六年级数学《按比例分配》教案

时间:2024-04-09 11:59:37 教案 我要投稿
  • 相关推荐

苏教版六年级数学《按比例分配》教案

  作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,借助教案可以有效提升自己的教学能力。教案应该怎么写呢?下面是小编整理的苏教版六年级数学《按比例分配》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

苏教版六年级数学《按比例分配》教案

苏教版六年级数学《按比例分配》教案1

  教学内容:

  教科书第75页例5及相应的"试一试"、"练一练"和第76页练习十四1~4题。

  教材分析:

  本课教学,重在引导学生应用比的意义解答有关按比例分配的实际问题。学生在学习的过程中,进一步体会数学知识间的内在联系,建立合理的认知结构。

  教学目标:

  1.使学生理解按比例分配的意义。

  2.初步掌握按比例分配应用题的特征及解题方法。

  3.培养学生应用所学的比的知识解决实际问题的能力,增强学生自主探索与合作交流的意识,提高学好数学的自信心。

  教学重、难点:

  1.重点:掌握按比例分配问题的解题方法。

  2.难点:理解按比例分配的意义和这类问题的特征。

  教具准备:

  教学课件

  一、复习引入

  1、根据条件,提问。

  已知六 (3)班女生人数和男生人数的比是1:2

  师问:根据这句话,你想到了什么?

  (生答)

  2、六(3)班和二(3)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

  1.学生口答:100÷2=50(平方米)

  2.教师提问:这是一道分配问题,分的`是什么?(100平方米)怎么分?(平均分)

  六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?

  3.谈话引入。

  在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题.(板书:分配)

  二、学习新知

  1、把复习题2增加条件"如果按3∶2分配,两个班的保洁区各是多少平方米?"

  2、教师提问

  ①.这次分的是什么?(100平方米)

  ②.怎么分?(按3∶2分)

  ③求的是什么?

  3、思考:由"按3∶2分配"这句话你可以联想到什么?

  4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?

  5、这道题做得对不对呢?我们可以怎么检验?

  ①.两个班级的面积相加,是否等于原来的总面积.

  ②.把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3∶2.

  6、教学试一试

  如果把上题中的100平方米的保洁区按2:3:5分给六(1)、六(2)、六(3)这三个班级,那么每个班的保洁区各是多少平方米?

  学生动手做一做,全班讲评。

  7、小结

  观察以上两道例题,它们有什么共同特点?(都是把总数按照一定的比分成几部分,求每部分是多少)。像这样把一个数量按照一定的比来进行分配,这种分配方法叫做按比例分配。 这类应用题可以样解答?

  (解答时都可以把比看成各占多少份,先求出每份是多少,再分别求几份是多少,也可以把比转化成分数,即各部分占总数的几分之几,再用分数乘法计算。)

  下面我们就来做几道按比例分配的实际问题。

  三、巩固练习

  1、练一练第1、2题。

  问:把180块巧克力按班级人数的比分给三个班,就是把180按什么比来进行分配。

  学生再独立解答,2人板演。

  2、挑战第一关

  已知六 (3)班女生人数和男生人数的比是1:2 ,________,男、女生各有多少人?

  3、挑战第二关

  做练习十三第2题。

  让学生先看图估一估比赛已用去的时间与剩余时间的比,交流结果。

  学生按要求计算。

  4、挑战第三关

  做练习十三第4题。

  引思:题中只有比,没有总量,如何解决?(引导回忆直角三角形中两个锐角的和是90度,本题就是把90度按3:2的比例来分配。)

  4、挑战第四关

  判断

  一个长方形周长是20厘米,长与宽的比是7∶3,求长与宽各是多少厘米?

  7+3=10 20× =14(厘米) 20× =6(厘米)

  5、走进生活

  有些同学不但数学学得好,还十分爱看书。学校校长非常支持,决定投入6000元,添置一些科技书、故事书和优秀作文选。假如你是校长,会把这6000元按照怎样的比来分配?

  1:2:3代表什么?你为什么要这样设定?

  1:1:1表示什么意思?(平均分)

  请你选择其中的一个比,算一算各花多少钱?

