招聘英文翻译为背景的实际问题,根据不同的招聘要求,各项成绩的“重要程度”不同,从而平均成绩不同,由此引入加权平均数的概念.权的重要性在于它能够反映数据的相对“重要程度”.为了更好地说明这一点,教科书设计了“思考”栏目和例1,从不同方面体现权的作用,使学生更好地理解加权平均数,体会权的意义和作用.

  基于以上分析,本节课的教学重点是:对权及加权平均数统计意义的理解.

  二、目标和目标解析

  (一)目标

  1.理解加权平均数的统计意义.

  2.会用加权平均数分析一组数据的集中趋势,发展数据分析能力.

  (二)目标解析

  1.理解权表示数据的相对“重要程度”,体会权的差异对平均数的影响,会计算加权平均数.

  2.面对一组数据时,能根据具体情况赋予适当的权,并根据得到的加权平均数对实际问题作出简单的判断.

  三、教学问题诊断分析

  加权平均数不同于简单的算术平均数,简单的算术平均数只与数据的大小有关,而加权平均数则还与该组数据的权相关,学生对权的意义和作用的理解会有困难,往往造成数据与权混淆不清,只会利用公式,而不知加权平均数的统计意义.

  本节课的教学难点是:对权的意义的理解,用加权平均数分析一组数据的集中趋势.

  四、教学支持条件分析

  由于教学重点是对加权平均数意义的理解,可以用电子表格excell来辅助计算加权平均数,同时加深对权意义的理解.

  五、教学过程设计

  (一)创设情境,提出问题

  通过已有的统计学方面的知识,我们知道当收集到一些数据后,通常用统计图表整理和描述这些数据,为了进一步获取信息,还需要对数据进行分析,小学时我们学习过平均数,知道它可以反映一组数据的平均水平.本节我们将在实际问题情境中,进一步探讨平均数的统计意义,并学习中位数、众数和方差等另外几个统计量,了解它们在数据分析中的作用.

  师生活动:阅读章引言.

  设计意图:让学生回顾统计调查的.一般步骤,了解本节的大致内容,体会数据分析是统计的重要环节,而平均数等统计量在数据分析中起着重要作用.

  问题1 一家公司打算招聘一名英文翻译,对甲、乙两名候选人进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:

  应试者 听 说 读 写

  甲 85 78 85 73

  乙 73 80 82 83

  如果这家公司想招一名综合能力较强的翻译,该录用谁?录用依据是什么?

  师生活动:学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.

  设计意图:回顾小学学过的平均数的意义,为引入加权平均数作铺垫.

  问题2 如果这家公司想招一名笔译能力较强的翻译,能否同等看待听、说、读、写的成绩?如果听、说、读、写成绩按照2︰1︰3︰4的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?

  追问1:用小学学过的平均数解决问题2合理吗?为什么?

  追问2:如何在计算平均数时体现听、说、读、写的差别?

  师生活动:教师适时地追问,学生自主设计计算平均数的方法,教师收集整理学生的计算方法,并统一计算形式,讲解权的意义及加权平均数.

  设计意图:追问1让学生理解问题2与问题1的有区别,问题2中的每个数据的“重要程度”不同,追问2让学生自主探究如何在计算平均数时体现的每个数据的“重要程度”不同,从而体会权的意义.

  (二)抽象概括,形成概念

  问题3 在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?

  《20.1.1平均数》课时练习含答案

  14.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为(  )

  A.14.15 B.14.16 C.14.17 D.14.20

  答案:B

  知识点:计算器—平均数

  解析:

  解答:本题要求同学们,熟练应用计算器.

  解:借助计算器,先按MOOE按2再按1,会出现一竖,然后把你要求平均数的数字输进去,好了之后按AC键,再按shift再按1,然后按5,就会出现平均数的数值.

  故选B.

  分析:本题要求同学们能熟练应用计算器,会用科学记算器进行计算.

  15.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的这组数据的平均数与实际平均数的差是(  )

  A.3.5 B.3 C.0.5 D.-3

  答案:D

  知识点:计算器—平均数

  解析:

  解答:利用平均数的定义可得.将其中一个数据105输入为15,也就是数据的和少了90,其平均数就少了90除以30.

  平均数:知识点

  引入新课:

  在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)

  知识与技能

  1、加深对加权平均数的理解

  2、会根据频数分布表求加权平均数,从而解决一些实际问题

  3、会用计算器求加权平均数的值

平均数教案6

  ⊙讲故事,激趣导入

  1.通过小猫钓鱼认识平均数。

  师:大家都听过小猫钓鱼的故事吧?今天老师也给大家讲一个小猫钓鱼的故事。

  师:在一个晴朗的午后,老大、老二和老三这三位猫兄弟到河边钓鱼。两个小时以后,它们各自数了数自己钓到的鱼,老大钓到7条鱼,老二钓到6条鱼,老三钓到2条鱼。老三看自己钓得这么少就哭起来了,原来猫妈妈说,今天谁钓鱼钓得最少就不能去观看森林卡拉OK大赛,于是老三哭得特别伤心,怎么哄也哄不好。这时老二说:“我有主意了。”你知道老二想出什么主意能让三位猫兄弟一起去观看森林卡拉OK大赛吗?你能用小棒代替鱼,摆出老大、老二和老三分别钓鱼的条数吗?

  (1)提出问题。

  怎样才能使老大、老二和老三钓到的鱼同样多呢?用小棒摆一摆,在小组内说说你的方法。

  (2)汇报。

  方法一:老大拿出2条鱼给老三,老二拿出1条鱼给老三,这样老大、老二和老三各有5条鱼,这种方法叫作移多补少法。

  方法二:把老大、老二和老三的鱼合到一起再平均分,每位猫兄弟都可以得到5条鱼,这种方法叫作先合并再平均分。

  师:这种方法你能列出算式吗?

