《3的倍数的特征》教案

时间:2024-04-03 13:30:50 教案 我要投稿

《3的倍数的特征》教案

  作为一名教学工作者,通常需要准备好一份教案,教案是保证教学取得成功、提高教学质量的基本条件。优秀的教案都具备一些什么特点呢?以下是小编为大家整理的《3的倍数的特征》教案,仅供参考,希望能够帮助到大家。

《3的倍数的特征》教案

《3的倍数的特征》教案1

  1、学习目标

  o 1.经历探索3的倍数的过程,理解3的倍数的特征。

  o 2.能判断一个数是不是3的倍数。

  o 3.在探究过程中发展概括和归纳能力。

  2、学情分析

  学生已经学习了2、5的倍数的特征,但3的倍数的特征与2、5的倍数的特征有很大的区别,学生不能仅从一个数的个位加以观察、归纳来得出结论,因此对于孩子们来讲如何探索得出这个特征就较有难度,而对于一些学习能力较弱的孩子,能够正确掌握3的倍数的特征并加以正确运用都会有一定的难度。因此针对学生的这一认知难点,我在设计教学时更加突出学生的自主探索,是学生在找数--观察--讨论--验证--归纳的过程中,概括出3的倍数的特征。

  3、重点难点

  学习重点:经历探索并掌握3的倍数特征的过程。

  学习难点:发现概括出3的倍数特征。

  4、教学过程

  4.1.2教学活动

  活动1【导入】

  (一)游戏复习、激发兴趣

  游戏复习、设疑导入

  (一)游戏复习、激发兴趣

  同学们,请举起你们的学号给老师看一看,每个人的学号里都隐藏着数学奥秘!(课件)孔子有句话“温故而知新”,根据老师的指令请中奖学号起立,高高举起你的学号,看谁反应快。小组同学判断,准备好了吗?

  (课件2的倍数)第一次中奖学号:是2的倍数起立。采访一下:2的倍数的特征是什么?(课件2的倍数特征:个位是0、2、4、6、8的数)(课件5的倍数)第二次学号中奖:是5的倍数起立。再采访一下:5的倍数的特征是什么?(课件5的倍数特征:个位是0或5的数)

  小结:看来,快速判断一个数是不是2或5的倍数的秘诀是,只要看这个数的个位就行了。(课件圈出个位)

  【设计意图:学生在中奖学号游戏中复习旧知,为新知做好准备。】

  第三次学号中奖:是3的倍数起立。你是怎么知道的?大家来看看这个数是不是3的倍数? 如何快速地判断出是不是3的倍数?3的倍数有什么特征呢?今天我们就来探究3的倍数的特征。 (板书课题:3的倍数的特征)

  活动2【活动】

  二、自主探究,感悟规律

  1、请同学们拿出准备好的学具百数表,请在表中找出3的倍数,并圈起来。

  2、学生活动后,教师组织学生进行交流,投影学生圈的百数表,并不断完善。

  3、观察3的倍数,猜想一(横着看):判断一个数是不是3的倍数,只看个位行吗?

  4、仔细观察这个百数表。猜想二(斜着看):判断一个数是不是3的倍数,看这个数各位上数的和行吗?

  把你的发现与同桌交流一下。

  活动3【讲授】学生摸索,教师讲解归纳

  (三)举例验证规律

  师:咱们发现的这个规律只适合100以内的数吗?能推广到更大的数吗?

  小组合作学习二:验证、归纳3的倍数的`特征

  2、小组再次讨论总结。

  3的倍数特征:

  (四)、总结规律

  下面小组的验证是否正确?

  看来,通过我们的发现,进一步验证,归纳出3的倍数的特征是(板书:一个数各位上的数的和是3的倍数,这个数就是3的倍数。)

  【注意】:与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。

  【设计意图:汇报验证结果形成共识,得出结论。让孩子们验证此规律在100以外的数是否适用,体会“特殊-一般”的研究方法,培养孩子们研究数学的科学性和思维的严谨性。体会发现-验证-归纳的数学思想和方法。】

  活动4【练习】三、闯关比赛:

  闯关比赛:

  3的倍数的特征相信你们已经掌握,闯关开始了,准备好了吗?

  第一关:下面的数哪些是3的倍数,手势判断。

  92 654 7203

  71 164 20xx

  老师质疑:7203为什么是3的倍数?如果打乱一下顺序,这个四位数还是3的倍数?你们有什么发现?(3的倍数与数字的顺序无关。)

  【设计意图:换位探索--引导发现3的倍数与数字的顺序无关。】

  第二关:在横线上填上合适的一个数,组成三位数并且是3的倍数。想想共有几种填法?

  1、64 _________

  2、_________ 44

  3、4_________2

  老师质疑:一共几种填法?有什么规律?(只要相差3就可以了)

  【设计意图:通过小组合作学习了解到多角度思考问题,答案不唯一,纠正自己的认识,学生学以致用,有助于培养孩子们的发散思维的能力。】

  活动5【测试】师生闯关

  第三关:师生闯关:

  同学们,老师也想和你们合作一下。请学号1-9的同学上讲台,赵老师没有学号,用0代替。和你们一起组成10位数,看看这么大的数是3的倍数吗?为什么?

  请看,老师取走一个数,(9)这个9位数还是3的倍数吗?

  再看,老师再取走一个数,(6)这个8位数还是3的倍数吗?

  猜猜看,这次取走哪数,(3)这个七位数还是3的倍数?

  你们有什么发现?(划去单个数字是3的倍数,剩下的数还是3的倍数)

  你能快速发现下面这个数是不是3的倍数?想好就起立。98763963

  【设计意图:发散练习:学生体会划去的数字是3的倍数,剩下的数还是3的倍数。】

  第四关:猜猜中奖学号

  到目前为止,我们已经学习了2、3、5的数的倍数特征,看见今天最后一次中奖学号是谁呢?同时是2、3、5的倍数的学号。(30)老师期待下一个中奖学号就是你。

  【设计意图:综合运用所学2、3、5的倍数的特征的知识,让学生深刻体会自己的学号里藏着的数学奥秘】

  活动6【作业】延伸和总结

  四、全课小结:

  1、今天你学会了什么?通过小组合作学习你有什么收获?

  2、我们是通过什么方法得出3的倍数的特征?

  【设计意图:在课结束前适时总结,重在使同学们进一步体会到一些研究的方法,使孩子们掌握一些“学法”。】

  五、作业(课后延伸)

  课后可以运用今天所学的方法去探索研究9的倍数的特征。

  【设计意图:让同学们把这种探究活动延伸到课外,进一步培养了同学们学习数学的兴趣。】

《3的倍数的特征》教案2

  教学内容:

  教材19页内容,能被3整除的数的特征。

  教学要求

  使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

  教学重点:能被3整除的数的特征。

  教学难点:会判断一个数能否被3整除

  教学方法:

  三疑三探教学模式

  教具学具:

  课件等。

  教学过程

  一、设疑自探(10分钟)

  (一)基本练习

  1、能被2、5整除的数有什么特征?

  2、能同时被2 和5整除的数有什么特征?

  (二)揭示课题

  我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)

  (三)让学生根据课题提问题。

  教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)

  (四)出示自探提示,组织学生自探。

  自探提示:

  自学课本19页内容,思考以下问题:

  1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。

  2、能被2、3整除的数有什么特征?

  3、能被2、3、5整除的数有什么特征?

  二、解疑合探(15分钟)

  1、检查自探效果。

  按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。

  2、着重强调;

  一个数各个数位上的数字之和能被3整除,这个数就能被3整除。

  三、质疑再探(4分钟)

  1、学生质疑。

  教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?