  反馈交流。

  有用1:1:1来解的吗?哪种解法最简单?

  按1:1:1分配就是平均分,平均分是特殊的按比例分配。

  四、课堂小结

  今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?你能举例说说生活中按比例分配的问题吗?(课件演示:生活中的数学)

  五、课堂作业

  书练习十四第1、2、3、4题。

苏教版六年级数学《按比例分配》教案2

  教学目标

  1.使学生理解按比例分配问题的意义。

  2.使学生掌握按比例分配应用题的结构及解答方法。

  3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。

  教学重点和难点

  1.理解按比例分配问题的意义。

  2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。

  教学过程设计

  (一)复习准备

  1.复习比的有关知识,为学习新知识做准备。

  已知六年级1班男生人数和女生人数的比是3∶4。

  男生人数与全班人数的比是( )∶( )。

  女生人数与全班人数的比是( )∶( )。

  2.创设情境,提出课题。

  (1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)

  提问:妈妈是怎样分的?(平均分)

  (2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)

  提问:这样分还是平均分吗?

  日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。

  (二)学习新课

  1.讲解例2。

  例2 一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?

  (1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?

  (2)分析思考:看到播种大豆和玉米面积的比是3∶2这句话你想到了哪些倍数关系?小组讨论。

  ④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的

  各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。

  (3)解答例2。

  ①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?

  ②说说你是怎样做的?

  方法a:3+2=5

  播种大豆的面积 10053=60(公顷)

  播种玉米的面积 10052=40(公顷)

  方法b:总面积平均分成的份数为

  3+2=5

  ③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)

  说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就

  (4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)

  2.练习:第62页中的做一做(1)。

  六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?

  (1)弄懂题意。

  (2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。)

  (3)独立完成。组员之间互相检验。

  3.学习例3。

  例3 学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

  (1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)

  (2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?

  (3)请你在练习本上独立完成。

  ①三个班的总人数:

  47+45+48=140(人)

  ②一班应栽的棵数:

  ③二班应栽的棵数:

  ④三班应栽的棵数:

  答:一班、二班、三班分别栽树94棵、90棵、96棵。

  (4)同组同学互相检验。

  4.练习:第62页中的`做一做(2)。

  一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?

  (1)在练习本上独立完成。

  (2)同组同学互相检验。

  (三)课堂总结

  今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)

  回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。

  (四)巩固反馈

  1.填空练习:

  ①把35千克苹果平均分成7份,每份( )千克,2份( )千克,5份是( )千克。

  2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭?

  3.第62页的做一做(3)。

  一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?

  与练习题2有什么区别?

  如果求它的最短边、最长边怎么求?

  4.判断练习:(正确举,错误举)

  一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?

  (五)布置作业

  第63页第1,2,3,4题。

  课堂教学设计说明

  本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。学习新课部分中,例2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。巩固反馈部分由易到难,逐步提高。第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。

  本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。

苏教版六年级数学《按比例分配》教案3

  按比例分配实际问题专项复习

  教学内容:复习按比例分配应用题

  教材分析:

  《按比例分配问题》是在学生理解了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,它是"平均分"问题的发展,掌握了按比例分配的解题方法,不仅能有效地解决生活、生产中把一个数量按照一定的比进行分配的问题,也为"比例""比例尺"奠定了基础。

  由于这是临时加入的一课时,我们在设计的时候着重复习基本的三类按比例分配实际问题的基本题型和基本解题方法。我们主要让学生掌握找准对应份数,用归一法来解答此类实际问题。在学生熟练掌握解题方法后,我们还安排了一些比较难的、容易出错的习题,帮助学生建构按比例分配的知识网络,培养学生解决问题的能力。

  教学目标:

  1、通过复习使学生熟练地掌握按比例分配应用题的结构特征,并能沟通联系不同题型之间的联系和区别。

  2、通过复习使学生掌握按比例分配的基本解题方法,并能灵活的运用所学知识加以区别与解决问题,从而提高学生解决实际问题的能力。

  3、使学生能养成良好的.学习习惯,提高学生分类、比较、归纳等的数学学习能力。

  4、培养探究意识、合作意识、搜集与分析信息意识,获得成功的体验。

  教学重难点:熟练掌握按比例分配的题型和解题方法,提高解决问题的能力。

  教学准备:多媒体课件

  教学过程:

  一、归纳三类按比例分配应用题的特征与解题方法

  导语:前面我们已经对比和比例的相关知识进行了梳理复习,今天这节课我们就对其中的按比例分配实际问题做一个专门的复习。

  1、请同学们看黑板,黑板出示:六(1)班男、女生人数比是3:2

  师:根据男女生人数比,你了解了哪些信息?

