- 相关推荐
五年级数学教案方程的意义
作为一名教师,总不可避免地需要编写教案,教案是教学蓝图,可以有效提高教学效率。我们该怎么去写教案呢?以下是小编整理的五年级数学教案方程的意义,仅供参考,欢迎大家阅读。
五年级数学教案方程的意义1
一、教学内容:
人教版五年级上册第62~63页“方程的意义”。
二、教学目标:
1.在具体的情境中理解方程的含义,初步认识等式与方程的关系,会用方程表示简单的等量关系。
2.在观察、比较、描述、抽象、概括的过程中,让学生经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。
3.加强数学知识与现实生活的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。
三、教学重、难点:
1.教学重点:理解并掌握方程的意义。
2.教学难点:建立“方程”的概念,并会应用。
四、教学过程:
(一)情境引入
今天的这节数学课上老师带了一种利用平衡创造的工具,你们看是什么?(出示天平)关于天平你们都有哪些了解的?(简单介绍天平的工作原理)
(二)探究新知
1.现在我们对天平有了初步的了解,那我们来看这幅图(出示天平:左盘2个50g的物品,右盘100g砝码。)
请同学们仔细观察,在这副图里你获得了哪些信息?
师:能用一个式子表示这种平衡状态吗?(50+50=100或50×2=100)。
2.我们再来看这幅图又告诉了你什么信息?(课件出示:左边一个空杯子,右边一个100g砝码的天平。)(杯子重100g)
3.师:现在我给杯子倒满水,天平还平衡吗?天平发生了怎样的变化呢?
师:我们不知道加入的`水有多重,可以用一个未知数x来表示(水重xg),那么天平左边的杯子和水共重多少克?可以怎样表示呢?(100+x)
师:天平向左倾斜,说明左边这杯水的重量比右边100g砝码的重量要重。得到数学式子:100+x>100
4.现在我给右盘再加一个100g的砝码,仔细观察,现在天平平衡了吗?得到数学式子:100+x>200
师:我给右盘再增加一个100g的砝码,你又发现了什么?得到数学式子:100+x<300
师继续演示:将右盘中的一个100克砝码换成50克砝码,天平逐渐平衡,从中得到数学式子100+x=250。
5.观察比较:
50+50=100
100+x>100
100+x>200
100+x<300
100+x=250
总结:像这样两边相等的(用等号连接的)算式我们把它叫做等式。
像100+x=250这样,含有未知数的等式就是方程。
揭题:今天这节课我们学的就是“方程的意义”。(板书课题)
6.提问:这一个等式是方程吗?为什么?
追问:这两个式子里都含有未知数,它们是方程吗?
思考:你认为一个方程应该符合哪些条件?
(强调:方程既要是等式,又要含有未知数。)
(三)巩固练习
1.判断下面哪些式子是方程,并同桌说一说理由。
35+65=100 8-x=2 y+24
2.4=a×2 x-14>72 15÷b=3
5x+32=47 28<16+14 6(y+2)=42
2.下面哪些天平不能用方程表示?(出示6幅天平图)
用方程表示出剩下天平的数量关系。
(说一说天平两边的数量关系,列方程)
3.用方程表示下面的数量关系。(说数量关系,列方程)
先独立列出方程,再与同桌说一说方程表示的数量关系。
4.猜方程
让学生初步感知:方程一定是等式,等式不一定是方程。
5.写方程,编故事。
6.方程“史话”。
(四)课堂小结
今天这节课我们学习了方程,方程必须要具备几个条件?方程和等式是怎样的关系?
五年级数学教案方程的意义2
教学内容:数学书P53-54及“做一做”,练习十一1-3题。
教学目标:
1、初步理解方程的意义,会判断一个式子是否是方程。
2、会按要求用方程表示出数量关系。
3、培养学生观察、比较、分析概括的能力。
教学重难点:会用方程的意义去判断一个式子是否是方程。
教具准备:天平、空水杯、水(可根据实际变换为其它实物)
教学过程:
一、导入新课:
今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的`质量。
二、新知学习
1、实物演示,引出方程。
操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;
第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。
第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。
第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300.