  2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

  四、运用拓展(11分钟)

  (一)学生自编习题。

  1、让学生根据本节所学知识,编一道习题。

  2、展示学生高质量的自编习题,交流解答。

  (二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。

  1、判断下列各数能不能被3整除,为什么?

  72 5679 518 90 1111 20373

  2、58 115 207 210 45 1008

  有因数3的数:( )

  有因数2和3的.数:( )

  有因数3和5的数:( )

  有因数2、3和5的数:( )

  让学生说说怎么找的。

  (三)全课总结。

  1、学生谈学习收获。

  教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

  2、教师归纳总结。

  学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

  板书设计:

  能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,

  这个数就能被3整除。

《3的倍数的特征》教案3

  【教学设计】

  一、活动激趣,引发思考

  活动:我是小小“设计师”。

  1.用5、6、7,设计一个三位数。

  (1)使这个三位数一定是2的倍数。

  (2)使这个三位数一定是5的倍数。

  【设计意图:抓住学生刚学完2、5的倍数特征这个契机,让学生用5、6、7组数,这样既复习了前两节课所学的知识,也与后续要学习的3的倍数特征相互呼应。】

  2.设计一个三位数,使它一定是3的倍数。看谁的设计有创意?

  预设:学生除了用计算的方法外,还可能会出现以下两种情况(如果不出现,教师可以将其作为自己的设计来展示,并让学生猜猜老师是怎么想的):

  (1)利用各位上都是3的倍数来设计数。(2)利用数字和是3的倍数来设计数。首先让学生说说自己的想法,第一种方法结合竖式很容易想明白,而第二种方法需要实际验证。接着引导学生发现:3的倍数并不一定各个数位都是3的倍数。最后围绕第二种关于利用数字和来设计3的倍数的情况,开始追根溯源,使学生明理。

  【设计意图:一般教学3的倍数特征时,教师都会让学生进行猜想。如此,孩子们很容易受刚学过的2、5的倍数特征的影响进行负迁移。而这种第一印象的错误烙印,往往不会收到我们想要的“吃一堑、长一智”的效果。再者,这个猜想已经在课前调研的时候做过了,如果这里再重复出现,会让学生感觉老生常谈、枯燥乏味。第三,班里已有一半多的孩子知道了3的倍数特征,这个特征已不再是秘密了,此时也就没有什么猜想的必要了。这时,还不如选择用事实来说话,而且会应用比仅仅知道结论重要得多。】

  二、借助直观,探究明理

  1.出示百数表:观察圈出的3的倍数的分布情况,感受与2、5的倍数特征的差异。

  2.观察下面这些数,你发现了什么?变中有没有不变的?(每一斜行的数的数字和都不变,而且都是3的倍数。

  3.分组检验:出示不是3的'倍数的数,观察数字和是否一定不是3的倍数。

  4. 100以内3的倍数的数字和有规律,那么100以上的3的倍数是否依然有这样的规律?引导学生发现:逐一研究太麻烦,数也举不尽,可以借用研究2、5的倍数时所用的小方格来研究。

  5.揭示“数字和”的秘密。

  (1)选取三个数:“12、48、123”,引导学生利用小方格探究明理。

  ①出示“12”,初步明理,让学生说说想法或自己的发现。

  ②围绕“48”,深入明理,有层次地展示各种方法,引导学生对这些方法进行筛选优化、分析归纳。学生在实际操作中可能会用弃3法弃尽,也可能不弃尽,但最终都会把剩余的个数加起来除以3,也就是直至弃到不能弃为止。

  ③对于“123”,可先让学生闭眼想象各位所余,然后再实际验证。

  (2)引导学生逐步发现。

  ①在方格图上不一定要3个3个地圈,十位上可以9个一圈,百位上可以99个一圈……

  ②可以把每位剩余的方格合起来再弃3,直到不能弃为止,看最后余下几个。

  ③各位数字恰好是各位上弃9、弃99后所余下的格数(如下图),数字和也就是此时余下小方块的总和,之所以把数字和去除以3,就是要看看余下的这些小方格再3个3个地分,最终是否会有余。

  6.小结3的倍数特征。

  【设计意图:揭示3的倍数特征是看数字和并不难,难的是数字和的真正含义,本节课的重点和难点也正在于此。】

  三、实际应用,拓展提高

  1.观察刚上课时,用5、6、7所组的2的倍数:576、756,以及5的倍数:765。这几个数是3的倍数吗?引导学生发现:如果一个数是3的倍数,那么交换各位数字的顺序,所组成的数依然是3的倍数,因为数字和不变(5+6+7=18)。

  同时也让学生感知到连续的数字组成的三位数一定是3的倍数,因为5+6+7=18,即6×3=18。

  2. 369为什么一定是3的倍数,能否联系小方格来说明?

  四、全课总结

  为了检验这次教学效果,我对学生进行了后测:

  (1)圈出下列各数中3的倍数:53、69、72、95、108、264。

  (2) 417是3的倍数吗?你能说明其中的道理吗?从中可见,学生不仅能应用3的倍数特征进行判断,而且能借助小方格说明道理,真正明白了数字和的含义。

《3的倍数的特征》教案4

  教学目标

  1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。

  2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。

  教学重难点

  判断一个数是不是3的倍数。

  课前准备

  小黑板、学具卡片

  教学活动

  一、引入新课,激发兴趣

  教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)

  教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。

  谈话:你们会想这是老师预先算好的。你们可以考考老师,不管你报一个什么数,我都能很快地判断出来,你们愿意来试一试吗?

  学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。

  谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的特征)

  二、自主探索。合作学习

  1.先让学生猜一猜:3的倍数有什么特征?举例说明。

  2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的倍数吗?

  3.当学生得出3的倍数与个位上的数没有关系时,教师引导学生在小组里用计数器拨几个3的倍数,看每次用了几颗算珠?

  如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+O+7+5—15。

  4.引导学生观察、分析、讨论:用的算珠的颗数有什么共同点?

  :每个数所用算珠的颗数都是3的倍数。

  5.提问:这些数所用算珠的'颗数跟什么有关系?小组讨论,交流讨论结果。

  :一个数是3的倍数,这个数各位上的数的和一定是3的倍数。

  6.进一步验证。(1)同桌之间互相报数,验证刚才的结论是否正确。(2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。

  7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?

  在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  三、运用结论。巩固拓展

  1.做“想想做做”第1题。

  指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?

  2.做“想想做做”第2题。

  提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。

  3.做“想想做做”第3题。

  让学生独立填写,再在小组里交流:你能找到几种不同的填法?

  4.做“想想做做”第4题。

  学生涂完后,指名回答:9的倍数都是3的倍数吗?

  5.做“想想做做”第5题。

  各自组数,并把组成的数记下来。

  指名报答案,全班学生评议。

  6.补充题。

  提问:你今年几岁?再过几年你的岁数是3的倍数?

  四、

《3的倍数的特征》教案5

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

  2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

  教学重、难点:是3的倍数的数的特征。

  教学过程:

  一、提出课题,寻找3的特征。

  师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?