  生交流(男生3份,女生2份,男生是女生的几分之几,女生是男生的几分之几,男生是全班人数的几分之几,女生是全班的几分之几……)

  2、你能再添一个条件并提出问题,成为一个应用题吗?小组合作完成,看有多少种方法。

  交流:根据学生叙述师板演出按比例分配三种类型

  (1)、六1班有50人,男女生的比是3:2,男女生各有几人?

  (2)、六1班男生有30人,男女生的比是3:2,女生各有几人?全班有多少人?

  (3)、六1班男生比女生多20人,男女生的比是3:2,女生各有几人?全班有多少人?

  这三个题目有什么区别和联系。(都告诉了我们男女生的比,第一题已知的是总量,第二题已知的是部分量,第三题已知的是相差量。)

  3、那么这些题目该怎么解决呢?

  (1)、先来说说第一题该怎么解答?强调:这里的总量50人对应多少份?先求出每份数,再看问题对应几份?

  (2)、第二题中的部分量30人对应多少份?怎么求每份数?问题对应几份?

  (3)、第三题中的相差量20人对应几份?怎么求每份数?问题对应几份?

  4、小结方法。

  像刚才这三道题目就是按比例分配的实际问题,我们该如何来解答这类应用题?

  交流方法:不管是总量比、部分比、相差比的应用题都是先找到题目中的已知量所对应的份数,求出每份数,再看问题所对应的份数,求出问题。

  着重强调:主要是两次找对应份数,一次是找已知量的对应份数,一次是找问题的对应份数。

  二、找对应份数专项练习

  从刚才的题目,我们可以发现,解决按比例分配实际问题的过程中,最重要的是什么?

  那么下面我们就来找找这些语句中的对应份数。

  1、现在有121克药水,它是由药粉和水按1:10的比配制而成的。

  药粉对应()份,水对应()份,药水对应()份。

  2、学校买来3包少儿读物,每包50本,按7∶8分给五、六两个年级。

  3包少儿读物有()本,它对应()份。

  3、饲养场养的鸡、鸭、鹅只数的比是5:3:2,已知鸡与鸭共养了1600只。

  1600只对应()份,如果鸡、鸭、鹅共养了1600只,1600只对应()份

  4、老年教师28人,中年教师35人,青年教师42人,按人数比选拔15人去参加座谈会。

  15人对应()份

  5、长方形的周长30厘米,长与宽的比是3∶2。

  30厘米对应()份。5份对应()厘米。

  6、一个等腰三角形两个内角度数的比是1︰2,180度对应()份,180度对应()份

  三、解决实际问题

  1.配制一种药液,药粉和水的质量比是3:400。

  (1)要配制1612克这样的药水,药粉需要多少克?

  (2)用48克药粉,可以配制成多少克药水?

  (3)600克水中应加药粉多少克?

  只列式不计算。第一题注意求出每份数之后不要忘记乘以3.

  2.果园里的桃树与苹果树的比是3:5,苹果树比桃树多种了320棵,果园里一共种了多少棵树?

  320棵对应几份?注意问题求的是什么,问题的对应份数是多少?

  3、一种混凝土是由水泥、黄沙、石子按2:3:5的比配制而成,要配制120吨这样的混凝土,三种材料各需多少吨?如果这三种材料都有18吨,当黄沙全部用完时,水泥还剩多少吨?石子呢?

  这里的18吨应该对应几份?当黄沙全部用完的时候水泥和石子各式怎么样的情况?

  四、拓展练习

  1、一个等腰三角形的周长是80厘米,其中两条边的长度比是1:2,那么这个三角形的三条边分别是多少厘米?

