五年级数学教案
作为一名教职工,就有可能用到教案,教案有助于学生理解并掌握系统的知识。优秀的教案都具备一些什么特点呢?以下是小编为大家整理的五年级数学教案,仅供参考,大家一起来看看吧。
五年级数学教案1
教学目标:
1、 引导学生经历和体验收集、整理、分析数据的过程,探究事物的规律。
2、学会用树状图或表格等辅助方法有条理地分析,有序地列举出简单事件的所有可能发生的结果。
3、能对可能发生的结果或某些事件发生的可能性的大小做出简单判断。
教学重点和难点:
重点:引导学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小做出简单判断,并做出适当的解释。
难点:引导学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小做出简单判断,并做出适当的解释。
教学媒体:教学平台
课前学生准备:每组准备:5、6、7、8四张扑克牌
教学过程:
课前准备:能简便要简便
7.2-1.2×[0.01÷(1-0.9)]
12.6×7.4÷6.3
一、复习引入。
1、请学生回忆对于“可能性”的认识
2、师:大家都知道可能性有大小之分,那么一件事情在发展过程中可能会出现多少种不同的结果呢?这就是我们今天所要学习的知识。
(出示课题:可能情况的个数)
二 、新知探究。
1、探究一:摸牌组数
师:请大家以四人为一组,用5、6、7、8这四张扑克牌一共可以组合出多少个两位数。
(1) 学生分小组动手操作
(2)汇报结果,列举交流
学生汇报交流,能拼出哪些不同的两位数。
问:怎样才能无重复、无遗漏地排出所有的可能结果?
(3)组内交流
(4)出示小亚和小胖的方法
(引导学生通过树状图或表格法来表述解题过程。)
小结:推测一件事物可能产生的结果,我们可以通过树状图或列表格的.方法找到所有的可能性。
试一试:(课本P59)
(1)、在下图所示的旗上,分别涂上红、黄、蓝三种不同的颜色,总共有多少种不同的涂法?
(3)、在小胖、小巧、小亚、小丁丁和小丽五人学习小组中选出两名负责人,可能会有多少种选法?
2、探究二:
师:如果想要知道在这四张扑克牌中任意抽出两张计算它们的和,会有多少种不同的和。你打算怎么做?
学生讨论并交流解题方法。
学生动手操作得出结论(用数状图或表格)。
比较异同。
师:我们先后两次从四张扑克牌中任意抽出两张,一次是组成两位数,一次是计算和,大家觉得这两次操作有什么相同点和不同点?
学生交流。
小结:两次操作的目的不一样,但推测的方法都一样。在无遗漏、无重复地排出所有可能情况后,再根据要求去掉相同的情况的个数。
三、课内练习。
1、在四瓶不同的饮料中,选出两瓶装入口袋,可能有多少种不同的选法?
2、同时掷出两个数点块,掷出的两个数点块的点数之和有多少种可能?
3、要在小胖、小巧、小亚、小丁丁和小丽五人中选出两人参加义务劳动,总共有多少种不同的选法?
学生集体完成,交流结果
师:这三题有什么要注意的地方?
(在树状图或表格中去掉相同的,就能得到最后的可能数。)
四、课堂总结。
今天我们运用的数状图或表格方法研究了可能性的问题,学会判断事情发生的可能性大小,希望大家可以用这些知识来为我们的生活提供帮助。
五、课后作业。
游戏:拿2、4、5、7四张数字卡片,能排出几个三位数?是哪几个?
检测目标达成练习:
1、.冷饮店里有五种冰激凌,从中选出两种,有多少不同的选法?
草莓冰激凌
香草冰激凌
巧克力冰激凌
咖啡冰激凌
果茶冰激凌
2、有1、2、3、4、5五张数卡,小胖和小丁丁每人从中抽出一张,小胖抽到的数字比小丁丁大的,总共有多少种情况?
教学反思:
五年级数学教案2
教学目标:
1、结合具体事例,经历探索容积计算问题的过程。
2、掌握计算容积的方法,能解决有关容积的简单实际问题。
3、在解决容积问题的过程中,体验数学与日常生活的密切联系。
课前准备:
每人一个水杯、水、把教材上第33页的问题写在小黑板上。
教学过程:
一、问题情境
1、教师拿出一个保温杯:同学们,水杯是大家非常熟悉的一件生活用品。老师这里有一个水杯,看着这个水杯,你能想到哪些数学问题?
学生可能会说出许多,如:
(1)这个水杯的体积是多少?
(2)这个水杯的高是多少?
(3)这个水杯的底面直径是多少?
(4)这个水杯的底面周长是多少?
(5)这个水杯能装水多少?
……
第(5)个问题如果学生想不到,教师启发:这个水杯是干什么用的?
2、师:看着一个水杯,同学们能想到这么多数学问题,真是不简单。刚才有人想到“这个水杯能装多少水”,这个问题就很好。谁知道,这个水杯能装多少水,在数学上叫做水杯的什么?(容积)
师:对,水杯能装多少水叫做水杯的容积。
板书:容积。
3、师:现在,老师有个问题,这个水杯的容积和体积相等吗?为什么?