  7+6+2=15(条) 15÷3=5(条)

  2.引出“平均数”。

  师:5条是老大钓鱼的条数吗?是老二和老三钓鱼的条数吗?(都不是)我们给“5条”起个名字,“5条”是三只小猫钓鱼的平均数,可以说平均每只小猫钓了5条鱼。

  师:今天我们就来学习什么是平均数,怎样求平均数。

  (板书课题)

  设计意图:从故事情境中引入要学习的内容,不仅激起了学生学平均数的欲望,还为这一课的学习创设了良好的开头。通过摆一摆,提前渗透移多补少的方法,降低了学习新知的.难度,使学生容易掌握解决问题的方法。

  ⊙自主探究,理解新知

  1.教学教材90页例题。探究用“移多补少法”求平均数。

  (1)(课件出示主题图)请学生观察统计表。

  提问:你从统计表中发现了哪些数学信息?

  根据学生的回答,老师再提问:由统计表你能看出淘气能记住几个数字吗?淘气平均每次记住数字的个数用几表示比较合适?

  出示智慧老人的说法:淘气平均每次记住6个数字。

  师:“平均每次记住6个数字”就是这5次平均每次记住的数字的个数同样多,都是6个。你们想知道这个数字“6”是怎么得来的吗?

  学生小组内操作:摆一摆或画一画,使5次同样多。

  (2)学生操作后汇报自己的想法。

  因为第5次和第3次记住数字的个数比较多,所以第5次给第1次1个,给第2次2个,第3次给第4次1个,这样淘气每次记住数字的个数都变成了6。

  (3)教师边演示,边总结。

  通过把多的补给少的,使每次记住数字的个数同样多,这种方法就是“移多补少法”。用这种方法,可以求出淘气5次平均每次记住数字的个数。

  2.探究用“算术法”求平均数。

  师:除了上面这种方法,你还有其他的方法吗?

  学生讨论后可得出:先把这5个数合起来,再平均分。

  师小结:“合”就是把这5个数加起来,然后平均分成5份,每一份就是平均数。

平均数教案7

  师:(看着生2)你能给你的这种方法取个名字吗?

  (由于平时有渗透过这种方法,生2很自然地说出是“移多补少”)

  师板书:算术法 移多补少法

  师小结:刚才生1和生2分别用算术法和移多补少法求出了第一组的平均数是83,那有谁求出第二组的平均数了?

  (生摇头,大胆学生说:除不尽的)

  师:(乘机)那你们有什么好办法?

  生:用我们学过的“估算”

  师:好,那你们试试吧!(指1名板演)

  板书:(78+83+82+83)/4~81

  师:从两组平均数83和81中,你知道了什么?

  生:第一组平均数大,所以还是第一组总体水平好一些。

  3、理解平均数的`意义

  师:第一组的83表示什么?你怎么理解“83”这个数?

  (引导学生明白:“83”是个“虚数”,第一组的83不表示每人真跳了83下,有可能小于83,有可能大于83,还有可能等于83。)

  师:通过刚刚的情景,当人数不相等,比总数不公平时,是谁帮助了咱们?(平均数),那你想对“平均数”说什么心里话?

  生(自由发言)生1:平均数,你真厉害,使不公平的事变公平了。

  生2:平均数,因为有了你,世界上才会太平

  4、沟通平均数与生活的联系。

  师:在平时生活中,你们见过平均数吗?

  生举例:统计考试成绩需要平均数;平均每月用电量;节目比赛打分用到平均数。

  (三)、联系生活,拓展应用

  1、多媒体呈现:下面是某县1999—20xx年家庭电脑拥有量的统计图。

  图略:1999年350台,20xx年600台,20xx年1000台,20xx年1600台,20xx年2500台

  (1) 求出这五年来,平均每年拥有电脑多少台?

  (出现算术法和移多补少法两种方法)

  (2) 估计一下,到20xx年这个县的家庭电脑拥有量是多少?为什么?

  (3) 从图上你还知道些什么?

  2、多媒体呈现一幅统计图,内容为:小刚家每个季度用水分别是16吨、24吨、36吨、27吨

  师:请你帮他算一算平均每月用水多少吨?应该选择哪个算式?

  (1)(16+24+36+27)/4

  (2)(16+24+36+27)/12

  (3)(16+24+36+27)/365

  a、生举手表决

  b、辩论交流得出正确答案(2)

  c、师生小结:计算平均数时,得从问题出发去选择正确的总数和总份数后,再总数/总份数=平均数

  (四)、总结评价,提高认识

  师:通过这节课的学习,你有什么收获?

  师:你觉得这些知识对你以后生活或学习有什么影响或作用?

  板书设计

  求平均数(算术法 移多补少法)

  第一组:(82+86+81)/3=83 第二组:(78+83+82+83)/4~81

  当人数不相等,比总数不公平时,我们就得看“平均数”。

  “平均数”是个“虚数”(大于平均数 ;小于平均数 ; 等于平均数)“平均数”可用来预测未来发展趋势。

平均数教案8

  导学内容:人教版小学数学教材第90~91页的例1、例2及相关内容。

  导学目标:

  1.使学生理解平均数的含义,初步学会计算简单的平均数的方法。

  2.感知平均数的范围。

  3.培养应用所学知识合理、灵活解决简单的实际问题的能力。

  导学重点:理解平均数的意义,掌握求平均数的方法。

  导学难点:理解平均数在统计学上的意义。

  教学准备:教师:多媒体;学生:收集自己的身高

  导学过程:

  一、预学--谈话导入

  师:期末考试成绩出来了以后,要想比较蓝鑫小组和长敏小组哪个小组的成绩好一些,怎么比较呢?

  生(预测):比较总分,看看哪个小组的总分高。

  生(预测):这样不公平,我们小组三个人,他们小组四个人。

  生(预测):应该比较平均成绩。

  师:对,应该比较他们两个小组的平均成绩。在我们数学的统计中,平均成绩也有一个名字,它叫做平均数。

  每年的四月七日是世界卫生日,环境卫生对我们的身体起着至关重要的作用。为了保护环境,我们学校的环保小队利用周末的时间去收集了很多的废旧塑料瓶。出示图,你能提出哪些数学问题?

  平均数教案

  出示自学小贴士,学生独立完成:

  1、自己想办法找出这几位同学收集的废旧饮料瓶的平均数,你有几种方法来解决。

  2、这个平均数表示什么?它是不是实际每个人收集废旧饮料瓶的数量?