  不同的两边之比,周长所对应的的份数也不同,而且必须满足两边之和大于第三边,所以有可能只有一种成立的情况。

  2、用56米长的竹篱笆靠墙围成一个长方形的鸡圈,长与宽的比是3:2,这块鸡圈的面积最大是多少平方米?

  注意有两种情况,必须把两种情况都算出来才能知道哪种面积更大。

  3、甲箱有100个苹果,乙箱有80个苹果,从甲箱中拿出多少个放入乙箱后,甲、乙两箱的个数比是7:11?

  两箱苹果都在变化,这时要找出其实总箱数不变。

  五、全课总结

  今天我们复习了按比例分配的实际问题,你有什么收获?

  板书设计:按比例分配复习

  六1班男女生的比是3:2

  1、六1班有50人,男女生各有几人?(总量比)

  2、六1班男生有30人,女生各有几人?(部分比)

  3、六1班男生比女生多20人,女生各有几人?(相差比)

  已知量对应几份每份数问题对应几份求出问题

  作业设计:

  1、三角形的三个内角的比是1:2:3,这是一个什么三角形?

  2、开学前六年级三个班共领了练习本532本,六1班有40人,六2班有48人,六3班有45人,按三个班的人数比将这些练习本分配给三个班,三个班各应分得多少本?

  3、用144厘米长的铁丝围成一个长方体,长宽高的比是5:3:4,那么这个长方体的体积是多少立方厘米?

  4、小明期末考试语数外三门的平均分是75分,语数外三门的分数比是8:8:9,他期末考试三门各考了几分?

  5、一个等腰三角形的周长是80厘米,其中两条边的长度比是1:2,那么这个三角形的三条边分别是多少厘米?

  6、用56米长的竹篱笆靠墙围成一个长方形的鸡圈,长与宽的比是3:2,这块鸡圈的面积最大是多少平方米?

  7、甲乙丙三人合作制作一批600个的零件,甲完成了这批零件的20%,余下的由乙丙按5:3来完成,乙、丙各完成了多少个零件?

  8、果园里有桃树、梨树和苹果树,桃树与梨树的比是4:3,梨树与苹果树的比是2:5,三种树共有1450棵,三种树各有几棵?

苏教版六年级数学《按比例分配》教案4

  教学内容:按比例分配相关练习题。

  教学目标:进一步掌握按比例分配问题的特征与解题方法,能运用所学知识灵活解决一些生活中的实际问题。

  学情分析:学生学完按比例分配问题一段时间后,部分基础较差的学生对这部分知识可能已经生疏或遗忘,非常有必要进行"温故"。

  教学重点:掌握按比例分配问题的特征和基本解题思路。

  教学难点:按比例分配问题的变形(总数和份数变化)练习。

  教学过程:

  一、复习导入

  1、按比例分配问题的基本特征。

  已知:总数量

  各部分量的比

  2、按比例分配问题的基本解题方法。

  求总份数

  求各部分占总数的几分之几

  求各部分的量:总数×()()

  二、基本练习

  1、口答:

  男生人数与女生人数的比是5:4

  男生占总人数的几分之几?

  女生占总人数的几分之几?

  母鸡只数是公鸡只数的1.6倍

  母鸡只数与公鸡只数的比是():()

  母鸡只数占鸡总只数的几分之几?

  公鸡只数占鸡总只数的几分之几?

  2、解答下列各题:(集体练习)

  果园里共有桃树和梨树360棵,桃树与梨树棵数的比是7:5。桃树和梨树各有多少棵?

  小玲家共养了鸡鸭鹅三种家禽3600只,它们的只数比是18:11:7。三种家禽各有多少只?

  三、变形练习

  1、总数变化(板演讲评)

  幼儿园买来5盒饼干,每盒60块。如果把这些饼干按2︰3分给小班和中班,中班和小班各分到多少块饼干?

  李红期末考试语数英三门学科的平均分是90分,三门学科分数的比是11:9:10。李红同学语数英的成绩各是多少分?

  六年级三个班共做好事180件,其中的是六(2)班做的,六(3)班和六(1)班做的好事件数比是4︰1,六(1)班和六(3)班各做多少件好事?