预设:不相等。因为水杯有厚度,容积小于体积。
如果学生有其他的说法,只要有道理,就给予肯定。
二、解决问题
1、出示教材上的问题和图:同学们对体积和容积这两个概念已经很清楚了,下面我们就来解决关于体积和容积的问题。
出示教材的问题和图,指名读题。
师:第(1)个问题很简单,大家看第(2)个问题。谁知道求这个水杯能容纳多少毫升水,求的是什么?(容积)对,要求水杯的容积需要知道什么?(杯子里面的高和直径)很好,那同学们看题中告诉了吗?
预设:没有,但是,可以计算出来。用外面量的高和底面直径减去水杯的厚度就能求出来。
师:真聪明。现在请同学们自己解决这两个问题。注意,第(2)题求的是毫升,计算结果保留整数。
学生独立完成,教师巡视,个别指导。
2、交流学生计算的过程和结果:谁来说说第(1)题你是怎么算的?
3.14×(7÷2)2×18≈38(立方厘米)
内直径:7—0.8×2=5.4(厘米)
内高度:18—0.8×2=16.4(厘米)
容积:
3.14×(5.4÷2)2×16.4
≈375(立方厘米)
=375(毫升)
如果学生计算内直径或高时,只减去一个0.8时厘米,可让学生讨论一下,形成共识。
3、师:刚才我们已经计算出了保温杯的体积和容积,谁能说一说,计算容积和计算体积有什么相同点和不同点?
预设:相同点:都可以用底面积乘高这个公式来解决。不同点:容积计算用从里面测量的数据,体积计算用从外面测量的数据。
4、教师说明,杯子能装多少水,可以用容积单位,也可以用质量单位,并介绍1毫升水重1克。然后,让学生推算出1升水重1千克。
5、提出问题(3):如果把6个这样的保温杯倒满,大约需要多少千克水?请同学们自己算一算。
学生独立解答,然后全班交流。
师:谁愿意把你计算的过程和结果给我们介绍介绍?
答案:375×6=2250(毫升)
2250毫升≈2.25升
2.25升水重2.25千克
三、实际测量
1、师:今天,我们学习了容积的计算,下面请同学们拿出自己带的水杯,量出它的内直径和高,算出这个水杯大约可以装多少水?
学生拿出自己带的水杯独立完成,然后集体交流测量的方法和计算的结果。学生可能有不同的测量方法。如:
(1)用直尺直接测杯子内直径和高。
(2)用直尺测量出杯子的高,外直径和杯子的厚度。
2、提出兔博士的问题:通过计算水杯的容积,我们知道了水杯能装多少水。如果不测量,不求容积,怎样用天平称出这个杯能装多少克水呢?
预设:可以先用天平称出空杯子的重量,再称出盛满水后杯子的重量,用盛满水后的重量减去空杯子的重量就是水的重量。
学生说的不完整,教师补充。
三、课堂练习
1、练一练第1题:真聪明,一个水杯装满水,能盛多少水的.问题,同学们解决了。如果一个水杯不装满,你们能计算出杯子中有多少水吗?请同学们看练一练第1题,自己读题。
师:求这个玻璃杯中有多少升水是求这个玻璃杯的容积吗?
生:不是,因为杯中水面的高度是15厘米,而整个水杯的高度是25厘米。
师:那这个杯中的水有多少升呢,请同学们自己计算。
学生独立完成,再集体交流。
师:谁来说说你是怎样计算的?
生:3.14×102×15=4710(立方厘米)
4710立方厘米=4710毫升=4.71升
2、练一练第2题
师:下面我们来看练一练的第2题,请同学们先自己读题。
学生读完后,教师提问。
师:谁知道每升柴油0.85千克是什么意思?
生:就是说每升柴油不到1千克,才0.85千克,柴油比水轻。
师:谁能说一说求这个油桶能装柴油多少千克,怎样计算?
生:要求出油桶的容积,这也就是油桶中能装多少升柴油,再用所装柴油的升数乘0.85,就能求出这个油桶能装柴油多少千克。
师:下面请同学们自己算一算。
学生独立计算,然后集体交流。
答案:
3.14×(4÷2)2×6=75.36(立方分米)=75360(立方厘米)
75360立方厘米=75.36升
75.36×0.85≈64.06(千克)
3、练一练第3题,师:请同学们先读读题,想一想这道题与第2题有什么不同?
生1:这道题中告诉了我们底面的半径,第2题中告诉了我们底面的直径。
生2:第2题要求柴油,第3题是汽油,汽油比柴油轻,每升才0.74千克。
4、练一练第4题,计算环形柱体的体积,可先讨论一下怎样计算,再由学生独立完成。 师:下面请同学们自己算一算。
学生独立完成,教师巡视。
答案:
1米=10分米
3.14×32×10=282.6 (立方分米)=282600 (立方厘米)
282600立方厘米=282.6升
282.6×0.74≈209 (千克)
师:下面请同学们来看第4题,这是一个环形柱体,谁知道该怎样计算它的体积呢?