  3、平均数与这组数相比,你有什么发现?

  独立完成后组内做好分工,在组内交流,看谁说得好,看谁听得认真!

  二、互学--小组交流,展示点拨

  1、小组交流

  师:已经计算出来的同学,小组可以在小组里面交流一下你的方法,比一比看哪个小组做的又对又快!

  生(预测):可以通过画图表来解决,每个人先都画出11个,然后将剩下的8个平均分下去,每人就是13个了;

  生(预测):把他们每个瓶子用一个圆圈表示,再进行移动,使每个人的瓶子一样多为止,这样把小红的一个移给小兰,小明移两个给小亮,这样每个人就一样多了;

  生(预测):可以把所有的.瓶子加起来,再平均分成4份,每份就是平均每个人收集的瓶子数量;

  2、展示点拨

  汇报预测:

  生1(预测):我们组认为可以移动瓶子,将小红移1个给小兰,小明移2个给小亮,最后每个人都是一样多;

  此时可展示移动瓶子的过程;

  生2(预测):我还有一种方法,可以把所有的瓶子加起来,再平均分成4份,每份就是平均每个人收集的瓶子数量;

  生3(预测):平均数就是把收集瓶子的总数平均分给4个人,每个人得到的数量。它不是实际每个人收集废旧饮料瓶的数量;(二年级学习的平均分的知识)

  生4(预测):平均数与这组数据相比,它不等于少先队干部收集废旧瓶的实际数量,(它比最大的数字要小,比最小的数字要大,居于这两个数中间)。

  师通过超链接小明下水游泳的问题,学生通过题可知平均数非实际数量,它大于一组数最小的数,小于一组数中最大的数。

  讲解:想一想:为什么要把小红的瓶子移给小兰?(小红的多,小兰的少)这样把多的移补给少的,让每个同学的瓶子数量同样多,我们叫这种方法为“移多补少法”(板书“移多补少法”)。我们还有一种方法,(14+12+11+15)÷4=52÷4=13(个),就是先求出这四个人收集的瓶子的总数量52(板书总数量),然后在除以总份数4人(板书总份数),13表示什么意思?他们每个人收集瓶子数量的平均数(板书平均数)。那么这个式子应该怎么表示呢?(平均数=总数量÷总份数。)

  归纳整理,总结方法:我们用“移多补少”的方法和计算的方法都得到了平均数是13个。平均数的求法:(1)移多补少;(2)平均数=总数量÷总份数。平均数的特征:它比一组数据中大于最小的数,小于最大的数,它表示统计对象的一般水平。平均数能较好地反映一组数据的总体情况。

  三、评学

  1、巩固反馈

  我们首先回到可得开始的时候这几位同学的介绍他们的身高,现在我们能计算出他们的身高了吗?(生齐做,选代表回答他的解答过程)

  下面是5位同学为灾区小朋友捐书的情况。

  姓名

  杨欣宇

  王 波

  刘真尧

  马 丽

  唐小东

  本数

  8

  6

  9

  8

  14

  平均每人捐了几本?

  (8+6+9+8+14)÷5

  =45÷5

  =9(本)

  2、拓展提升

  哪一组的成绩好?

  第一小组口算成绩表

  姓名

  孙红

  丁晓

  周玉

  李丹

  合计

  正确题数

  14

  10

  11

  9

  44

  第二小组口算成绩表

  姓名

  张华

  王明

  赵雪

  合计

  正确题数

  10

  12

  14

  36

  第一小组:(14+10+11+9)÷4 =11(道)答:第一组平均每人做对11道题。

  第二小组:(10+12+14)÷3 =12(道)答:第二组平均每人做对12道题。

  3、评价小结:

  通过今天这节课,大家有什么收获?小结:平均数是一组数据平均水平的代表,我们可以用“移多补少法”和平均分的方法算出平均数是多少。

  在我们生活中,平均数无处不在,请你读一读下面的话:

  1.春节期间丽江旅游人数平均每天为3万人。

  2.丽江旅游收入平均每天为500万元。

  3.丽江今年三月份平均每天气温是15摄氏度。

  4.我校三年级学生平均年龄是9岁。

  5.我校三(1)班平均身高是120厘米。

  6.王老师家20xx年平均每月用电85千瓦时。

  7.西部最缺水的地区,平均每人每天用水只有3千克。

  附:板书

  平均数

  移多补少法:将小红移1个给小兰,小明移2个给小亮,最后每个人都是13个。

  平均分:平均数=总数量÷总份数

  (14+12+11+15)÷4 =52÷4=13(个)

  5

平均数教案9

  教学内容:

  教学目的:

  1.使学生初步认识数据整理的方法,初步会看简单的统计表和条形统计图。

  2.使学生会进行简单的数据整理,能把整理的数据填入简单的统计表,并能在条形统计图中表示出来。

  3.使学生能根据统计表或条形统计图回答简单的问题。

  4.培养学生整理数据能力和根据统计表、统计图的问题进行分析综合的能力。

  5.对学生渗透初步的统计思想、实事求是的调查研究思想。

  教学重、难点:使学生初步认识简单的统计表和条形统计图,能根据统计表或统计图回答简单问题。把不完整的统计表或统计图补充完整。

  教学过程:

  一、引入新课

  结合时事,根据当前生活中一些热点问题的有关数据,引出在日常生活中经常需要调查统计一些事物的数目,这些事物的数目通常叫做数据(板书“数据”一词)。数据往往都是从生活实际中,通过认真的调查核实,一个一个地数出来的,是国家进行进一步统计、汇总,进而制订有关方针政策的原始依据,必须真实。而数据因为直接来自于生活,往往比较零乱,没有次序,显示不清主次多少。为了把调查结果表示得更清楚明了,就需要对数据进行一定的整理,今天我们就共同研究一下“简单的数据整理”(板书,把课题补充完整)

  二、探究新知

  1.出示例1,学生分布的挂图或小黑板。

  教师指出这张图是调查了四年级某班学生居住情况后制成的,通过这张图,一眼就可看出哪条街,哪条巷有这班学生,很形象,很直观。

  2.老师进一步引导,每条街,每道巷分别住了多少同学?哪条街,哪道巷住的人多?最多的比最少的多几个?全班共多少同学?这时如果只看图,要准确回答以上几个问题,很不容易。

  组织学生讨论,怎样做能使回答方便?