  生1:个位上是3、6、9的数是3的倍数。

  生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

  生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)

  师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)

  二、自主探索,总结3的特征师:

  先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)

  师:请观察这个表格,你发现3的`倍数什么特征呢?把你的发现与同桌交流一下。

  学生同桌交流后,再组织全班交流。

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  学生先自己写数并验证,然后小组交流,得出了同样的结论。

  全班齐读书上的结论。

  三、巩固练习:

  完成p19做一做

  四、课堂小结:

  这节课你有什么收获

《3的倍数的特征》教案6

  学习目标:

  使学生通过观察、猜想、比较、验证等一系列数学活动,自主探索并掌握3的倍数的特征。

  2. 使学生在具体的探索活动中,培养自主探索的意识,发展初步的推理能力。

  3. 使学生在参与学习活动的过程中,体验成功的喜悦,增强学习数学的兴趣。

  4.让学生感受生活中蕴藏着丰富的数学知识。

  教学重点、难点:

  1、重点:知道3的倍数的特征,能判断一个数是不是3的倍数。

  2、难点:让学生通过操作实验自主发现3的倍数的特征。教学准备:小棒、计算器、数位表

  教学过程:

  一、知识链接前面同学们已学习了2和5的倍数的特征,下面老师就来检查一下你们能用3、4、5这三个数字来组成是2的倍数的三位数吗?(学生根据教师要求组数,教师板书出学生组数的情况:354、534。)

  师:同学们你们为什么这样组数呢?同样用这三个数字,你们能组成是5的倍数吗?(教师根据学生组数的情况板书出:345、435。)你们是怎样想的呢?(设计意图:这样采用组数的方法,既复习了2和5的倍数的数的特征,又可为下面学习新的内容打下一定的基础,同时又激发了学生学习的兴趣。)

  二、新知学习

  (一)设疑引入如果仍用这三个数字,你们能否组成是3的倍数的数吗?

  请同学们试一试。(教师根据学生组数的情况板书出:543、453。 )这两个数是3的倍数吗?(学生通过试除验证,得出这两个数都是3的倍数。)从这两个是3的倍数的数来看,你想到了什么?能被3整除的数 有什么特征?(设计意图:学生已经掌握了2的倍数和5的倍数的数的特征,在研究3的倍数的数的特征时,会很自然地想到“看个位上的数”。这里正是把学生的已有知识经验作为教学资源,巧妙地通过对比引起学生的思维冲突,促使学生自觉克服思维定势的负面影响,激发学生强烈的探究欲望。)

  (二)制造认知矛盾刚才同学们是从个位上去寻找3的倍数的“特征”的,那么个位上是3的数,它就一定是3的倍数吗?(我紧接着举出13、23、46、126、49等数让学生试除判断,从而由此引导学生推翻假设。)同学们,注意观察一下这几个数个位上的数字,个位的数字都是3的倍数,但它们的结果有的是3的倍数,但有的数却不是3的倍数,那么我们能从个位上找出是3的倍数的数的特征吗?

  (三)设问激趣我们再看看刚才的那3个数字,你们还能利用3、4、5这三个数字,组成一个三位数, 然后再看看它是不是3的倍数,好吗?(学生再通过3、4、5这三个数字任意组成一个三位数,通过试除发现:所组成的三位数都是3的倍数。)通过刚才的发现,那么3的倍数的特征有没有规律可循呢?

  下面我们就一起来学习“3的倍数的特征。”(板书课题)(设计意图:通过设置这样一个教学小“陷阱”,引导学生提出3的倍数的特征的假设,然后推翻假设,引发认知矛盾,并再次创设问题情境让学生进行探究,这样的设计不仅有效地避免了“2和5的倍数的特征”思维定势的影响,而且进一步地激发了学生的求知欲望。)

  (四)操作中发现规律下面我们来做几个小活动,要求同桌之间互相合作完成。1. 活动一:每个同学手中都有一些小棒和一张数位表,先请同学们拿出其中的3根小棒,在数位表上摆出一个两位数或三位数,然后再用计算器进行验证(例如:用3根小棒摆出两位数:个位摆1根,十位摆2根,组成21……)请把摆出的数填在下面的表中:

  小棒的根数 摆出的数 3的倍数 不是3的倍数

  学生完成操作并填写表格。问:你摆了哪些数啊?(根据学生回答,填表)这些数都是3的倍数吗?(请在表里画“√”)追问:用3根小棒能摆出一个不是3的倍数的数来吗?(通过这样的设问,充分调动学生的求知欲望)

  1.如果有学生认为能摆出一个不是3的倍的数来,就请他自己在下面摆一摆,然后一起验证,再下结论。

  2. 活动二:再请同学们拿出5根小棒,按刚才的方法在数位表上摆出几个两位数或三位数,看摆出的数是不是3的倍数。(学生合作操作并填写表格。)问:用5根小棒摆出的数是3的倍数吗?追问:用5根小棒能摆出一个是3的倍数吗?(学生验证后回答)(设计意图:用实验操作的方法来教学3的倍数的特征,改变了以往先列举几组3的倍数和不是3的倍数的.数字,然后引导学生归纳特征的教法。这样做,不但提高了数学知识本身的趣味性,而且让学生更好地经历了探究3的倍数的特征的过程。先让学生用3根小棒摆出3的倍数,学生非常投入地去摆数,结果成功了。再用5根小棒去摆,可就是摆不出3的倍数来,从而产生了很大的困惑。学生的困惑越大,继续研究的欲望就越强,从而为探索出结论打下坚实的基础。)

  3. 活动三:请同学们自己选择小棒的根数摆一摆,再按照刚才的摆法把结果填在表格里,并和小组里的同学说一说,从摆小棒的活动中,你发现了什么?(学生合作完成活动,并在小组里交流。)问:你选择的是用几根小棒摆的啊?结果怎样呢?你发现了什么?(如果小棒的根数是3的倍数,摆出的数就一定是3的倍数;如果小棒的根数不是3的倍数,摆出的数就不是3的倍数……)

  4. 活动小结:通过刚才的活动,我们发现3的倍数的一些特点,谁能归纳一下是3的倍数的数有什么特征吗?得出结论:一个数各位上数的和是3的倍数,这个数就是3的倍数(设计意图:通过学生任意选取小棒数量来进行实验和全班学生的汇报,让学生自主地操作、观察、比较、交流,进一步丰富前两次活动得出的结论,促使学生主动地发现规律,从而更好的获得相应的知识。)

  5.看书质疑(通过活动总结了结论,再让学生看书,来发现问题,从而加深了学生对新知的认识。)

  三、达标检测:

  通过实验,我们现在已经知道3的倍数的特征,你能运用这一规律来解决一些简单问题吗?

  1、完成课本第51页的做一做的第4题。(简单说说理由)

  2、说一说。(同桌间合作,一问一答,1人随便说一个数让另1人猜该数是否是3的倍数。要求所说的数尽量别超过4位,然后调换角色。)

  3、在下面每个数的□里填上一个数字,使这个数是3的倍数。 它们各有几种不同的填法?  □7 4□5 □44 65□引导学生掌握科学的填数方法:

  (1)先看已知数位上的数字的和是多少;

  (2)如果已知数位上的数字和 是3的倍数,那么未知数位的□里最小填“0”,要填的其它数字可依次加上3;如果已知数位上的数字和不是3 的倍数,那么未知数位的方格里可先填一个最小的数,使它能与已知数位上的数字的和凑成是3的倍数,要填的其它数字可在此基础上依次加上3.4、玩学号小游戏(上课前已分工好,按顺序一个号码代表一个学生,即“学号”)同学们刚才的题目完成得很精彩,最后我们再来玩一个小游戏。

  同学们都知道自己的学号是多少吧?那我们就来玩一个关于学号的游戏。请听:如果你的学号是2的倍数请你站起来;如果你的学号是5的倍数请你站起来;如果你的学号是3的倍数也请你站起来。刚才老师发现有些同学好象站起来2(3)次哦?你为什么要站起来2(3)次呢?请你用一句话说明理由。(重点突出30号、60号)学生回答后,师生共同小结,得出新的结论。(设计意图:通过各种趣味性强的练习,既让学生内化了“3的倍数的特征”,又让学生能从游戏中轻松的获得知识,而且内容一层层深入,让学生体会到知识的延伸性。另外还让学生感受到数学的奇妙和乐趣。)

  四、学习小结

  通过这节课,说一说你有什么收获啊?你印象最深的是什么?你对自己在课堂上的表现满意吗?