  2、隐藏的比(独立完成、讲评)

  等腰三角形的顶角与一个底角的度数比是3︰1,这个等腰三角形的三个内角各是多少度?

  四、形体知识中的按比例分配问题。

  1、一个长方形的周长是40米,长与宽的比是3︰2,这个长方形的面积是多少?

  2、一个长方体的.棱总长是120厘米,长、宽、高的比是5:3:2,求这个长方体的体积。

  五、善用份数

  1、六(1)班小聪家养母鸡600只,公鸡与母鸡只数的比是3︰5,公鸡有多少只?

  2、六(1)班小聪家养鸡600只,公鸡与母鸡只数的比是3︰5,公鸡和母鸡各有多少只?

  3、小聪家养公鸡与母鸡只数的比是3︰5。已知公鸡比母鸡少600只,小聪家养的公鸡和母鸡各有多少只?六、溶液中的比

  配制一种药液,药粉和水的质量(重量)比是1︰50。

  ①配制1020千克这种药液,需要药粉和水各多少千克?

  ②5千克药粉要加水多少千克?可配制成多少千克药液?

  ③500千克水中应加多少千克药粉?

  七、练习巩固(独立完成)

  1、小金看一本故事书,已经看了60页,这时已看的页数与剩下的的页数比是4:9。这本书一共有多少页?

  2、一种三丁包的馅是由猪肉、笋干、豆腐干按5︰3︰2配制而成的。

  ①配制60千克这种馅,需要猪肉、笋干、豆腐干各多少千克?

  ②如果用18千克豆腐干配制这种馅,需要猪肉、笋干各多少千克?

  ③如果猪肉、笋干、豆腐干各有30千克。配制这种馅时,要使笋干正好用完,猪肉和豆腐干多了还是少了?多(少)多少千克?

  八、巧思妙想(辅导讲解)

  A:小春身上带的钱比小杰多10元,如果小杰的钱用掉50元后,小春与小杰钱数的比是7︰4,两人原来各有多少钱?

  B:小春身上带的钱比小杰多10元,如果小杰给40元钱小春后,小春与小杰钱数的比是7︰4,两人原来各有多少钱?

  C:甲乙两个自然数的和是473。如果甲数末尾去掉一个0,那么甲乙两数一样大。甲乙两数各是多少?

苏教版六年级数学《按比例分配》教案5

  教学内容:

  苏教版数学第十一册第58—59页,例2、例3

  教学要求:

  1、联系生活实际,使学生理解按比例分配问题的意义。

  2、使学生认识按比例分配应用题的结构特点和解题思路。

  3、能运用所学的知识,正确解答按比例分配应用题。

  教学重点:能够应用已有知识解答按比例分配应用题。

  教学难点:如何应用比的知识解决生活中的实际问题。

  设计思路:

  1、给学生提供现实生活中的素材,理解按比例分配的意义。按比例分配问题是把一个数量按照一定的比例进行分配。它是"平均"问题的发展。显然平均分是按比例分配的特例,解决这些问题需要老师为学生提供他们所熟知的材料,如中奖金额如何分配等,让学生学习身边的数学。

  2、发挥学生的主体作用,引导学生合作学习,主动探索。在教学中教师鼓励学生解决问题的多样化,充分展开学生的思考过程,引导学生之间的讨论和辩论,让学生在讨论和辩论中相互启发、质疑,从而促进学生思维能力的提高。

  教学过程:

  一、创设情境

  同学们,听说上学期我们班的同学都购买过彩票,说说你们是怎么买的,有人中奖吗?

  看来只买一、两张中奖的可能性太小了,但是如果两个人或者几个人把钱合在一起买彩票,中奖的机会就会多一些。

  出示例1:甲、乙两位同学,共同出资10元钱买了体育彩票,中奖200元了,请你说说这200元钱怎么分配呢?

  老师想请同座位的2位同学自己先说说,你们打算怎么分这笔钱。

  学生讨论后汇报。(大致方案可能有以下几种)

  1、平均分。

  2、共同再买彩票──再次支持体育事业,如果中奖就可以为社会做出更大贡献。

  3、请客,剩下的平均分。

  4、按出资金额的多少来分。

  ……

  老师引导学生评价,怎么分配最合理?引出课题。

  解决问题:按出资金额的多少来分,怎么分这200元钱?把你的想法说给你的同桌听听。

  ⑴  200÷10=20(元)

  ⑵  4×20=80(元)

  6×20=120(元)

  你认为第⑴、⑵式分别表示什么意义?