  学生汇报讨论结果:先逐街,逐巷数出人数,记住,再进行比较,回答出问题。

  3.教师指出:只看图不容易进行下一步的研究。我们先数一数各街巷的同学数,在图上标注上数字。数出的各街各巷的同学数,就叫做数据(渗透特点:来自于生活实际,是真实的。)

  启发学生:这些数据真实可信,但是比较零乱。我们能不能想一个办法把这些数据简单明了地表示出来,使别人不用再看图,就能一眼看出各街各巷住了多少学生,全班一共有多少学生呢?(组织学生分组讨论)

  4.学生汇报讨论结果。(讨论结果可能多种多样,只要有道理,就应加以肯定。从中再选出统计表的方案。)

  教师:以上各方法实际上都是对数据进行整理。

  我们先用画表的方法进行整理。出示下表(空表框)

  教师指出:第一栏不填写具体街巷名称,一般留作合计(一共多少人)。从第二栏起,逐一写街巷名。

  5.组织学生根据原始图填写,老师先带领学生填写两个街巷的数据,再让学生在其它街巷对应地方填写数据。学生先填写在书上23页的不完整统计表。然后问一共多少人,在合计栏中填出,形成完整的统计表。指出这样的表叫统计表。

  6.组织学生根据表回答问题:(投影出示问题)

  哪条街巷住的人最多,是多少?

  哪条街巷住的人最少,是多少?

  全班共多少人?

  7.认识条形统计图

  有时为更加形象直观表示数据的多少,也常用条形统计图来表示、条形统计图是用长方形来表示数据的。

  出示画有小方格的小黑板,说明每一格代表一个人,有几个人,就用几个小格表示,可以把这几个小格涂上色。

  老师先在纵向上注明人数0、5、10(单位:人)。再在横向上标明街巷名称,标注时相邻街巷名称间要空一格,以求容易区别和美观。然后根据学生口述,老师在相应地方涂色,制成课本24页上部的.条形统计图。

  8.看条形统计图,回答课本24页五个问题。

  9.反馈练习:在教师带领下完成课本24页做一做。

  教师先出示原题,指导学生弄清题意后,带领学生完成小芳的成绩:

  问:每一小格代表几米?小芳的成绩是多少米?应该涂几个小格?确定14个小格怎样确定较好?(找出15所对应的高度,向下数1格即可。不必从1数)

  其它同学的成绩要求同学们在书中填空完成,确定一名学生板演,集体订正,同桌间互相检查涂色是否准确。然后组织学生据条形统计图回答书中问题。

  [由于条形统计图是新接触,学生涂色有困难,从学生认知特点出发,教学时教师的引导示范不能太少。练习时,教师要先示范,后放开由学生自己完成。]

  三、巩固发展

  1.练习六第1题

  教师引导学生分组完成。重点引导:合计栏应该怎样填写?

  学生分组完成时,可以互相讨论研究。教师巡视时重点辅导学习有困难的学生。

  2.练习六第3题

  提示:先统一单位。并利用此题复习“平均”的含义,为下节课学习“求平均数”做铺垫。

  四、课堂小结:引导学生总结,知道了什么是数据,怎样整理数据,还学习了怎样填写统计表、统计图。

  五、布置作业:练习六第4题、第2题。(要求学生亲自去调查各班人数,独立完成。)让学有余力的学生试做第5*题。

  活动性作业:

  以学习小组为单位,利用周日时间进行专项公益劳动(如擦玻璃),分别记录每人擦的块数,然后把小组擦玻璃的情况制成统计表。要求统计表中能反映出每人擦的块数和小组擦的总块数。

平均数教案10

  教学内容:平均数第49页~50页例1以及想想做做。

  教学目标:

  1、使学生理解平均数的含义,初步学会简单的求平均数的方法。

  2、理解平均数在统计学上的意义,感受数学与生活的联系。

  3、发展学生解决问题的能力。

  重难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。

  一、激趣导入

  1、平时你们都喜欢玩什么游戏啊?(请2、3人说)

  2、师:昨天啊,四年级的小朋友正在进行一场激烈的套圈比赛,让我们一起去看看吧!

  二、教学新课

  1、谁来给我们介绍一下比赛规则。(请一个学生读)

  2、师:这场激烈的比赛结束了,你们最关注的问题是什么?(请2、3人说)

  生:男生赢还是女生赢?

  3、师:看来我们都比较关注到底是男生赢还是女生赢,那就让我们首先看看男生的比赛情况吧!(出示男生成绩统计图)。

  师:仔细观察这张统计图,你看到了哪些信息?(请2、3人说)

  你发现的真准,你一眼就看出来了,你观察地真仔细,真棒。

  4、看完了男生套圈的成绩,想不想看看女生的成绩。(出示女生成绩统计图)。仔细观察这张统计图,也请你说说看到了哪些信息?(请2、3人说)

  5、师:看了这些信息,你能不能说说到底是男生赢了还是女生赢?(请2、3人说)

  6、师:同学们说的都可真好,各有各的道理,老师都不知道听谁的了,你还有更好的办法介绍给老师吗?

  7、生1:看他们一个人套中了几个圈,(答案接近了,但是我们这是男生和女生进行的比赛,所以我们可以分别求出......谁能说的更清楚一些)生2:求男生和女生平均每人套中了几个圈。师:这是一个好方法。那你会求吗?拿出课堂本请你分别求出男生和女生平均每人套中了几个圈。做好的同学抱臂坐正。

  8、好,下面我们请同学先来汇报你是怎么求出男生平均每人套中的个数的。

  学生说,老师板书。那我们一起来看,他第一步求的是什么?(4个男生总的套圈数)他第二步表示什么意思?(把总数平均分成了4份,再求平均数)那谁来说说女生第一步求的是什么,那第二步呢?