《3的倍数的特征》教案7

  教学目标:

  1.知识与技能:让学生经历2、5的倍数特征的探索过程,理解并掌握2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。

  2.过程与方法:在观察、猜测和小组合作学习讨论的过程中,提高探究问题的能力,增强学生的探索意识,3.情感态度与价值观:在学习活动中培养学生概括能力,加强对自然数特征的认识,感受教学的奇妙,增强学习数学的积极情感,进一步感受数学的魅力。

  教学重点:理解并掌握2和5的倍数的特征

  教学难点:通过探索2、5的倍数的特征,判断一个数是不是2和5的倍数。

  教学准备:课前让每个学生写好一张百数表。教学过程:

  一、情境导入

  1.同学们,数学王国中的5联盟和2联盟要召集散落在外的人马了,召集条件是:5联盟要召集的必须是5的倍数(板书:5的倍数),2联盟要召集的必须是2的倍数(板书:2的倍数)。

  2.同学们看,黑板上就有一些2部落和5部落的人马:黑板出示一些数(49 10 17 18 22 25 34 36 40 43 55 82 75 60),谁想和老师比试一下,以最快的速度把它们送回到5联盟和2联盟?

  3.通过刚才的比赛,你有什么感想?

  4.那是因为老师运用了2、5的倍数的特征,今天我们就来探索2、5的倍数的特征。(板书:2和5的倍数特征)

  二、探究新知

  (一)探索5的倍数的特征

  1.引入百数表

  2.出示课件:百数表,在这些数中找出5的倍数,写出来。

  3.你们找的数和老师找的相同吗?(课件出示)

  4.观察5的倍数,你有什么发现?把你的发现说给同桌听听 谁来概括一下5的倍数到底有什么特征?(小组讨论、交流)引导总结:个位上是0或5的数都是5的倍数(板书)验证:除了这些数以外,其它5的倍数也有这样的特征吗?请举例验证。(小组合作验证,写几个多位数)

  过渡问题:学习了5的特征有什么好处?

  师随机在黑板上写一个数,让学生猜猜它是不是5的倍数。练一练:(出示课件)

  过渡:那172是几的倍数呢?请同学验证。2的倍数有什么特征,想不想研究?下面我们一起研究2的特征。

  (二)探索2的倍数的特征

  1.猜一猜:根据研究5的倍数特征的经验,你猜一猜2的倍数可能会有什么特征呢?

  2.课件出示:百数表找出2的倍数,(小组合作找出所有2的倍数)。

  3.汇报后,观察2的倍数的特征,看看你刚才的猜测是不是正确? 4.归纳:2的倍数有怎样的特征?

  板书:个位上是0、2、4、6、8的数都是2的倍数

  验证:除了这些数以外,其它2的倍数也有这样的特征吗?请举例验证。

  (三)奇数、偶数的再认识

  自然数按是不是2的倍数来分可分为奇数和偶数两大类,2的倍数都是偶数,不是2的倍数就就是奇数。

  通过奇数和偶数的学习,你们还能想到哪些数学知识呢?(学生独立思考,小组讨论交流)

  (如:最小的偶数是0;最小的奇数是1;自然数按是不是2的倍数可以分为偶数和奇数等。)

  (四)探究2和5的倍数的共同特征

  比较:判断一个数是不是2或5的倍数,都是看什么? 1.练一练,在5的倍数中找出2的倍数;在2的倍数中找到5的倍数。

  引导总结:个位上是0的数,既是2的倍数又是5的倍数。试一试:一本30页的画册,任意翻开后看到的页码数,有一个既是2的倍数,又是5的倍数,翻开的可能是哪两页?

  三、自学检测,巩固深化 1.轻松演练 快速判断下面各数哪些是奇数,哪些是偶数? 52、77、124、501、3170、4286、6003 2.轻松演练

  按要求将下面的数分类 47、75、96、100、135、246、369、718、900 2的倍数有()5的倍数有()既是2的倍数又是5的倍数有()3.生活中的数学

  ①体育课上,五年二班的55位同学在操场上做游戏,如果每两位同学一个组,能正好分完吗?如果每5位同学一个组,能正好分完吗?为什么?

  ②看商品猜价格

  童车:(价钱在130——135之间,是2的倍数)脚踏自行车:(价钱在350——360之间,是5的倍数)电动自行车:(价钱在1950——20xx之间,既是2的倍数又是5的倍数)

  四、知识拓展 思考:一个三位偶数,各个数位上的数字的.和是12,若这个偶数既是2的倍数又是5的倍数,这个三位偶数可能是多少?

  五、课堂总结

  通过今天的学习,你有什么收获?还有什么问题?

  六、布置作业 课本第一、二题 板书设计: 2、5的倍数的特征

  个位上是0或5的数都是5的倍数 个位上是0、2、4、6、8的数都是2的倍数 教学反思:

  本课时是在学生学习了因数、倍数的基础上,进一步来探索2、5的倍数的特征。通过呈现 “百数表”和“列举法”让学生从表中(或列举的数据)找出2和5的倍数,并用不同的符号分别圈出,再观察其特征。在理解2的倍数的特征后,揭示偶数和奇数的含义。对于2、5的倍数的共同特征,则引导学生在观察、交流的基础上自己归纳。对于数的奇偶性我让学生以小组为单位自主探讨、交流,使学生经历猜想、观察、归纳、交流等数学活动,获得基本的数学知识和技能,发展思维能力,激发学习的兴趣,增强学好数学的信心。出现疑难问题或意见不一时,通过小组或集体讨论解决,教师发挥引导的作用,消除学生的疑惑;关注学生的个体差异,使不同层次的学生在练习中获得不同的发展,体验成功的喜悦。

《3的倍数的特征》教案8

  自学预设:

  自学内容P19做一做,P20的T4-11

  指导方法

  复习:1、判断下面哪些数是2的倍数,哪些数是5的倍数?

  18,25,46,85,100,325,180,90

  2、2的倍数和5的倍数各有什么特征?

  3、既是2的倍数又是5的倍数的数有什么特征?

  思考:

  1、1×3=

  2×3=

  3×3=

  4×3=

  5×3=……..

  你发现上面的式子有什么特点?

  2、3的倍数有什么特点?举例说明

  3、哪些数既是2、5的倍数又是3的倍数?

  小组讨论

  尝试练习

  1、试着完成P19的做一做练习

  2、判断下列数哪些是3的倍数?

  333427180

  69390405300

  教学内容:3的倍数的特征(P19及P20题4~5)

  教学目标:

  ①使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。

  ②能应用3的倍数的特征,会判断一个数是否是3的倍数。

  ③培养学生观察、分析、概括、推理能力。

  ④让学生在探索发现过程中体验到成功的乐趣,培养学习数学的信心。

  教学重点:探求3的倍数的特征。

  教学难点:会判断一个数是否是3的倍数。

  教学过程:

  一、预习反馈,探究新知

  我们已经知道了2、5倍数的特征,那么3的倍数又有什么特征呢?现在我们就来学习和研究3的倍数的特征(板书课题)

  1.反馈3的倍数的特征。

  (1)思考并回答:①什么样的数是3的倍数?

  ②要想研究3的倍数的特征,应该怎样做?