第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。
像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。
1、写方程,加深对方程的认识。
学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。
看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。
1、反馈练习。
完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。
2、小结:这节课学习了什么?怎么判断一个式子是不是方程?
提问:方程是不是等式?等式一定是方程吗?
看“课外阅读”,了解有关方程产生的数学史。
三、练习
1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。
2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。
四、作业:练习十一第1题。
课后反思:
五年级数学教案方程的意义3
教学内容:教材P62~63及练习十四第1、2、3题。
教学目标:
知识与技能:使学生理解和掌握等式与方程的意义,明确方程与等式的关系。
过程与方法:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。
情感、态度与价值观:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。
教学重点:理解和掌握方程的意义。
教学难点:弄清方程和等式的异同。
教学方法:观察、分析、分类、抽象、概括和交流
教学准备:多媒体,天平。
教学过程
一、知识铺垫
认识天平。谈谈你对天平有哪些了解。(天平可以称量物体的质量,还可以判断两个物体的质量是否相等;使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。)
二、自主探究
1.探究活动一:利用天平探索认识等式和不等式
(1)天平左边放一个空杯子,右边放一个100克的砝码,此时天平 ,说明天平左右两边的重量 ,这个杯子的重量是 。
(2)如果天平的左边加上一个50克的砝码,要想使天平平衡,天平右边的杯子里需加上 克的水,用式子表示天平两边的质量关系为: 。
(3)如果天平左边的.杯子里加满了水,此时天平会 ,表示天平左右两边的重量 ,用式子表示天平两边的质量关系为: 。
温馨提示:
(4)如果继续向天平的右边加上100克的砝码,此时天平 ,说明 边重,天平左右两边的质量关系表示为: 。
(5)如果继续向天平的右边加上100克的砝码,此时天平 ,说明 边重,天平左右两边的质量关系表示为: 。
(6)如果把天平右边一个100克的砝码换成50克的,此时天平 ,说明左右两边的质量 ,它们的关系用式子表示为: 。
2. 探究活动二:认识方程
(1)把上面的算式进行分类,并说说分类的想法和依据。
(2)小结:表示左右两边相等的式子,我们称其为 ,表示左右两边不相等的式子,我们称其为 。像100+x=250这样的含有未知数的等式,称为 。
3.讨论:等式和方程之间有什么样的关系?
让学生比较50+50=100与100+x =250两个等式,有什么不同?
学生自主思考,并交流得出:第一个等式没有未知数x ,第二个等式含有未知数x 。
教师小结:像100+x =250这样的含有未知数的等式,称为方程。(板书:方程)
4.引导学生思考:是不是所有的等式都是方程?(不是。)
那么,方程有哪些特点?