  9、老师还有一个问题想考考你们,为什么第一个除以4,第二个要除以5呢?(男生是4个同学,用四个同学的总数平均分成4份,所以要除以4.女生是5个同学,用5个同学的总数平均分成5份,所以要除以5)你解释的可真清楚,真好。

  10、那现在你能来说一说平均数是怎么一步一步求出来的吗?先求什么,再求什么?(多请几位同学)(如果学生说不出来,可适当指着两个算式,提示)

  11、那你能不能总结一下平均数我们可以用怎样的公式表示出来。平均数=

  (请学生说,板书:平均数=总数÷个数)同桌互相说一说,再请个别学生说。

  12、刚才我们通过这个(平均数=总数÷个数)公式求出了平均数,你还有没有别的方法求平均数。(先请学生说,学生说不出,那老师来介绍移多补少的方法)

  13、老师这里有一种方法,我们一起来看看,最多的是谁,他套中了几个(请1人说)最少的是谁,他套中了几个(请1人说)。我们把张明的2个分一个给李小刚,再分一个给陈小杰,你们发现了什么?(4人同样多了)那4个人都是多少个?(请1人说)。那平均数是几呢?把多的分一些给少的,最终使得它们一样多,在数学上把这种方法叫做移多补少(板书:移多补少)

  14、谁能像老师刚才那样把男生移多补少的过程再说一遍?(请2人说)

  15、看黑板,我们刚才用了这2种方法求出了男,女生套中的平均数,那现在你知道谁赢了吗?(生:男生赢了)为什么男生赢了?那为什么平均数大的就赢呢?

  16、师:男生的平均数比女生大说明男生的整体水平比女生高。所有我们可以看出平均数只能表示出一组数据的整体水平。出示课件(整体水平)

  17、现在回头我们再来看男生的成绩,男生平均每人套中了7个圈,是不是就是说每个男生套中的圈数都比7多,为什么?(如果都比7多的话,那平均数还会不会是7?比7大)是不是就是说每个男生套中的圈数都比7少,为什么?(如果都比7少的话,那平均数还会不会是7?比7小)那当平均数是7的时候,说明有的数(比7大),有的数(比7小),那这题中平均数比谁小,比谁大?(平均数7比6大,比9小)。换句话说,平均数在什么和什么之间。(多请几个学生说)(出示课件:在最大的数和最小的数之间)。同桌互相说,再请2、3人说。

  18、我们再来看女生的成绩,你觉得女生套圈的平均数在谁和谁之间(10和4)(请2个学生)为什么?

  19、回顾一下,刚才我们是用什么知识来解决谁赢这个问题的(求平均数的方法)

  看来平均数的知识在我们生活中用处还是很大的。

  三、练习巩固

  平均数在我们生活中用处非常大,那我们下面就用平均数的知识来帮我们解决生活中的实际问题,我们一起来看。做练习时,小朋友可要开动小脑筋哦!

  1、数学书第94页第1题。

  小丽的书桌上有3个笔筒,学生读题,该怎样移动呢?你来说说看。看看你还能用什么方法解决。刚才我们通过移动和计算的方法都解决了这个问题,你比较一下,对于这题你觉得哪一种方法比较简单?

  2、小丽还有3条漂亮的丝带

  (1)老师想知道这3条丝带的平均长度,你会求吗。

  (2)还有没有其它方法。这题你为什么不用移多补少的方法(比较麻烦)看来啊,我们在计算平均数时,要根据题目的实际情况选择合适的计算方法。能一眼看出来的比较简单的题目我们就用移多补少的.方法,看不出来的复杂的题目我们就用计算的方法。

  3、为了使同学们对平均数的知识有更深刻的了解,我还给大家带来了一幅图片。(出示火箭队几个队员的合影)画面中的人,相信大家一定不陌生。生:姚明!

  师:没错,这是姚明所在的火箭队。老师从网上查到这么一个数据,火箭队队员的平均身高为202厘米。

  请同学们下面的话是否正确

  (1)火箭队所有队员的身高都是202厘米。

  (2)火箭队队员的身高有可能比202厘米高,也可能比202厘米矮。请学生说说理由。

  (3)老师选取了2个队员的身高,我们一起来看看是不是跟我们刚才说的那样(姚明的身高是226厘米,另一名178厘米)虽然平均身高是202厘米,但是并不表示每个人都是202厘米,有的比202厘米(高)有的比202厘米(矮)这都是有可能的。

  4、师:看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。这不,前两天,老师从网上查到这么一份资料。

  (师出示30年前中国男性的平均寿命大约是68岁,学生读。 《20xx年世界卫生报告》显示,目前中国男性的平均寿命大约是71岁)

  师:比较一下,发现了什么?生:中国男性的平均寿命比原来长了。

  师:是呀,平均寿命变长了,当然值得高兴喽。可是,一位70岁的老爷爷看了这份资料后,不但不高兴,反而还有点难过。这又是为什么呢?(这个老爷爷今年已经70岁了)

  生:我想,老爷爷可能以为平均寿命是71岁,而自己已经70岁了,看来只能再活1年了。

  师:老爷爷之所以这么想,你们觉得他懂不懂平均数。生:不懂!

  师:你们懂不懂?(生:懂)既然这样,那好,假如我就是那位70岁的老爷爷,你们打算怎么劝劝我?

  生:老爷爷,别难过。平均寿命71岁,并不是说每个人都只能活到71岁。

  生:老爷爷,我觉得平均寿命71岁反映的只是中国男性寿命的一般水平,这些人中,一定会有人超过平均寿命的。弄不好,你还会长命百岁呢!师:谢谢你的祝福!不过,光这么说,好像还不足以让我彻底放心。有没有谁家的爷爷已经超过71岁的?如果有,那我可就更放心了。生:我爷爷已经78岁了。生:我爷爷已经85岁了。师:真有超过71岁的呀!猜猜看,这一回老爷爷还会再难过吗?生:不会了。

  师:探讨完男性的平均寿命,想不想了解女性的平均寿命?(师呈现相关资料:中国女性的平均寿命大约是74岁)

  师:发现了什么?生:女性的平均寿命要比男性长。

  师:既然这样,那么,如果有一对60多岁的老夫妻,是不是意味着,老奶奶的寿命一定会比老爷爷长?生:不一定!说说理由。

  生:虽然女性的平均寿命比男性长,但并不是说每个女性的寿命都会比男性长。万一这老爷爷特别长寿,那么,他完全有可能比老奶奶活得更长些。

  5、下面还有一题,开动你的小脑筋好好想一想。学生读题。(1)平均每个盒子里放了6个球,1号放了4个,2号放了7个,3号放了几个?