  (2)学生反馈:(根据学生说的.逐一板书,先找出一些3的倍数)

  1×3=35×3=15

  2×3=66×3=18

  3×3=97×3=21

  4×3=128×3=24

  ……

  (3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?

  (4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?(学生自己动手验证)

  我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)可以提示:将各个数字加起来

  汇报:如果把3的倍数的各位上的数字相加,他们的和是3的倍数。

  验证:下面各数,哪些是3的倍数呢?210,54,216,129,9231,9876543204

  (5):一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  2.练习:完成P19做一做

  三、课堂:学生今天学习的内容。

  四、巩固练习:完成P20题4~5

  五、能力拓展:

  (1)在□里填上适当的数,使它是3的倍数

  3□5□1646□400□

  (2)在□里填上适当的数,使它成为偶数,并且是3的倍数。

  □7□3□□06□0□81□□

  (3)有一个数有因数3,又是5的倍数,在两位数中最大的一个数是,在三位数中最小的一个数是。

  六、课后:

  七、作业:

  八、课后反思:

《3的倍数的特征》教案9

  一、教学内容

  新人教版《义务教育课程教科书数学》五年级(下册)第10页。

  二、教学目标

  1.使学生掌握3的倍数的特征,能够正确地判断一个数是不是3的倍数。

  2.让学生经历科学的探究过程,激发学生探索新知的兴趣,培养学生的自主学习能力。

  3.结合知识的教学,培养学生的观察、猜想、分析、比较、归纳等思维能力。

  4.让学生获得探索成功的体验,增强学好数学的自信心,培养学生的数学兴趣。

  三、课前准备

  计数器、课件

  四、教学过程

  (一)复习旧知,引出新知 1.复习旧知

  出示:

  (1)如果将这些钱平均分给2所学校,每所学校得到的钱数是整元数吗?你是怎么知道的?有几种不同的方法可以判断?哪种方法比较好?

  (2)如果将这些钱平均分给5所学校,每所学校得到的钱数是整元数吗?你又是怎么知道的?有几种不同的方法可以判断?哪种方法比较好?

  2.引出新知

  如果将这些钱平均分给3所学校,每个学校分到的钱是整元数吗?你是怎么知道的?能不用计算3860÷3的方法判断吗?

  ⒊导入新课

  同学们,3的倍数有特征吗?有什么特征呢?今天我们就来研究3的倍数的特征。

  教学意图:一方面通过复习帮助学生回忆2、5倍数的特点,巩固前一节学习的知识,另一方面引出本节课要研究的知识――3的倍数的特征,自然过渡到新知教学。

  (二)猜想验证,制造悬念

  1.请同学们猜一猜3的倍数的特征可能是什么? 各种不同的数,都是3的倍数。

  2.用4颗珠子摆数研究

  (1)用4颗珠子可以摆出哪些数?

  学生先摆,并做搞好记录,最后汇报:4、40、31、22、13、400、310、301、220、202、211、130、103、121、112。

  (2)这些数是3的倍数吗?

  (3)你又有什么发现?

  教学意图:通过让学生摆数、计算等活动,发现规律:用4颗珠子摆成的不同的数,都不是3的倍数。

  3.观察比较,寻找简便方法

  (1)把3颗珠子和4颗珠子摆的数联系起来看一看,有什么发现?

  (2)从这里可以看出,只要看摆出的几个数就知道摆出的其他数是不是3的倍数了?

  教学意图:通过对3颗、4颗珠子摆数、判断的比较,发现规律:摆出的数要么全是3的倍数,要么全不是3的倍数,从而寻找到简便的判断方法:只要判断摆成的一个数是不是3的倍数就知道其他的数是不是3的倍数了,为下面快速地判断奠定基础。

  4.用n颗珠子摆数研究

  (1)用5颗珠子摆成的数是3的倍数吗?为什么?(如:104不是3的倍数,所以摆成的其他数都不是3的倍数)

  (2)用6颗珠子摆成的数是3的倍数吗?为什么?

  (3)用7颗珠子摆成的数是3的倍数吗?为什么?

  (4)用8颗珠子摆成的数是3的倍数的数吗?为什么?

  (5)用9颗珠子摆成的数是3的倍数吗?为什么?

  教学意图:通过快速地判断5、6、7、8、9颗珠子摆成的数是不是3的倍数的研究,为下面的研究规律提供丰富的素材,为发现和概括规律奠定基础。

  5.观察比较,发现规律

  (1)请同学们观察上面的`研究,有什么发现?

  (2)猜想一下还可以用几颗珠子摆成的数都是3的倍数?为什么?验证一下猜想对不对?

  (3)为什么不猜10颗、11颗珠子摆的数?验证一下对不对?

  (4)请同学们想一想:摆成的3的倍数与珠子的颗数有什么关系?

  (5)再请同学们思考:珠子的颗数就是摆成的数的什么?

  (6)把珠子颗数换成“各位上数的和”说说3的倍数有什么特征?

  教学意图:先帮助学生寻找到摆成的3的倍数的数与珠子的颗数之间的关系,初步发现规律,再引导学生思考:珠子的颗数就是摆成的数的各位上数的和,最终发现3的倍数的特征。

  6.举例判断,验证规律

  师:这个规律对不对呢?怎样去验证?学生举几个例验证(略)。

  教学意图:因为这个规律是采用不完全归纳法归纳出来的,具有一定的局限性,正确与否还需要进行验证,学生随机举例验证,从而证明规律的正确性。

  (四)巩固练习,消化理解

  1.下面哪些数是3的倍数?你是怎么想的?

  45 546 7 7610 81 8180

  2.在下面每个数的□里填上一个数字,使这个数是3的倍数。你是怎么想的?

  4□ 3□5 12□ □12

  可以填哪些数?有什么规律?

  ⒊熊爸爸在狐狸办的工厂干了3个月的活,月工资856元,这一天,熊爸爸带着小熊到狐狸家里领工资。他们通过计算,得出以下的结果:狐狸:856×3=2468(元),小熊:856×3=2558(元),熊爸爸:856×3=2568(元),你知道谁算对了吗?为什么?

  ⒋有个很大的数,如:46091362930,它是3的倍数吗?你是把所有的数字都加来的吗?有更简便的方法吗?

  (五)回顾总结,结束全课

  通过今天的学习你学到了什么?你有什么收获?

  《3的倍数特征》教学反思

  3的倍数特征相对于2和5来说相对不易发现,在讨论3的倍数特征时,学生学习遇到困难,有学生得出结论:1、个位是3、6、9的数是3的倍数。2、个位是3的倍数,这个数就是3的倍数。…这时,我让学生用计数器上的3颗珠子和4颗珠子拨数,计算出是否是3的倍数,再次找3的倍数特征,学生交流后发现光看个位是不是3的倍数可不行。课件出示114,圈一圈,你有什么发现?让学生明确把各个数位上的数加起来,所得的和是3的倍数,这样的数才是3的倍数。

  整个教学过程,我重点放在了教学方法上,着重学生“发现问题—探索问题—解决问题”的能力培养,让学生能在猜想、操作、验证、交流、反思、归纳的过程中获取知识,也有助于学生数学思维的培养。抓住一切可以利用的机会,激发学生的创新欲望,培养学生的创造意识,充分发展个性才能。

  《3的倍数的特征》说课稿

  一、教材简析

  《3的倍数的特征》是新人教版第十册的内容,属于“数与代数”领域中有关“倍数与因数”的知识。学生在已经学习“2,5倍数的特征”的基础上,继续学习3的倍数的特征。

  二、教学目标

  1.经历探索3的倍数的特征的过程,理解3的倍数的特征,能判断一个数是不是3的倍数。

  2.发展分析、比较、猜测、验证的能力。

  三、教学思路

  本节课我紧紧抓住猜想→观察→举证→归纳这条主线展开教学,让学生经历有效探究的学习过程。

  基于以上想法,本课设计以下两个大环节:

  探究 深化

  四、教学过程

  一.探究

  这个部分,我为学生提供了四个探究平台:

  (1)猜想

  复习:2和5的倍数特征。猜测3的倍数的特征。

  (2)观察

  在百数表中找出所有3的倍数,通过观察否定猜想。

  借助计数器,在百数表中任意选一个3的倍数,用计数器将它拨出来,并记录下拨这个数用了几颗数珠。再观察记录表,你能发现什么?