归纳小结:方程的特点:是一个等式,且含有未知数。
三、课堂达标
1.下面的式子哪些是方程?(在方程后面的括号里打√)
X+3.6=12( ) a×12.8<24( ) 10-2.5=7.5( ) χ+8=9×2( )
X÷2.4=16( ) 3÷b ( ) 5y=15 ( ) χ-2.9=0( )
32÷4>7( ) 3χ-2=4.4( ) 1.2+3.5-4=0.7( ) 4.5χ-2.6( )
2. 判断
(1)含有未知数的式子叫方程。( )
(2)等式都是方程,但方程不一定是等式。( )
3.用方程表示下面的数量关系。
【学习评价】
四、巩固拓展
1.让学生仿照课本情境图,自己试着写一些方程。注意指导学生:方程一定是等式,并含有未知数。
2.完成教材第63页“做一做”第1题。
先让学生说一说什么样的式子是方程,再自主判断,最后集体交流。
3.完成教材第63页“做一做”第2题。先说一说图意,再写方程表示数量关系。
如:第一幅图天平的左边有两个重量是x g的球,右边是一个重50g的砝码,也就是两个x g的球的重量是50g,列方法表示为2x =50。第二幅图是一条线段分成了两部分,一部分是x ,一部分是73,这两部分总数是166,即x +73=166。
4教材第66页练习十四第1、2、3题。生独立完成,集体反馈。
五、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:1.像100+x =250这样含有未知数的等式叫做方程。
2.方程有两个重要条件:一个是等式,一个是含有未知数。
3.方程一定是等式,等式不一定全都是方程。
布置作业:
板书设计:
方程的意义
不平衡 平衡
100+x >200 100+x =250
100+x<300
像100+x =250这样的含有未知数的等式叫做方程。
五年级数学教案方程的意义4
一、教学内容:
教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。
二、教学目标:
理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。
三、教学重点:
理解并掌握方程的意义。
四、教学难点:
会列方程表示数量关系。
五、教学过程:
1、出示例1的天平图,让学生观察。
提问:图中画的是什么?从图中能知道些什么?想到什么?
引导
(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。
(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”
2、出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。
引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。
3、讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。
4、完成练一练
(1)下面的式子哪些是等式?哪些是方程?
(2)将每个算式中用图形表示的未知数改写成字母。
5、巩固练习
(1)完成练习一第1题
先仔细观察题中的`式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。
(2)完成练习一第2题
6、小结
今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?
7、作业
完成补充习题
六、板书设计:
方程的意义
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式叫做方程
五年级数学教案方程的意义5
教学要求:
使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤。
教学重点:
掌握解方程的依据、步骤和书写格式。
教学难点:
方程的解和解方程两个概念间的联系及区别。
教学用具:
简易天平、砝码、标有“20”、“30‘和”?“的方木块。
画有P97页上图的挂图、小黑板或投影片若干张。
教学过程:
一、激发
根据加法与减法、乘法与除法的关系,说出求下面各数的方法。
1、一个加数=()
2、被减数=()
3、减数=()
4、一个因数=()
5、被除数=()
6、除数=()
二、尝试
1、方程的意义
(1)出示简易天平,将天平、砝码摆在讲台上,这是一台天平,它是用来用来称物品的重量的。怎样用它来称物品的重量呢?在天平的左边盘内放置所称的物品,右边盘内放置砝码。当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等。砝码上所标的重量就是所称物品的重量。
(2)师演示如何用天平称物品。(称出的物品同P。105页上图。)
(3)问:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等。)天平的指针指在什么地方才能说明天平是平衡的?(指针必须指在刻度线的中央。)
(4)教师强调说明:天平两边放上重量相等的物品时,天平就平衡。反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等。
(5)问:那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!先让学生自由地说一说,根据学生的发言,教师写出算式20+30=50。
问:20+30=50是一个什么式子?(等式。)
(6)什么叫等式呢?(等式表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。)
(7)师改变天平上所放的物品和砝码,使之与P。105页的下图相同。引导学生观察、思考并回答下列问题:
①图中的天平是否平衡?说明了什么?(图中的天平是平衡的,因为指针指在天平刻度线的中央。说明天平左、右两边的重量相等。)
②怎样用式子来表示这种平衡的情况呢?再试试看!
板书;20十?=100。
③”?“是不是要求的未知数?我们以前学习过,一般用什么
字母表示未知数?(师生共同把等式”20+?=100改写成“20+x
=100)
④20+x=100是一个什么式子?(也是一个等式。)
⑤这道等式与20+30=50有什么不同?(这是一个含有未知数的等式。)
⑥左盘中这个标有”?“的方木块应该是多少克,才能使天平保持平衡呢?这就是这个等式中的x是多少才能使等式左、右两边正好相等呢?可以是一个随便的'重量吗?