  (2)平均每个盒子里放了6个球,这三个盒子可以分别放几个球?

平均数教案11

  教学目标:

  (一)知识与技能

  理解平均数的意义,初步学会简单的求平均数的方法。

  (二)过程与方法

  学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。

  (三)情感态度和价值观

  感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。

  教学重点:

  掌握求平均数的方法,“移多补少”“先合并再平分”的实际意义和应用。

  教学难点:理解平均数在统计学上的意义,灵活运用平均数的相关知识解决简单的实际问题。

  教学准备:多媒体课件

  教学过程:

  一、创设情境、生成问题

  师:生活中有很多地方用到平均数,(播放例子)那什么是平均数呢?怎样求平均数呢?今天我们就来探索平均数的奥秘。(板书:平均数)

  二、探索交流,解决问题

  1、平均数的意义和求法。

  师:读情境图,从图中知道了什么?你能根据统计图提出什么问题? (学生独立完成,小组交流,全班汇报)

  生1:从情景图中可以读出小红、小兰、小亮、小明分别收集了14、12、11和15个塑料瓶。

  生2:所解答的问题是平均每人收集了多少个。

  师:你能解释“平均每人收集了多少个”的意思吗? (小组交流,全班汇报)

  生:“平均每人收集了多少个”意思是把收集到的这些塑料瓶按照人数进行平均分配。也就是把收集瓶子数量较多的转移给数量较少的,最后达成每人收集的个数同样多。

  师:你能理解“同样多”是什么意思吗?

  生:每人收集的个数一样。

  师:那有什么方法能使每人收集的个数一样呢?

  生:像这样,通过把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多。师:这种方法叫“移多补少”,得到的这个相等的数叫做这几个数的平均数。

  师:还有其他方法能知道平均数吗?

  生:观察上图发现,还可以先求出塑料瓶的总数量,然后进行平均分配,可以求出平均每人收集的塑料瓶的个数。

  师:请用算式表示出来。

  生:(14+12+11+15)÷4

  =52÷4

  =13(个)

  答:平均每人收集了13个。

  师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,它是不是每个人真正收集的矿泉水瓶数量?引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的`总体水平。

  小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。

  刚刚我们初步学会了平均数的计算方法,接下来老师碰到了一个问题,你能帮我解决吗?

  2、进一步强调平均数的意义和计算方法。(出示教材第91页情境图和统计表)

  师:读图表,你能找出哪些数学信息?(学生独立完成,小组交流,全班汇报)

  生1:已知第4小组男生队和女生队踢毽比赛成绩表。

  生2:所求的问题是男、女两队,哪个队成绩好?(学生独立完成,小组交流,全班汇报)

  师:怎样列式解答呢?(学生独立完成,小组交流,全班汇报)

  生:男生队平均每人踢毽个数女生队平均每人踢毽个数

  (19+15+16+20+15)÷5 (18+20+19+19)÷4

  =85÷5 =76÷4

  =17(个) =19(个)

  17<19

  答:女生队的成绩好些。

  师:那我们来看看这两位小朋友做的。他们有什么不同的地方?你同意哪种方法?为什么呢?

  生:如果比较两队的总成绩,有失公平,因为两队的人数不同,所以比较两队的平均成绩比较公平些。

  师:对!在人数不等的情况下,用平均数表示各队的成绩更公平更好一些。

  师:那么问题来了,你觉得这个平均数会比原来的数的最大数大吗?会比最小的数小吗?

  三、巩固应用,内化提高

  在生活中我们也会遇到很多用到平均数的地方。接下来老师来考考你们学习的如何。

  四、作业

  1、做一做第1题

  2、判断题

  (1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。 ( )内容来自闪亮儿童网

  (2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。 ( )

  (3)小明所在的1班学生平均身高1、4米,小强所在的2班平均身高1、5米。小明一定比小强矮。 ( )

  3、做一做第2题

  4、游泳池的平均水深是120厘米,小明身高140厘米,他在游泳池中学游泳,会不会有危险?为什么?

  五、回顾整理反思提升

  师:通过本课学习,你有哪些收获?

平均数教案12

  教学内容:

  苏教版小学数学四年级上册第49—50页。

  教材分析:

  本节教学内容是安排在条形统计图的学习之后。通过前面的学习,学生已能准确地从条形统计图中去观察和收集数据,并会作简单的分析、归纳,回答相关的一些问题。本节课的内容是要在学生掌握、比较多组统计图数据的基础上引入平均数的概念。

  学情分析:

  在本节课内容学习之前,学生已经掌握了简单条形统计图的绘制及单个条形统计图内数据的分析、比较。可以通过观察统计图准确地比较出数量的多少及大小。例题中的情景也是学生生活中常见或类似的事情,学生分析起来也没有陌生感。

  教学目标:

  1.继续复习巩固条形统计图的学习。

  2.将条形统计图的认知与平均数的概念有机结合,进一步延伸对多组统计数据的整理、分析及计算。

  3.向学生灌输简单的平均数计算概念,让学生知道生活中很多地方都要用到平均数。平均数可以解决很多实际问题,从而将数学与生活紧密联系起来。

  设计理念:

  统计及分析条形统计图是将简单的统计概念灌输给学生,让学生明白一组或多组复杂的数据我们可以通过分析、整理,绘制成图表来达到直观效果,并根据图表进行计算,从而解决相应的问题。在本节课的'教学设计上我充分注意了以下几点:

  1.充分利用学生已有的知识概念。

  2.将新旧知识进行对比,激发学生探究新知的欲望。

  3.引导学生自主学习。通过讨论、动手操作,归纳新知。

  4.将知识延伸到课外,与生活紧密联系,让学生感受到生活中处处有数学,激发学生学习数学的兴趣。

  教学重点:

  学会对多组统计图中的数据进行综合分析比较的方法,会计算平均数。

  教学难点:

  平均数概念的引入及平均数的计算。

  教学具准备

  多媒体课件,每5人一小组准备的十八枝小棒、三个纸盒。

  教学方法:

  创设情景法、启发谈话法、尝试法、启发讲解法等。

  教学过程:

  一、旧知回顾,谈话导入。

  1.请学生说说统计表及条形统计图各有什么特点。

  2.谈话:上学期期末考试,四(1)和四(2)班进行了一场数学小竞赛,最后四(2)班得了第一名。这两个班的人数和每人考的分数都不一样,怎么就知道哪个班考得好呢?老师们是怎么算的呢?(这个过程中可能有学生回答到用“平均分”来计算的。如果提到“平均分”教师可以抓住时机及时板书“平均”两字。)这节课我们就一起来解决这个问题。

  【设计意图:通过复习旧知让学生掌握条形统计图的特点。引入两班考试的事例让学生想到“平均分”的概念,为后面平均数的学习作铺垫。】

  二、新知探究

  1.课件出示例3情景图,解说图意。

  2.课件出示男生套圈成绩统计图。提问:谁套得最准?同样方法出示女生套圈成绩统计图并提问。

  3.同时出示两组统计图。

  提问:这是男女生的比赛成绩统计图,男生和女谁套得准一些呢?

  【设计意图:先单个出示统计图是为了巩固旧知识,突然同时出现两组统计图并抛出问题是将学生的思维拉回,引起他们对新知识的重视和思考】

  4.引导学生展开讨论,并对学生提出的方法进行归纳,质疑。直到学生说出“求男女生平均每人套中的个数”为止,这其中老师可以用前面讲到的“平均分”概念进行引导。

  5.适时提问:如何求出男生和女生平均每人套中的个数呢?

  【设计意图:学生通过自由讨论会发现自己的方法是否正确科学。“平均分”的概念会给学生很好的启发。】

  6.学生尝试在统计图中通过移动长方块来达到大家都一样的结果。教师巡视引导,并发现方法得当的学生。

  7.请学生发言,畅谈自己的方法及结果。教师根据学生的发言板书。

  【设计意图:这一活动既让学生动了手也动了脑,再加上老师的适时引导,他们会通过移动方块和计算找到最恰当和最简便的方法来找到“平均数”,新知学习也就水到渠成了。】

  8.师总结:可以通过“移多补少”法和计算法得到“平均数”。引入“平均数”概念,并告知学生平均数能较好地反映出一组数据的总体情况,并可对多组数据进行综合比较。

  三、拓展延伸,巩固学习

  动手分一分

  1.将学生5人一组进行分组。让每组学生把十八枝小棒按5、6、7根的要求分别放到三个小纸盒内。

  2.动手分一分,使每个纸盒内的小棒根数相同。看哪组最快最准地完成任务。

  3.让分得好的小组发言总结。

  动手算一算

  1.师问:刚才大家很快就分好了,如果现在是180根小棒按不同的根数插入三个纸盒内再分一样多会怎样?

  2.引导学生思考:可以利用刚才学的知识进行计算。师对两种方法再进行比较,并总结。

  【设计意图:通过补充练习让学生切实感受到了计算“平均数”的方便和重要,也巩固了学生对平均数的计算】

  四、归纳总结

  1.通过今天的分一分,算一算,同学们有什么收获?

  2.现在谁来说一说四(1)班和四(2)的“平均分”是怎么回事?

  板书设计:

  平均数

  男生 女生

  6+9+7+6=28(个) 10+4+7+5+4=30(个)

  28÷4=7(个) 30÷5=6(个)

  平均数: 7 平均数: 6

平均数教案13

  设计说明

  数学问题来源于生活,并应用于生活。教材统计了学生踢毽的个数并通过比较男、女两队哪个队踢得多,提出数学问题。课堂再现踢毽比赛情境,学生统计比赛结果后,发现参赛男、女生人数不同,无法直接判断哪队胜,引出数学问题,激发学生的求知欲望,进而让学生探究解决问题的方法。

  1.本节课重点创设在课堂上现场进行踢毽比赛的情境,让学生感受到平均数在生活中的重要作用,并在解决问题中感受:在数据个数不等的情况下,每组数据的总和不能反映总体情况,而用平均数才能反映每组数据的整体水平,从而加深学生对平均数的含义的理解。

  2.教师与学生只是角色上的不同,在人格上是平等的。教师必须尊重学生的人格、思想感情、健康的个性并接受学生提出的合理要求,营造和谐平等、相互尊重、轻松愉悦的学习气氛。学生在这样的.气氛下讨论怎么比较哪队胜合理时,才会开动脑筋认真思考、踊跃发言、大胆回答。

  课前准备

  教师准备多媒体课件调查表统计表

  学生准备调查表统计表

  教学过程

  ⊙创设情境,引入新课

  1.同学们喜欢哪些体育运动呢?今天我们在课堂上就进行一场踢毽比赛,男生队选出5名代表,女生队选出4名代表,选两名同学做监督员,两名同学做成绩记录员。

  2.开始比赛,记录成绩。

  男生队

  姓名

  踢毽个数

  女生队

  姓名

  踢毽个数

  3.比赛结束了,哪个队的成绩好呢?

  ⊙引导启发,探究新知

  1.××小学也举行了踢毽比赛,看教材91页中的数据,我们怎么才能知道哪个队的成绩好呢?请同学们借助课堂活动卡,小组讨论交流。(出示课堂活动卡)

  2.小组汇报。

  生1:我们小组通过讨论、交流认为:要想知道哪个队的成绩好,算一算每个队踢毽的总数就可以了,总数多的就代表成绩好。

  生2:我们小组不同意这种做法,这样不公平,因为两队的人数不一样。

  生3:我们小组认为用每队的平均成绩来比较是合理的。男生队平均每人踢毽个数是(19+15+16+20+15)÷5=17(个),女生队平均每人踢毽个数是(18+20+19+19)÷4=19(个)。通过比较平均数得出:女生队的成绩好。

  师:现在同学们用上面求平均成绩的方法来解决上课开始时提出的男生队和女生队哪个队的踢毽子成绩好的问题。

平均数教案14

  教学内容:求平均数的问题--教材第27-29页例2-3,做一做题目及练习七1-2题。

  教学目的:使学生理解平均数的概念,掌握简单的求平均数的方法,培养学生分析、综合能力。

  教学过程:

  一、复习

  1、口算:

  (38+32)÷2(63-27)÷9(30+55)÷5(7+9+6+8)÷3

  2、解应用题:

  一个杯子里的水深16厘米,把水平均倒在同样的4个杯子里,平均每个杯子里水深多少厘米?