  学生很快能发现所用数珠的颗数都是3的倍数。

  当学生的认知出现困难时,借助计数器来研究3的倍数的特征,直观地降低了学生观察发现特征的难度,使得所学新知更贴近学生的“最近发展区”。

  如果给你3颗数珠,那你猜一猜在计数器上拨出100以内的数会是3的倍数吗?给出4颗、5颗…….,自己拨一拨,发现了什么?

  经过研究,学生发现100以内是3的倍数,所用数珠的颗数都是3的倍数,而不是3的倍数,所用数珠的颗数都不是3的倍数。也就是说:100以内的数,如果在计数器上拨它,所用数珠的颗数是3的倍数,这个数就是3的倍数。

  (3)举证

  我们之前的研究结论对所有的数都适用吗?学生马上会提出研究比100更大的数。

  小组合作:随意想出多个大于100的数,先用计算器算一下,然后记录下来。最后用计数器拨一拨看有什么发现?

  经过合作探讨,交流汇报,学生发现在这些较大的数当中,之前的研究结论依然适用。

  所研究的对象范围越广,代表性越强,研究结论就越可靠。本环节通过“更大的数”和“随意想”两方面,让研究对象范围更广,培养了学生缜密思考的意识和习惯。

  (4)归纳

  现在如果给你一个数,不做除法,你怎样快速地判断它是不是3的倍数呢?咦!我发现有的同学没有用计数器也判断对了,还很快呢!你们是怎么想的呢?学生会说所用数珠的颗数其实就是各个数位上的数字之和。

  “各个数位上的数字之和”这种稍复杂的表述方式,由学生在操作中自然归纳得出,突出了学生探究学习的自主性,彰显了学生的主体地位。

  二.深化

  让学生拿出事先准备好的从0到9的十张卡片,在游戏中解决以下问题:

  (1)你能任意选3张卡片,摆出一个3的倍数吗?用你选的这3张卡片,还能摆出不同的3的倍数吗?一共能摆出几个?

  (2)随意抽取3张卡片,在它的基础上加卡片,使摆出的数还是3的倍数。如果加一张怎样加?加两张呢?三张?……你最多能用到几张?

  (3)当十张卡片全部用上时,我们就得到了比较大的3的倍数,你能快速去掉一些卡片,让这个数依然是3的倍数吗?

  如果要去掉一张卡片,你怎么做?如果要去掉两张?三张?……

  刚才的练习有没有给你什么启发?

  用你们的方法判断下面的这些数是不是3的倍数:

  36996969336, 1827457874。

  判断数位多的数是否是3的倍数,运用常规方法比较麻烦。如何突破这一难点?通过这一系列的卡片游戏,学生在操作中自然而然地摸索出解题的捷径,完成了对所学知识的拓展。

  各位老师,刚才我描述的这个教学过程,是让学生在探究3的倍数的特征过程中不但为学生积累了数学活动经验,而且也积淀了基本的数学思想:让学生逐步领悟到猜想、观察、举证、归纳是解决数学问题的一般方法。

  谢谢!

《3的倍数的特征》教案10

  [教学内容] 3的倍数特征

  [教学目标]

  1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。

  2、发展分析、比较、猜测、验证的能力。

  [教学重、难点] 发展分析、比较、猜测、验证的能力。

  [教学过程]

  一、3的倍数的特征的猜想

  我们研究了2、5的.倍数的特征,那么3的倍数有什么特征呢?引导学生提出猜想。学生可能会猜想:个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。

  二、3的倍数的特征的探究

  让学生在100以内的数表中找出3的倍数,用自己的方式做记号,并观察、思考3的倍数有什么特征。在此基础上引导学生将3的倍数每个数位的各个数字加起来再观察,逐步引导学生发现规律,从而归纳出3的倍数的特征。

  引导学生归纳3的倍数的特征:每个数位的各个数字加起来是3的倍数。

  试一试:尝试用3的倍数特征来判断一个数是不是3的倍数。

  三、练一练:

  第2题:

  让学生准备几张卡片:3、0、4、5 边摆边想,再交流讨论思考的过程。

  (1)30、45、54 (2)30、54 (3)30、45 (4)30

  四、实践活动:

  让学生运用研究3的倍数的特征的方法去研究9的倍数。让学生经历涂、画、想等过程,使学生获得真实的体验。

  [板书设计]

  3的倍数的特征

  3的倍数的特征:这个数各位数字之和是3的倍数。

《3的倍数的特征》教案11

  学习目标:

  1.经历观察、探究、发现、验证的过程,发现并掌握3的倍数的特征,进一步体会归纳思想。

  2.能判断一个数是不是3的倍数。

  3.在探究发现的过程中体验成功的乐趣,增强学好数学的信心。

  学习重点:

  3的倍数的特征。

  学习难点:

  能正确判断一个数是不是3的倍数。

  学习准备:

  课件等。

  学习过程:

  一、复习导入

  提问:谁来说一说什么样的数是2的倍数?什么样的数是5的倍数?

  并出示习题。

  二、新知探究

  1.引导观察,调整思路。

  (1)下面各数中,哪些是3的倍数?

  21 42 63 84 15 36 57 78 99 11 32 53 74 95 26 47 68 89

  (2)你能从个位上找出一个数是3的倍数的特征吗?从十位上呢?

  (3)学生讨论发现:这两组数个位上分别为1—9,但第一组的数均是3的倍数,第二组的数都不是3的倍数,因此,无法从个位或十位找出是3的倍数的特征。

  (4)通过观察发现是不是3的倍数,已不再取决于个位或十位上的数字了,必须探索新的'解决办法。

  2.组织活动,探索规律。

  (1)请你从1、2、3、4、5、6六张数字卡片中挑出其中三张,排成是3的倍数的三位数,你能排出多少个?

  (2)讨论:从上面这些三位数中,你能发现3的倍数的特征吗?

  (3)一个数是否是3的倍数,只同所选的数字有关,而与数字的排列位置无关。选三张卡片组成是3的倍数的三位数,除选(1,2,3)外,还可选(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6)。

  (4)小结。

  一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  3.揭示特征,加深理解。

  (1)利用这一题还可进一步让学生思考:如果用这六张卡片组成一个六位数,这个六位数一定是3的倍数吗?

  (2)谁能想出更简便的方法来判断?(把每一个数位上是3的倍数的数划去,全部划完,说明这个数是3的倍数)

  三、课堂小结

  本节课学习后你有什么收获?