  老师小结:这样分大家都没意见(合理、公平)。除了甲出4元,乙出6元,他们两个还可能是怎样出资的。

  师根据学生的回答整理板书成:

  甲乙

  5元5元按1:1(平均分)

  2元8元按1:4分

  3元7元按3:7分

  ……

  刚才大家认为按各人出资的比例来分比较合理,这叫按比例分,其中两人各出自5元时,平均分实际上是按比例分的特例。

  [充分利用学生已经有的生活经验激发学生学习的积极性,同时让学生在用不同分钱方法的争议中,充分暴露各自的思维过程,就"怎样分配最合理",发表自己的看法,在多种分配方案比较的基础上,得出"按比例分配"最合理,从而展现知识的`产生过程,让学生感受"按比例分配的必要性",很自然地解决了平静分是按比例分的特例。]

  二、主动探索,归纳方法

  我们学校的徐老师与张叔叔根据自己多年研究彩票的经验都认为合伙买彩票能挣钱,就约定了出资比为,同学们对这个2∶3怎么理解?

  ①徐老师出资2元,张叔叔3元;

  ②徐老师出资20元,张叔叔出资30元;

  ③徐老师王叔叔出资4元,张叔叔出资6元;

  老师引导:徐老师占总出资的()张叔叔占总出资的();

  [复习铺垫,只作为一个准备随时可用的环节,使课堂教学具有更大的弹性,作为已经历了半个多世纪的必要环节,我们应从中吸取精华,赋予它一种与时俱进的内涵──在全面深入研究学生和钻石教材的基础上进行整合,使教学方案更具有效性]。

  出示例2:徐老师和张叔叔买体育彩票,按2∶3的比例出资共中奖500元,同学们想怎么分这笔钱?(让学生独立完成)

  交流,把自己列式以及想法告诉大家。(着重是分数的方法。)

  教师小结:像刚才这样,把一个数量(500元)按一定比2∶3来分配,这种方法叫做按比例分配。解题步骤如何?(学生归纳,教师补充说明)

  生活中像这样按比例分配的例子很多很多,请大家把书本打开到P58~~59页,看书上的例子,不懂可以提问。

  [学生在教师指导下,以主体的姿态带着探究的精神,自主地参与学习过程,通过独立探索,合作交流,研究解决问题,体会同一问题可以从不同角度去思考,得到不同的解决问题的方法,有利于多向思维的发展,凸显个性化学习。]

  三、运用知识,解决问题

  1、初步应用

  徐老师、张叔叔中奖了,很高兴,两人一商量,准备请请他们的朋友小聚聚。准备花80元买肉和买鱼,其中用钱比是3∶5,买肉和买鱼各用多少元钱?(口答)

  师引导:宴请朋友,单买鱼和肉行吗?买鱼、肉、蔬菜你认为应该按什么比例去分配80元钱呢?(分小组讨论,从实际出发,从生活出发)

  例如,按鱼、肉、蔬菜比为3∶2∶1来分配,(告诉大家这个叫连比)

  按自己设想的比例,算出买鱼、肉、蔬菜各需要多少钱。

  2、变式练习:(只列式不计算)

  ⑴一个运输队一共运货物140吨,上午运了3小时,下午运了4小时,上午和下午各运了多少吨?

  ⑵一个长方形的周长是32米,长和宽的比是3:5,这个长方形的长和宽各是多少米?

  3、拓展提高(每人选做一题)

  ⑴一个班男生与女生的人数比是3:4,男生比女生少7人,男女生各是多少人?

  ⑵一种药水由药粉和水按1:100配制而成,在8000千克水中应加药粉多少千克?

  ⑶、一次,吴明、朱强和李红三位朋友合乘一辆出租车,大家商定,出租车费一定要大家合理分摊,吴明在全程三分之一处下车,到三分之二处朱强也下了车,最后李红一个人坐到终点,付出90元车费,请你帮他们算算三人如何承担车费比较合理?