  二、新课

  1、用谈话法引入。

  刚才做的“把一个数平均分成几份,求每份是多少”的简单应用题,是以前学的。在实际生活中,我们还经常遇到要求解答这样的问题:语文、数学等各科的平均成绩,汽车的平均速度,一群人的平均身高,工厂里的平均产量等等,这类问题是求平均数问题。今天我们一起来学习求平均数问题,看与过去所学的有什么不同的地方。

  2、教学例2。

  (1)出示例2。让学生默读题目,理解题意,明确条件及所求问题。

  (2)教师演示,学生观察、思考。

  拿出盛着水的4个同样的杯子,杯壁贴有标明刻度的纸条,每个杯子的盛水量与课本中上图的相同。

  问:这4个杯子的水面高度相等吗?

  求这4个杯子水面的平均高度是什么意思?

  (4个杯子里的水同样多棗高度相同。)

  怎样使这4个杯子里的水高度相同?

  指导学生操作。

  让学生拿出准备好的学具卡片,把表示水量的蓝色纸条摆在四个白杯子上,使四个杯子里的水高度相同。操作之后让学生说一说自己是怎样摆的。

  启发学生想:把4杯水倒在一起,再平均倒在4个杯子里,得到平均高度。

  教师演示。

  出示挂图。(把课本上的下图制成挂图,图中的'“4厘米”和虚线用红色标明。)指出用红色虚线标明的地方(4厘米)就是它们的平均高度。并和演示作对照。

  问:这个平均高度是怎样得来的?(它是把4个杯子里的水平均分的结果。)

  (3)指导列出算式。

  问:如果不用倒水,我们有办法计算出这个平均高度吗?

  让学生说出想法,并用式子表示:

  (6+3+5+2)÷4

  指导学生阅读课本“想”这一部分,并与自己是怎样想的相对照。

  指名学生说出式子的意义,强调“4厘米”是平均数。

  区别例2的“4厘米”和复习题的“4厘米”的意义。

  3、做第29页上“做一做”中的第1、2、3题。

  教师巡视,辅导差生。

  订正时让学生讲思考过程。

  4、启发学生说计算方法。

  问:从刚才做的几道题中,你能说一说求平均数的一般计算方法吗?

  (要求学生在理解的基础上掌握算法,不要求学生把算法抽象为公式。)

  5、教学例3。

  出示例3。让学生默读,理解题意,明确条件和所求问题。

  问:怎样求哪一组平均身高高一些?怎样计算出“高多少”?

  启发学生想:如一个一个地比,非常麻烦,而且不容易比清楚。先算出各组的平均身高,就容易比较了。

  让学生运用从例2中学到的方法,自己求出两组各自的平均身高,再求出哪个组平均身高高一些,高多少。

  然后提问:如果不求平均身高,直接用各组所有人身高的和进行比较行不行?为什么?

  使学生明确:由于两组人数和每人的身高不一样,不能直接比较,而只能用平均身高进行比较。

  三、巩固练习:练习七第1、2题。

  四、小结(略)

平均数教案15

  一、教学目的

  1.使学生了解计算器上有关统计计算的符号.

  2.使学生会用计算器求一组数据的平均数、标准差与方差.

  3.使学生体会到用计算器统计的省时、省力的优越性.

  二、教学重点、难点

  重点:掌握用计算器计算平均数、方差的方法.

  难点:计算器上符号的准确识读与应用.

  三、教学过程

  复习提问

  1.我们学过哪些计算一组数据的平均数的方法?

  2.我们学过哪些计算一组数据的方差与标准差的'方法?

  引入新课

  随着科学的进步,一些先进的计算工具逐步进入千家万户,我们可以用这些计算工具来进行计算.本课我们学习用计算器计算一组数据的平均数与方差的方法.

  新课

  让学生阅读并在教师指导下计算教材例中两组数据的平均数、标准差与方差.同时,通过应用计算器,了解的作用.

  接下来让学生作如下练习:

  填空题:

  2.计算器中,STAT是____的意思,DATA是____的意思.

  3.计算器键盘上,符号σ与书中符号____意义相同,表示一组数据的____.

  4.在CZ1206型计算器上设有标准差运算键,而未设____运算键,一般要通过将标准差____得到____.

  选择题:

  1.通过使用计算器比较两组数据的波动大小,只需通过比较它们的____即可[ ]

  A.标准差B.方差

  C.平均数D.中位数

  2.如果有重复出现的数据,比如有10个数据是11,那么输入时可按[ ]

  3.用计算器计算样本91,92,90,89,88的标准差为[ ]

  A.0 B.1 C.约1。414 D.2

  4.用计算器计算7,8,8,6,5,7,5,4,7,6的平均数、方差分别为[ ]

  A.6。3,1。27 B.1。61,6。3

  C.6。3,1。61 D.1。27,1。61

  教师可先用投影片(或小黑板或示意图纸)写好操作效果图和学生的计算结果进行对比.

  接下来师生共同继续作课本上练习

  小结

  1.熟悉计算器上各键的功能.

  2.学会算(用计算器)平均数、标准差、方差.

  四、教学注意问题

  1.本课教学内容关键是动手,要让学生动手作,为帮助学生中动手能力差者,要提倡互相帮助.

  2.学生做作业时可提示他们可核对以前的题目的准确性.

【平均数教案】相关文章:

《平均数》教案03-29

平均数与条形统计图教案12-07

《平均数》说课稿01-16

平均数教学反思09-07

平均数的教学反思04-15

平均数教学反思04-28

《平均数》教学反思09-06

平均数的应用教学反思04-15

数学《平均数》教学反思03-14

《求平均数》教学反思04-28