《3的倍数的特征》教案12

  课题3的倍数的特征

  课时 一课时

  一、教材内容分析

  《3的倍数的特征》是人教版小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

  先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难。

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、通过观察、猜测、验证等活动,让学生经历探索3的倍数的特征的过程理解3的倍数特征,能判断一个数是不是3的倍数。

  2、 使学生在学习过程中积累数学活动的经验,培养学生观察、分析、动手操作及概括问题的能力,发展学生的抽象思维和培养相互间的交流、合作与竞争意识,提高学生的合情推理能力。

  3、通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

  教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

  教学难点:3的倍数的数的特征的归纳过程。

  三、学习者特征分析

  学生在学习本课之前,已经学习了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的习惯。可以说,学生有了一定的自学与研究的能力。

  学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。

  四、教学策略选择与设计

  根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:

  1、创设情景,激趣导入。

  2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。

  3、采用让学生自主发现的学习方法。

  学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

  六、教学过程

  教学过程

  一、猜想,激发兴趣

  二、探究,验证猜想

  三、练习,巩固结论

  1、提问:你能用5,6,7三个数字组成一个三位数,使这个数是2的倍数?说说什么样的数一定是2的倍数?可以摆成5的倍数吗?说说怎样摆?什么样的.数是5的倍数?

  2、 谈话:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,你能猜猜什么样的数是3的倍数?

  3、提问:同意他的猜想吗?他猜的到底对不对呢?我们一起来研究一下。

  四、总结,拓展延伸

  1、课件出示百数表

  (1)提问:请同学们观察一下,3的倍数个位上是哪些数字?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?

  (2)究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题:3的倍数的特征)

  2、提问: 观察百数表中圈出的3的倍数,你们发现什么?

  (1)引导学生先横着看,竖着看,仍然找不到3的倍数特征。

  (2)引导学生斜着看:第一斜行3,12,21。

  汇报交流:

  ①第一斜行3的倍数交换两个数字的位置后,得到的还是3的倍数。

  ②第一斜行3的倍数各位上数字相加,和是3的倍数。

  (3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?

  (4)将百数图中的数的顺序打乱,刚才大家发现的还正确吗?

  3、操作验证

  (1)在计数器上分别拨出几个3的倍数:12、42、45、75、87看看各用了几颗算珠?

  小结:算珠的个数与3的倍数之间的联系。

  (2)观察这些3的倍数,它们十位与个位上数的和跟3有着怎样的关系?

  教师板书:3的倍数,它各位上的和一定是3的倍数。

  4、学生举例验证此规律在100以外的数是否适用。

  5、运用结论,完成试一试。

  五、课外作业:

  课件出示:

  1、下面的数,那些是3的倍数?

  29 45 51 67 284 196 3456 760058947641587

  组织交流:哪些数是3的倍数?你是怎样判断的?

  2、在每个数的口里填上一个数字,使这个数是3的倍数。

  7口 20口 口12 3口5

  提问: 为什么填这个数?你是怎么想的?还可以填哪些数?

  3、从下面选出三张数字卡片,组成一个是3的倍数的三位数。你一共可以组成多少个这样的三位数?

  0 5 6 7

  4、猜猜老师的年龄:老师的年龄既是2的倍数,又是5的倍数,又是3的倍数,老师今年( )岁。

  5、看谁最聪明?

  23663997是3的倍数吗?你是怎样判断的?

  学生交流,汇报。

  快速判断下列数是不是3的倍数?再用计算器验证前三个。

  369639693、13693692、121212127、18275499、9233……3

  总结:

  当一个数的数位上出现3、6、9时,可以先去掉3、6、9,剩下的数的两个数和是3的倍数,再去掉,最后去掉三个数的和是3的倍数。余下的数是3的倍数。那么这个数就是3的倍数,不是则相反。

  板书设计

  33的倍数的特征

  33的倍数,它各位上的和一定是3的倍数。

  课后作业 研究6和9的倍数的特征。

《3的倍数的特征》教案13

  教学目标:

  1、通过自主探索,掌握2、3、5 的倍数的特征。

  2、能判断一个数是不是2、5 或3 的倍数。

  3、知道奇数和偶数,能判断一个数是偶数还是奇数。

  教学重点:

  2、3、5 的倍数的特征。

  教学难点:

  3 的倍数的特征是难点。

  教学准备:

  课件。

  教学过程:

  一、引入新课。

  讲解导入:同学们,我们在前几节课中已经掌握了倍数和因数的特征。像2、3、5 这些特殊的数,它们的倍数又有哪些特征呢?这节课我们就一起来学习。(板书课题)

  二、探究2 的倍数的特征。

  1、引导:同学们都看过电影吧?电影票的票号和电影院入口一般都是怎样设置的?

  2、出示教材第17 页主题图,问:双号的号码有什么特点?

  3、引导学生明确奇数和偶数的概念:在自然数中,是2 的倍数的数叫做偶数(0 也是偶数),不是2 的倍数的数叫做奇数。(板书)

  4、组织学生做“你说我判断”的游戏:同桌合作,一个同学任意说一个数,另一个同学判断一下对方说的是奇数还是偶数;交换角色再做。同桌之间互相说一些数,并判断是偶数还是奇数。

  5、出示“做一做”的题目,让学生完成。(巡视;学生做完后集体订正)

  三、探究5 的倍数的特征。

  1、刚才我们学习了2 的倍数的特征,了解了奇数和偶数的概念,现在我来考考大家,看大家掌握的怎么样:所有同学,学号是奇数的请举手。(停顿,等学生举完手)所有的同学,学号是偶数的请举手。

  2、好,同学们对奇数和偶数掌握的还是不错的。下面我们继续做游戏:学号是5 的倍数的同学请举手。

  3、同学们想一想,哪些数是5 的倍数?5 的倍数有哪些特征?

  4、出示教材第18 页的表,让学生找出1 至100 中的5 的倍数并涂上颜色。提问:涂一涂,你能从表中看出什么规律?(指名板演)

  5、观察一下这些数的个位数,你能得出什么结论?

  6、让学生做教材第18 页“做一做”的练习,先分别找出2 和5 的倍数。

  7、让学生再找一找既是2 倍数又是5 的倍数的数。提问:你是怎么找到的?

  8、不错,这两种方法都可以找到10 的倍数。有些同学还发现了既是2 的倍数又是5 的倍数的数一定是10 的倍数。同学们在观察这些是10 的倍数的数,大家能不能总结出10 的倍数的特征?

  四、探究3 的倍数的特征。

  1、刚才我们学习了2 和5 的倍数的特征,那么3 的倍数又有哪些特征呢?请同学们先把3 的倍数找出来,在进行小组讨论,看看3 的倍数有什么特征。

  2、观察这些数,大家能不能找到3 的倍数的特征?(给学生足够的时间来讨论)

  3、用老方法不能得出3 的倍数的'特征,怎么办呢?提示:同学们再看看12 这个数,研究一下它的个位和十位上的数字,看看能发现什么?

  4、表扬学生的发现,鼓励学生继续探讨:非常棒!同学们在研究一下15、18、21,看看这三个数是不是也符合这个规律。

  5、现在大家是不是可以总结出3 的倍数的特征了?(教师同步板书)

  6、现在同学们用自己得出的结论做“做一做”第1 题,看看其他数是不是也是这样的。

  7、组织学生做“我说你判断”的游戏。

  8、让学生自主完成“做一做”第2 题。

  五、总结。

  组织学生说说这节课学到了哪些知识以及有些什么收获。

  作业

  1、下列哪些数是2 的倍数,而不是5 的倍数?在对应的括号内画“√”。

  8 10 24 120 88 185 ()()()()()()

  2、找出下列各数中是3 的倍数的数。

  45 76 121 273 690 1234 29 94 302 57 850 20xx

  3、写出三个既是3 的倍数又是2 的倍数的数。

  4、写出三个是3 的倍数但不是2 和5 的倍数的数。

  5、在方框中填一个数,使每个数都是3 的倍数。

  8 5 1 34 78 31

  板书设计:

  2、3、5 的倍数的特征

《3的倍数的特征》教案14

  学习目标:

  1、在探索3的倍数的特征的过程中掌握3的倍数的特征。

  2、能正确判断一个数是不是3的倍数。

  学习重、难点:

  1、重点:知道3的倍数的特征,能判断一个数是不是3的倍数。

  2、难点:通过操作实验自主发现3的倍数的特征。一起来学习吧!