生:用外面这个柱体的体积,减去里面那个空圆柱体的体积。
学生独立完成,然后交流。
答案:
20+5+5=30(毫米)
3.14×(30÷2)2×34=24021(立方毫米)
3.14×(20÷2)2×34=10676(立方毫米)
24021—10676=13345(立方毫米)
五年级数学教案3
一、导引目标,激发兴趣
师:在现实生活中,许多小数并不一定都要知道它们的准确数,而只需要知道它们的近似数就可以了。同样,在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,只要根据需要求出积的近似数就可以了。今天,我们一起来学习求积的近似数。(板书课题:积的近似数)
二、创设条件,主体参与
1 、创设情境
投影课本例6主题图,教师讲述故事
2 、问题质疑。
师:同学们,为什么警犬能很快帮助警察抓获犯罪嫌疑人?你们知道吗?谁来说一说。
预设:因为狗的嗅觉很灵敏,狗的嗅觉细胞数量比人多得多,狗能利用它十分灵敏的嗅觉闻出坏蛋身上的气味。
师:在现实生活中,动物是人类的好朋友,我们要保护动物,保护动物生存的环境。
3、教学例6。
(1)呈现信息:人的嗅觉细胞约有0、049亿个,狗的嗅觉细胞个数是人的45倍,狗的嗅觉细胞约有多少亿个?(得数保留一位小数。)根据已知条件与所求问题你认为应该怎样列式呢?并说明理由。
(2)教师板书:0、049×45
(3)学生独立完成求积的近似数。
(4)与你的同桌交流你所求得的结果,互相检验。指名学生板书计算过程,由其讲解保留近似数的依据。
全体学生对他的板演过程和解释作出评价。
(5)反馈、评价。引导学生反馈、评价自己的计算过程、结果是否正确,更正自己做错的地方。
(6)师小结:求2、205这个积保留一位小数的近似数,要看小数点后第二位,因为积的十分位上的数是0,0<5,所以要舍去小数部分的0和5,积的近似数约是2、2。由于求得的结果是近似数,所以在横式中要用约等号“≈”。
(7)这里追问如果要求得数保留两位小数,应该是多少呢?并说明理由。
(8)独立完成10页做一做。
(设计意图:通过引导质疑,引出人和狗的嗅觉细胞的有关信息,让学生提出问题、列式计算,自主探索求积的近似数的方法。通过交流研讨、反馈、评价、更正错误,提升学生的认知能力。同时渗透人类与动物和谐相处的思想教育。)
三、组织研究,体验发现
师:同学们,有些应用问题取近似数时,还要联系实际想一想。下面这道题的答案没有要求保留几位小数,应保留几位小数才合理呢?
出示:小丽家上个月的用水量是16、85吨,每吨水的价格是2、5元。小丽家上个月应付水费多少元?
(1)学生独立列式计算。16、85×2、5=42、125≈42、13(元)
(2)讨论交流:这道题为什么要保留两位小数?
(3)预设:由于是计算钱数,人民币最小的单位是分,应精确到分(百分位),所以将计算结果保留两位小数是合理的。根据“四舍五入”法把百分位后面的数省略,千分位上的数是5,向百分位进1,得到近似数42、13。
数学源于生活,服务于生活。在解决实际问题时我们要注意数学的灵活性。下面我们来交流提纲中的第三个问题:你认为在求积的近似数时需要注意什么?
(设计意图:增强学生应用数学的自觉性,通过总结求积的近似数的方法,促进学生思维的'内化,提升迁移、类推能力。)
四、精讲释疑,应用实践
1 、选一选
2、判一判
下面的计算对吗?把错误的改正过来。
(1)9、1×0、5=4、6(得数保留一位小数)
(2)2、34×0、15≈0、36(得数保留两位小数)
先让学生算一算,再判断计算是否正确,然后把错误的改正过来。
3、想一想
4、解决问题我最棒
学生独立完成列式计算,教师巡视,进行个别辅导,集体订正。
(设计意图:本环节设计了选择、判断、改错、解决问题等练习,旨在巩固所学知识,形成技能,发展智力。通过练习,不仅可以加深学生对求积的近似数方法的理解和掌握,还能促进学生思维的发展,提高解决问题的能力。)
五、反思小结,巩固提高
我们的身边处处有数学,相信聪明的你们通过今天的学习一定是受益匪浅的,下面和同学们共同交流一下你的学习收获吧!