  [美国教育学家布鲁纳说过:"向学生提出挑战性的问题,可以引导学生发展智慧"。练习设计有坡度,体现由浅入深的认识规律,同时也注重开放问题情景的内容、条件和结果,给学生很大的探索空间。通过练习,有利于数学知识的领会、掌握、巩固和发展,有利于探索精神和创新意识的培养。]

  四、课堂总结,师生评价

  上了这节课,同学们有什么收获?

  [让学生说这节课的收获,就将把教师零散的知识,方法进行归类整理,使学生知道如何有序地,重点地重温知识点,达到增强理解记忆又培养整理知识能力的目的,激发学生学习数学的兴趣。]

苏教版六年级数学《按比例分配》教案6

  教学内容:第十一册p58——59,例2、例3,练习十三1——5

  教学要求:

  1、使学生认识按比例分配应用题的结构特点和解题思路,能正确解答按比例分配应用题。

  2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

  教材简析:按比例分配应用题是把一个数量按照一定的比进行分配。它是“平均分”问题的发展。本课的教学重点是根据两个量的比推想出各占总数量的几分之几。

  教学过程:

  一、创设情境,提出问题:

  我校四(3)班有男生30人,女生18人。体育课上,沈老师要把24个实心球分给男、女同学分成两大组进行练习,可以怎样分呢?男同学组、女同学组各能分到几个?

  同桌讨论,再回答。

  (估计学生回答:1、平均分,就是男生12个,女生12个;2、这样不合理。3、应该按人数来分,男女生人数的比是30:18,化简后是5:3,按这个比例来分较合理。)

  师小结:这样24个实心球按5:3来分,男女生各能分到几个?你能解决这样问题吗?

  二、主动探究,归纳方法:

  老师把刚才的问题板书成应用题出示,并引导学生一起研究解决刚才的问题:

  四(3)班体育课,沈老师要把24个实心球分给男、女同学分成两组练习,男女生人数的比是5:3,男女生各分到实心球几个?

  学生尝试独立解决问题。有困难的同学老师建议画个图帮助理解。解答后同桌说说是怎么想的?

  学生讨论后汇报交流,说说自己的思路及解答方法。生1:24÷(5+3)×5=15(个)24-15=9(个);生2:先想男生是总人数的几分之几?5+3=8,男生是总人数的5/8.24×5/8=15(个)24-15=9(个)师补充:这样做,实际上是转化成了“求一个数的几分之几是多少?生3:24÷(5+3)=3(次)3×5=15(个)24-15=9(个);……

  方法引导:同学们想出了很多方法来解决这个问题,这些方法都可以,具体解题时用什么方法,同学们可以灵活地选择。

  小结:我们分东西,可以用平均分,也可以按一定的比例来分。像刚才一样,把一个数量按照一定的比例进行分配,这种分配的方法叫做按比例分配。(出示课题:按比例分配的'应用题)

  三、运用知识解决问题:

  (1)初步运用

  师:这样的问题你能解决吗?

  出示:学校买科技书和故事书共540本,其中科技书和故事书数量的比是5:4,两种书各买几本?

  (2)出出金点子:

  师:像这样按比例分配的问题在生产、生活中应用非常广泛。下面,我们一起来帮助出出点子,好吗?

  出示:水果店的李经理准备用3600元买进一些水果,可以买哪些水果,按怎样的比例分配,每种水果各用几元?你帮助出出主意好吗?

  学生先自己做,再交流。

  四、总结:

  今天,我们学会了哪些知识?并说说我们是怎样学会这些知识的?

【六年级数学《按比例分配》教案】相关文章:

按比例分配教学反思03-27

按比例分配问题教育教学反思02-01

《按比例分配解决问题》六年级数学说课稿05-01

按比分配说课稿12-27

中班数学比例分类整理活动教案:按用途分类03-06

中班数学《按颜色归类》教案02-06

反比例教案 六年级反比例教案09-05

小班数学活动教案按特征分类01-25

中班数学教案:按用途分类04-28

中班数学下册按规律排序教案08-25