一、知识链接。

  1、说一说2的倍数、5的倍数各有什么特征。

  2、你能用3、4、5这三个数字来组成2的倍数的三位数吗?同样用这三个数,你能组成5的倍数吗?

  二、自主尝试,合作探索每个同学手中都有一些小棒和一张数位表,请同学们自己选择小棒的.根数,在数位表上摆出一个两位数或三位数,然后再计算验证看摆出的数是不是3的倍数。一边摆,一边把把数据记录在表格中。

  温馨提示:例如用3根小棒摆出两位数:个位摆1根,十位摆2根,组成21……

  小棒的根数 摆出的数 是不是3的倍数

  思考:

  ①观察小棒的根数有什么特点?

  ②小棒的根数与摆出的数有什么关系?

  ③得出结论:3的倍数有什么特征?你发现了什么?你能归纳一下3的倍数的数有什么特征吗?

  三、分层练习,达成目标

  1、下面哪些数是3的倍数?

  29 84 45 54 108 180 801

  2、在下面每个数的□里填上一个数字,使这个数是3的倍数。  □7 6□ □13

  3、将下面这些数进行分类。6、15、28、75、20、45、27、90、1002的倍数:( ) 5的倍数:( ) 3的倍数:( ) 同时是2、3、5的倍数: ( )

  4、看谁能最先判断出下列各数是不是3的倍数。(是的打√ )① 33336669999;() ② 20xx个3( )233……3; ( )③972631559876543204 ()

  达标检测:

  1、下面哪些数是3的倍数,把它们写出来。484927 102 368943859678 ( )

  2、从下列数中选出两张数字卡片,按要求组成数。7 6 0 8 4 组成的数是3的倍数:( )

《3的倍数的特征》教案15

  教学目标:

  1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。

  2、培养分析、比较及综合概括能力。

  3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。

  教学重点:

  掌握3的倍数的特征,正确判断一个数是否是3的倍数。

  教学难点:

  探索3的倍数的特征。

  教学过程:

  一、创设情景,明确目标(3分钟)

  (一)创设情景,反馈预习

  1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?

  P:16、24、85、102、138、170、

  2 的倍数:16、24、102、138、170

  5的倍数:85、170

  即是2的倍数又是5的倍数:170

  师:说一说,你是怎么想的?

  生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.

  2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。

  师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。

  3、教师板书课题:3的倍数的特征。

  (二)明确目标,引领方法

  1、出示学习目标(见学案),生自读目标。

  2、同伴说说自己的理解,谈谈如何实现目标。

  设计意图交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。

  二、自主学习,同伴合作(15分钟)

  (一)自主学习,自我感知

  1、小棒游戏,探究规律

  师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?

  师:你来!

  师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。

  学生摆出:51

  师:51是3的倍数。我算的比计算器快吧?

  师:能摆一个三位数吗?

  学生摆出:312

  师:312是3的倍数。

  师:再来一个难点的。

  学生摆出:1123

  师:1123不是3的倍数。

  师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。

  2、小组合作探究

  (1)用3根小棒摆一个数,这些都是3的倍数吗?

  师:我们一探究要求:用相应根数的小棒在数位表上各摆出3个数。

  小组内合理分工,请大家看一下导学案的合作要求

  ①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。

  ②用计算器算一算,将3的倍数圈出来。

  ③仔细观察表格,从中你发现了什么?

  (2)用4根再摆出一些数,这些都是3的倍数吗?

  (3)用6根再摆出一些数,这些都是3的倍数吗?

  (4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?

  预设

  第一组:用3根小棒摆:2、12、102,都分别是3的倍数。

  第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。

  第三族,用6根小棒摆:都是3的倍数。

  问题:你发现了什么?

  生:我们发现了3根、6根小棒摆出来的数都是3的倍数。

  师:关键要看小棒的根数,了不起的发现。

  生:只要小棒的根数是3的倍数,这个数就是3的倍数。

  师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。

  生: 9根、12根、15根……都行——

  (5)真的是这么回事吗?以9为例摆摆看。

  师:来,说说你们小组摆出了哪个数,它是不是3的倍数?

  生:我用9根小棒摆出了36,36是3的倍数。

  师:哪个小组还想出三位数、四位数或是更大的数?

  生:我用9根小棒摆出了216,216是3的倍数。

  生:我用9根小棒摆出了3015,3015是3的倍数。

  师:说得完吗?

  生:说不完。

  师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?

  生:很合理。

  师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。

  师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。

  3、提升

  师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?

  师:小组内交流一下。

  小组活动。

  师:谁来说说?

  生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。

  生2:各个数位上数的和是3的倍数,这个数就是3的倍数。

  生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  4、探究原因,区别理解

  (1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  研究16

  师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的'分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)

  但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)

  用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)

  看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。

  通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。

  (2)问:为什么3的倍数特征要看各个数位相加的和呢?

  举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?

  一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,

  138分一分,试一试,看看是不是3的倍数

  一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。

  (2):梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。

  P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)

  三、巩固拓展,形成能力(10分钟)

  (一)巩固训练,夯实基础

  1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、圈出3的倍数的数:42、78、111、165、655、5988

  3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?

  (预设:生1:1。

  师:可以吗?还有其他答案吗?

  生2:1,4,7都可以。

  师:理由呢?

  生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。

  师:恭喜你,三种可能都被你们猜中了!

  师:如果它既是2的倍数,又是3的倍数呢?

  生:24。

  师:为什么只有24可以呢?

  生:因为只有24既是2的倍数,又是3的倍数。)

  (二)拓展训练,灵活创新

  以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)

  13689362754、123456789

  老师:如果用各个数位之和是3的倍数,比较麻烦。

  但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……

  后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。

  教师巡视,个别辅导。

  (二)同伴讨论,互助共进

  完成学案中“同伴合作,互助共进”内容。

  重点交流学生所举的例子。

  教师巡视,个别辅导。

  设计意图这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。

  四、师生共学,交流分享(5分钟)

  (一)小组展示,彰显风采

  指名小组进行汇报。

  (二)师生完善,共同提高

  1、学生纠正、补充、质疑

  2、教师精讲、点拨、

  在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。

  设计意图通过教师的点拨完善学生对比的认识。

  五、巩固拓展,形成能力(10分钟)

  (一)巩固训练,夯实基础

  先由学生自主完成学案中相应的内容,再同桌交流,完善答案。

  1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、看一看哪些是3的倍数:42、78、111、165、655、5988

  原来判断是用除法,现在用加法。改革了

  3、不用计算,能快速算出来那个式子有余数吗?

  802、3;342、3

  4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数

  5、下面都是吗?789、345、654

  都是,有什么特点?相邻、连续三个自然数。

  是不是所有都是呢?举例:123.为什么呢?

  654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。

  6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。

【《3的倍数的特征》教案】相关文章:

3的倍数特征说课稿03-25

3的倍数的特征说课稿03-19

3的倍数特征教学反思12-07

《3的倍数特征》教学反思04-11

3的倍数的特征的教学反思02-18

3的倍数特征的教学反思03-28

《3的倍数的特征》教学反思02-11

数学《3的倍数特征》说课稿12-21

《3倍数特征》说课稿07-06