作业设计:
13页2、3题。
板书设计:
积的近似数
例6、 0、049×45≈2、2(亿个)
生板书计算过程
答:狗约有2、2亿个嗅觉细胞。
五年级数学教案4
教学内容:练习五的第12~14题
教学目标:
1、通过练习,使学生能进一步明确求最小公倍数和最大公因数的方法。
2、使学生能对所学的知识进行整理,并建立合理的认知结构。
教学重点:对所学的知识进行梳理,并建立合理的认知结构。
教学流程:
一、综合练习完成第30页的12~14题。
1、第12题
(1)先让学生连一连,交流使说说公因数和公倍数的含义。
提问:24和16的最大公因数是(),最小公因数是()2和5的最小公倍数是(),有最大公倍数吗?为什么?
(2)找出下面每个分数的分子和分母的最大公因数。
2、第13题先由学生独立完成。然后说说分别是什么方法求出每组数的最大公因数的。什么情况下可以根据两个数的特征直接写出它们的'最大公因数?
3、第14题先由学生独立完成。然后说说分别是什么方法求出每组数的最小公倍数的。什么情况下可以根据两个数的特征直接写出它们的最小公倍数?
4、联系第13、14题比较求两个数的最小公倍数和最大公因数的方法有什么相同与不同?
二、思考题
帮助学生弄清两点:⑴水果实际上分掉45块,巧克力实际分掉35块。
⑵由于每种糖果都是平均分给这个小组的同学,因此小组的人数既是45的因数,又是35的因数。
五年级数学教案5
教学目标:
1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。
2、通过操作使学生进一步学习用转化的思想方法解决新问题。
3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。
4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。
教学重点:
理解并掌握三角形面积的计算公式。
教学难点:
理解三角形面积的推导过程。
教法与学法:
教法:演示讲解、指导实践。
学法:小组合作、动手操作。
教学准备:
完全相同的三组(锐角、钝角、直角)不同的三角形卡片、
教学过程:
一、情境引入,明确目标
同学们,你们每天都佩戴着鲜艳的红领巾,代表你们是一名少先队员,是共产主义的接班人,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的面积(板书课题)
二、自主学习、合作探究
教师出示学具,学生动手操作、观察、分析、推理
(1)用两个完全一样的三角形拼一拼,能拼出什么图形?
(2)拼出的图形与原来的三角形有什么联系?
(3)拼出的图形的面积你会计算吗?
三、展示交流、点拨归纳
1、课件出示直角三角形、锐角三角形、钝角三角形拼成的图形
(1)想一想:每个直角三角形的面积与拼成的长方形或平行四边形的面积有什么关系?
(2)想一想:每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?
(3)想一想:每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?
2、学生回答,教师总结:
通过以上的实验可以看出:
两个完全一样的三角形可以拼成一个__________________。
这个平行四边形的底等于____________________________。
这个平行四边形的高等于____________________________。
每个三角形的.面积等于拼成的平行四边形面积的________。
所以得出结论:
三角形的面积=平行四边形的面积÷2
三角形的面积=底×高÷2
S=ah÷2
三、巩固训练、拓展提升
(1)这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗?(100厘米),高多少吗?(33厘米)
你能计算出它的面积吗?
在练习本上算一算
小结:通过这道题的解答,你明白了什么?
(2)你认识下面的这些道路交通警示标志吗?
向右急转弯 注意危险 减速慢行 注意行人
交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?
学生试算
〔设计意图〕这道练习的设计,既巩固了数学知识又自然地渗透了安全教育。
四、总结收获
这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的平行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式这节课你们最大的收获是什么?(学会了三角形的面积怎样计算;学会了用转化的方法推导三角形的面积计算公式。)
下节课我们继续运用转化的思想探究梯形面积的计算方法。
五年级数学教案6
教学目标:
1、 使学生初步掌握除数是小数的除法的计算法则。
2、 提高学生的知识迁移能力
3、 培养学生细心做题的好习惯。
教学重点:
使学生初步掌握除数是小数的除法的计算法则。
教学难点:
使学生初步掌握除数是小数的除法的计算法则。
课时安排:
一课时
教具使用:
小黑板
教学流程:
引入:
复习旧知
1.把下列各数的小数点去掉,原数扩大了多少倍?13.8 4.67 0.725
2、除数扩大10倍,要使商不变,被除数应怎样怎样变化?
4、 把5.34扩大10倍,小数点应怎样移动?要扩大1000倍呢?
5、 学生填写括号里的'数:
被除数 15 150 ( )
除数 5 50 500
商 ( ) ( ) 3学生小结运用了什么规律?(商不变的性质)
出示目标:见教学目标
自学提示:结合目标以及上节课学过的小数除法知识,独立自学,掌握要点。
学生自学:学生自学,教师巡视指导
学生汇报,检查自学效果。
研学例5
(1)教师:图上有那些信息?根据信息分析题意,列出算式:7.65÷0.85(2) 问:想一想,除数是小数怎么计算?(转化成除数是整数的除法来计算。)(3)问:怎样转化?组织学生分组讨论,把讨论的意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
合作讨论:
12.6÷0.28
这道题又该怎样改写成除数是整数的除法呢?请同学们运用上一题讨论的方法进行改写,改写时注意比较一下,这道题和上一道题哪些地方相同?哪些地方不同?