生自由说,师总结:这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左、右两边正好相等。
⑦同学们观察一下天平,想一想,x应该代表什么数呢?(因为左边未知的方块重80克才能使天平平衡,所以x=80。)
师在20+x=100的右边板书:x=80。
(8)师出示P。106页上图。引导学生观察,启发学生思考下列问题:
①这幅图的图意是什么?(这幅图告诉我们,每个篮球的价钱是x元,3个篮球的总价是234元。)
②每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?(还可以表示为3x元。)
③谁能根据图意写出一个等式来?(3x=234。)
④想一想,这个等式有什么特点?(这也是一个含有未知数的等式。)
⑤当x等于多少时,这个等式中的等号左、右两边正好相等?(当x=78时,这个等式中的等号友、右两边正好相等。)
师在3x=234的右边板书:x=78。
(9)引导学生归纳总结出方程的意义及方程与等式之间的关系。师指出:像这样一些等式:20+x=100、3x=234、x-8=5、x÷6=7叫做方程。
师再板书几个一般的等式,形成如下的板书:
方程一般等式
20+x=10020+80=100
3x=2343×78=234
x-8=513-8=5
x÷6=742÷6=7
师引导学生观察上面的等式,思考并回答下面的问题。
①方程是不是一种等式?(是等式。)
②方程与一般的等式相同吗?你发现方程有什么特点?
③谁能说一说什么是方程?先指名让学生说,然后师归纳总结。板书:含有未知数的等式,叫做方程。
方程与等式之间有什么关系呢?我们可以用这样的图来表示。师请学生观察这幅图,并说一说它的含义。
根据学生的发言,教师加以引导,使学生明确:等式包括方程,等式的范围比方程的范围大;一切方程都是等式,但等式不一定是方程。
(10)练一练:做一做。
2、解简易方程(一)。
(1)理解方程的解和解方程的含义。
①请学生阅读书上的内容,回答什么叫方程的解?什么叫做解方程。
②指名回答,这两个概念有什么区别?(师讲解:方程的解指的是一个数,它表示未知数等于的多少时使方程中等号的左右两边相等。例如,当x=80时,20+x=100的等号左右两边相等。而方程的解是指求出这个未知数的演算过程。我们以前做过的一些求未知数的题目,实际上就是解方程。方程的解是解方程的过程中的一部分,它们既有联系,又有区别。)
(2)出示例1:解方程x-8=16。
①x在这道减法算式中相当于什么数?(被减数)
②根据四则运算各部分之间的关系,被减数应该怎么求?
③解方程的步骤和书写格式是怎样的?
师讲解:首先要写”解“字,然后根据四则运算之间各部分的关系及运算定律进行思考;x-8=16,根据被减数等于减数加差,所以x=16+8,x=24。运算的”根据“可以不写,每个等式占一行,各行的等号要对齐。求出x的值后,还要进行检验,以判断它是不是原方程的解。
接着,师一边板书,一边指出检验的方法及书写格式。并且强调,以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。
(3)练一练:做一做。
三、应用
练习二十四第1、2题。
教师巡视,注意学生解方程的过程、书写格式及检验的过程是否符合规定,发现错误,及时纠正。
四、体验
这节课我们学习了什么?
(方程的意义和解简易方程的步骤和书写格式。知道了判断一个式子是不是方程,先要看它是不是等式,再看它是否含有未知数。解方程时,先耍弄清x在算式中相当于什么数,再根据四则运算之间的关系求出方程的解。书写时,要注意先写”解“字,上、下行的等号要对齐,注意不能连等。)
五、作业
练习二十四第3、4、5题。
【五年级数学教案方程的意义】相关文章:
方程的意义说课稿11-20
《方程的意义》教案09-16
《方程的意义》说课稿09-27
方程的意义的教学反思12-30
方程意义教学反思02-15
《方程的意义》的教学反思02-27
《方程的意义》教学反思03-01
方程的意义教学反思10-02
《方程的意义》说课稿15篇11-08