学生边讨论边改写,改写完后指名学生到视频展示台上展示自己改写后的算式.并比较出两道题都是除数是小数的除法,这是它们的相同点;而不同点表现在前一道题被除数和除数的小数位数同样多,而这道题除数有三位小数,而被除数只有两位小数.
教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?
引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
小结:学生说一说学到了什么?教师适当小结。
当堂作业:
1、 书上第22页“做一做”
2、 练习:判断并改错: 1.44÷1.8=8 11.7÷2.6=4.5 4.48÷3.2=1.43
3、练习:书上24页的作业
全课总结:小数除以小数注意什么?
板书设计: 课后反思:
一个数除以小数
五年级数学教案7
教学目标:
1、理解两个数的公倍数和最小公倍数的意义。
2、探究找公倍数的方法,会利用列举法找出两个数的公倍数和最小公倍数。
3、培养学生自主探究的精神和观察、分析、概括的能力;让学生体会数学与生活的紧密联系,树立学好数学的信心。
教学重点:理解两个数的公倍数和最小公倍数的意义。
教学难点:探究找公倍数和最小公倍数的方法。
教具准备:多媒体课件
教学过程
一、创设情境
教师谈话:,乐乐就放假了,很想爸爸妈妈带她出去玩。可乐乐的妈妈从七月一日起每工作3天休息一天,爸爸从七月一日起每工作5天休息一天,他们打算等爸爸妈妈同时休息时,全家一块儿去西湖公园玩。(出示:七月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?
请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找乐乐妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出乐乐爸爸和妈妈共同的休息日了。
根据学生的回答,教师逐步完成以下板书:
妈妈的休息日:4、8、12、16、20、24、28
爸爸的休息日:6、12、18、24、30
他们共同的休息日:12、24
其中最早的一天:12
二、尝试探讨
1、几个数的公倍数和最小公倍数的概念教学
我们一起来看妈妈的休息日,把这些数读一读(学生读数),你发现这些数有些什么特点?
师:对了,这些数都是4的倍数。(教师顺势把板书中“妈妈的休息日”改成了“4的倍数”。)
师:刚才我们是在30以内的数中,依次找出了这些4的倍数,如果继续找下去,4的倍数还有吗?有多少个?(学生举例,教师在4的倍数后面添上了省略号。)
我们再来看“爸爸的`休息日”有什么特点?6的倍数有多少个?(把“爸爸的休息日”改成“6的倍数”并添上省略号)
师:下面我们再来看“他们共同的休息日”,这些数和4、6有什么关系?
师:对了,这些数既是4的倍数,又是6的倍数,你能给它一个新的名字吗?(把板书中“他们共同的休息日”改为“4和6的公倍数”。)
师:刚才我们从30以内的数中找出了4和6的公倍数有12、24,如果继续找下去,你还能找出一些来吗?可以找多少?(学生举例,老师根据学生回答,在后面添上省略号。)
师:这“其中最早的一天”,我们一起给它起个名字,叫什么?
(根据学生回答,把板书中“其中最早的一天”改为“4和6的最小公倍数”。)
板书:
4的倍数:4、8、12、16、20、24、28、……
6的倍数:6、12、18、24、30、……
4和6的公倍数:12、24、……
4和6的最小公倍数:12
教师谈话:4的倍数、6的倍数、4和6的公倍数、最小公倍数,我们还可以用这样的图来表示:
出示集合图:
4的倍数6的倍数4的倍数6的倍数
4和6的公倍数
三、深化概念
师:通过找“共同的休息日”,我们分别求出了这组数的公倍数和最小公倍数。
请同学们把书翻到51页看例子,填一填
师:什么是公倍数?
生:两个数公有的倍数就是他们的公倍数。
师:公倍数有多少个?
生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。
师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?
生①:举例:2、4和5的公倍数是20。
生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。
师:那你能找出最大的或最小的公倍数吗?
生:没有最大的,只有最小的。
师:为什么?
生:因为公倍数的个数是无限的,所以没有最大公倍数。谁能用自己的话说一说什么叫公倍数?什么叫最小公倍数?
板书:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
这就是我们今天要学习的内容。(揭示课题:最小公倍数)
师:那么我们刚才是怎么找出最小公倍数的呢?
生说,师写(列举法)
[点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。]
4.[出示]找最小公倍数
2和69和186和245和353和9
3和57和54和99和11
让学生找出每组数的公倍数。
师:有的同学找得很快,能给大家说一说你的方法吗?你发现了什么?
小组讨论,之后汇报。
生:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。
生:2和6的最小公倍数是12,并不是它们的乘积。
生:大数要是小数的倍数,大数就是它们的公倍数,而且是最小公倍数。例如2和6,9和18,最大的数都是它们的最小公倍数。
师:你们还能发现了什么?
生③:第二排每一组都是互质数。例如3和5两个数是互质数。互质数的最小公倍数是它们的乘积。
师总结
师;你们能举一些这类的例子吗?
5、请同学们用刚才的发现做书本52页的第3题,求下面各组数的最小公倍数
3和610和83和95和46和59和42和76和8
[点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]
四、利用最小公倍数解决生活问题,
出示:
(1)“五(1)班同学参加植树劳动,按6人一组或8人一组都正好分完。五(2)班参加植树的至少有多少人?”
齐读两次,找出题中的关键字,引导中理解题意后放手让生自己完成,同桌间比对。
(2)人民公园是1路和6路汽车的起点站。1路汽车每3分钟发车一次,6路汽车每5分钟发车一次。这两路汽车同时发车以后,至少再过多久又同时发车?
(设计理念:借助于生活实例进行对知识的应用,这样不仅可以让生对抽象概念得以理性认识,而且也能切身的体会到数学知识是为生活服务的,在分析中我紧抓关键字突破难点,这样可以让生学会解决问题的技巧。)
五、小结
今天学习了什么内容?什么叫最小公倍数?
我们今天学习了求最小公倍数的哪几种情况?
怎样才能很快地求出它们的最小公倍数?
板书:找最小公倍数
一般关系列举法
倍数关系较大数
特殊关系
互质关系两数的乘积
五年级数学教案8
教学目标:
1、使学生认识容积和容积单位升、毫升,学会容积的计算。
2、使学生认识容积单位升和毫升之间的进率,认识容积单位和体 积单位间的关系。
教学重点和难点:
重点:建立容积和容积单位观念,知道容积单位和体积单位的关系。
难点:理解容积的含义和升、毫升的实际大小。
教学媒体:教学平台
课前学生准备:课堂练习本
教学过程:
一、课前准备:
1.物体所占空间的大小叫做物体的体积。
2、常用的体积单位是立方厘米、立方分米、立方米。
3、单位换算:
500立方分米=( )立方米 7800立方厘米=( )立方分米
6000立方米=( )立方分米 3立方米=( )立方厘米
二.探究新知.
(一)建立容积概念.
1.学生动手实验(每四人一组,每组一个有厚度的长方体盒,细沙一堆)
计算出长方体盒的体积
(把长方体盒装满细沙)计算细沙的体积.
2.学生汇报结果.
长方体盒的体积:先从外面量出长方体盒的长.宽.高,再计算其体积.
计算细沙的体积也是计算长方体的体积,(但要从长方体里面量长.宽.高,再计算其体积).
3.质疑:计算细沙的体积为什么要从长方体里面量长.宽.高?
4、师:今天老师带来了这么多的教具,它们都是放在哪里的?
像这个纸盒、纸箱、量杯等这样能容纳物品的器具叫容器。你还知道哪些容器?哪些容器放的东西多,哪些容器放的东西少? (学生例举生活中的容器。)
(二)、揭示容积概念
1.提出问题。
液体、气体是否有体积呢?(比如水、空气等)
出示大小不同的两个水杯:
师:这两个水杯哪一个装水多呢?你能设计一个实验方案解决这个问题吗?
(学生先独立思考,然后在小组里交流自己的想法,最后分组上台做实验。)
学生可能有以下方法:
①先把一个水杯装满水,再倒入另一个水杯。
②先把两个水杯都装满水,再分别把水倒入第三个水杯,以第三个水杯里的水的多少来判断谁装的水多。
2、师:两个杯子装得水不同,说明两个杯子所能容纳物体的大小是不一样的,(板书)容器所能容纳物体的体积,叫作容器的容积。
杯子里所能容纳的水的体积就是这个杯子的容积。
师:谁能举例说一说什么是容器的容积?
3、区别体积和容积。
(出示:魔方和装满沙子的木盒)
师:比一比,它俩谁的体积大?谁的容积大?
(交流中使学生明白:所有的物体都有体积;但只有里面是空的能够装东西的物
体,才能计量它的容积。)
师:木盒的体积和木盒的容积有什么不同呢?
(1)学生独立思考。
(2)小组交流。
(3)全班交流:
(引导学生发现:一般情况下,物体的容积比体积小。)
(引导学生联系体积和容积的知识来理解小伙计的策略,并适时揭示课题:体积与容积)
4、 小结:在小学阶段,一般我们忽略容器的厚度不计,所以物体的体积就可以看作是它的`容积。
三、初步认识容积单位和体积单位间的关系.
1、计量容积一般可用体积单位。计量液体的体积(如饮料、酒、汽油)时,往往用容积单位(升、毫升)
把1升的红色水倒入1立方分米的正方体盒里
板书:1升=1立方分米
2.把1毫升的红色水倒入1立方厘米的正方体盒里
板书:1毫升=1立方厘米
小结:现在我们可以知道容积单位有哪些?容积单位和体积单位之间有什么关系?
3、练一练:P65/1、2
三、巩固应用。
1、填空
看图:求这个长方体所占空间的大小是求长方体的( )
求这个长方体中可装多少水,是求水的( ),也就是求长方体的( )
2、练一练:P65/3厘米
四、评价体验。
今天这节课我们学习了什么内容?你有什么收获?对体积和容积的知识,你还想知道什么?
检测目标达成练习:
3升=( )毫升 2700立方分米=( )升
640毫升=( )立方厘米 2.4升=( )毫升 3.5升=( )立方分米 2.57升= ( )立方厘米
500毫升=( )立方分米 760立方厘米=( )升
板书设计
体积与容积
容器所能容纳物体的体积,叫作容器的容积。
五年级数学教案9
教学目标:
1、通过练习,能使学生进一步理解和掌握比较分数大小的基本方法,并形成相应的技能;
2、使学生在自主探索、合作交流中,体验成功的愉悦,进一步树立学好数学的自信心,培养主动学习和独立思考的习惯。
教学重、难点:
用合适的方法比较分数的大小。
教学过程:
一、分类整理,复习引入
师:比较分数的大小时,我们经常会遇到几种情况?
第一类:同分母的.分数相比较,如3/5和4/5;第二类:异分母的分数相比较,如3/5和4/9;第三类:同分子的分数相比较,如1/4和1/5。
小组讨论:这三种类型的分数大小比较的基本方法是什么?你是怎样想的?
方法一:同分母分数相比较,分子大的分数大;方法二:异分母分数相比较,要先通分,变成同分母分数,再比较大小;方法三:分子相同的分数,分母大的分数反而小。揭题--分数的大小比较练习(板书课题:分数的大小比较练习)
二、自主探究,巩固反思
1、完成练习十二第8题。引导学生根据数据的特点灵活的比较大小,4/5和8/15,可以先通分再比较;13/4和10/3,化成带分数,整数部分相同,可以比较分数部分;3/7和0.6,可以把3/7化成小数,也可以把0.6化成分数后再比较;5/8和2.5,以1为标准,所以5/8小于2.5。
2、完成练习十二第9题。学生独立完成填写,然后交流思考过程。
3、完成练习十二第10题。
比较两个分数的大小:要求”谁的平均步长一些?“可以先用除法分别求出两人的平均步长,再比较得到的两个分数的大小,最后写出答案。
4、完成练习十二第11题。
比较三个分数的大小:指导学生将三个分数两两比较,即:7/9﹥7/10,7/10﹥5/8,所以7/9最大,也就是陈东东投得准一些。
三、思维拓展,总结质疑
思考题:写出一个比1/5大又比1/4小的分数,并在小组里说说是怎样找到这个分数的。还能再找到这样的分数吗?师:通过这节练习课,你有什么新的收获?有什么经验跟大家分享吗?(生自由发言)
五年级数学教案10
第1课时 植树问题
【教学内容】:教材P106~111及练习二十四。
【教学目标】:
知识与技能:通过学生熟悉的生活情境,学生会用线段图来表示植树问题中的三种植树情况,培养学生分析问题的能力m
过程与方法:学生能够初步建立植树问题的数学模型,能根据这个模型将生活中类似的问题进行分类,并试着应用模型中间隔与棵数的关系来解决问题。
情感、态度与价值观:培养学生认真审题的良好学习习惯。
【教学重、难点】
重 点:能理解间隔数与棵数之间的关系并应用到生活中去。
难 点:理解间隔数与棵数之间的规律(总长÷间距=间隔数,间隔数+1=植树棵数),并能运用规律解决问题。
【教学方法】:自主探索、合作交流。
【教学准备】:多媒体。
【教学过程】
一、情境导入
1.出示:公路两旁的树。
师:为什么要在公路的两旁栽上树呢?学生自由发言。
教师讲解:树木能够涵养水分减少水分的流失,还能净化空气,因此植树造林有助于环境的改善。(渗透植树造林的环保意识。)
2.揭题:今天我们就来研究有关植树的问题。(板书课题:植树问题)
二、互动新授
(一)提出问题--两端都栽、两端不栽。
1.出示教材第106页例1:同学们在全长100米的小路一边植树,每隔5米栽一棵树(两端都栽)。一共需要多少棵小树?
2.出示教材第107页例2:大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3米。一共要栽多少棵树?
引导:请同学们先在纸上用线段图画一画你的种法.再在小组中交流、讨论。
3.(出示线段图)问题分析:
两端都栽:
两端不栽:
(二)棵数与间隔数之间的关系。(找规律)
提问:刚才同学们用线段图表示了两种植树情况,现在同学们能否用算式来表示这两种植树情况呢?
1.两端都栽:(教学例1)
假设小路长20米,那么可以栽几棵?
用画线段图表示:
则20÷5=4,要栽5棵。
由此可知:lOO÷5=20(个),那么这里的20就是棵数了吗?应该是什么?
学生回答:不是,是间隔数,应该是20+1=21(棵)。
教师板书:关系:间隔数+1=棵数
追问:为什么这里的`20是间隔数,而不是棵数?
学生回答,分析原因:100÷5=20只是求100米里面有多少个5米,所以20是间隔数而不是棵树。并得出公式:路长÷间距=间隔数(不是棵数,跟棵数没关系。)
2.两端不栽:(教学例2)
假设两馆间相距30米,小树之间的距离为5米,则30÷5=6(个),6-1=5(棵)
用画线段图表示:
由此可知:60÷3=20(个),20-1=19(棵)
教师板书:关系:间隔数-1=棵数
3.一端不栽:(教学例3)
出示教材第108页例3:张伯伯准备在圆形池塘周围栽树。池塘周长是120m,如果每隔lOm栽l棵,一共要栽多少棵树?
假设池塘的周长是60米,每隔10米栽1棵,则60÷10=6(棵)
用画线段表示:
由此可知:120÷1=12(棵)
教师板书:关系:间隔数=棵树
4.问题归类。
提问:刚才我们解决了植树时的问题,其实在日常生活中还有很多地方也有这样类似的情况,谁知道哪里还有这样的情况?
学生说,教师小结。
5.应用知识
⑴完成教材第107页“做一做”第1题。先让学生分组讨论,然后再说一说。
⑵完成教材第107页“做一做”第2题。先把题目的要求读一读,然后同桌互说,再指名学生说一说。
⑶完成教材第108页“做一做”。先让学生分析一下这个问题是不是“植树问题”,再在小组内讨论交流。
三、巩固练习
1.教材第109页练习二十四第3题。
(1)出示第3题。
指名一名学生朗读题目,理解题意。
(2)提问:从题目中你能得到什么信息?这种架设电线杆的问题应该怎么计算?
(3)学生讨论后交流。
(4)组织学生独立列式解答,并相互订正。
2.教材第111页练习二十四第13题。
(1)出示题目。
(2)提问:从题目中你能得到什么信息?这跟前一个练习题有什么不同,你又要如何计算?
(3)学生讨论后交流,指名学生板演,其余学生独立列式解答,然后集体订正。
3.教材第109页练习二十四第6题。组织学生读题并归纳有效信息,讨论这道题属于植树问题的哪种情况,并列式算出答案。
4.教材第111页练习二十四第14*、15*题。
(1)出示题目。引导观察,理解题意。
(2)学生先独立解题,然后小组讨论交流。
(3)教师组织汇报交流。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
五、作业:教材练习二十四剩余题。(课内时间不够,可在课外完成)
【板书设计】:
植树问题
两端都栽 两端不栽 一端不栽
间隔数+1=棵数 间隔数-1=棵数 间隔数=棵树
五年级数学教案11
教学目标
使学生理解公倍数和最小公倍数的含义,学会求两个数的公倍数和最小公倍数的方法。
教学重点、难点
重点、难点:求两个数的公倍数和最小公倍数
教具、学具准备
教 学过程
备 注
一、问题情境引入
师:五(2)班小天使出鹰假日小队有甲乙两个小组,他们约定甲组每6天到社区参加一次劳动,乙组每9人到社区参加一次劳动,今天他们第一次同时在社区劳动,经过多少天他们还会再次相遇?
(问题情境的材料可视学生实际情况作调整)
二、新课展开
1、建立公倍数、最小公倍数的概念。
(1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。
学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:
生甲:我们画了一条表示天数的数轴然后分别找出甲组、乙组第一次同时去后过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。
可由学生边讲边画出示图,也可由教师根据学生回答板书。(图略)
教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?
生甲:还会相遇,不过画图找太麻烦了。
生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。
教师板书学生思路:
甲组经过:6天、12天、18天、28天、30天、36天......
乙组经过:9天、18天、27天、36天、45天......
所以经过18天、36天......他们再次相遇。......
(2)师:(指板书)请同学们观察一下,甲组经过的天数、乙组经过的天数实际上是什么数?
生:甲组、乙组经过的天数分别是6的倍数和9的倍数。(教书调整板书)
6的倍数:6、12、18、24、30、36......
9的倍数:9、18、27、36、45......
教学过程
备 注
师:上节课我们学习了公约数,最大公约数。那么请同学们猜猜看,这里的18、36可以称什么数?
生讨论得出:18、36既是6的倍数,又是9的倍数,是6和9的公约数,即是6和9的公约数,18和9的公倍数中最小的,可以称为最小公倍数。
(3)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)
师:那么什么叫公倍数、最小公倍数?
学生讨论后得出;几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
师:有没有最大公约数,为什么?
生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的公约数还有54、72、90......无穷无尽。
2、用列举法求两个数的`公约数、最小公约数。
(1)师:刚才我们找了6和9的公约数、最小公约数,你能再找一找6和4的公倍数、最小公倍数吗?
做课本第57页练一练第1题,学生试算后,反馈。
生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。
教师随学生记叙板书;
6的倍数有:6、12、18、24......
4的倍数有:4、8、12、16、20、24......
6和4的公约数有:12、24......
6和4的最小公约数是12。
(2)师生共同方法。
(3)练习:完成课本练一练第2、3、4、5题。
三、课堂
通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等关概念外,还应注意学习方法,情感等方面的。)
四、作业《作业本》
从倍数着手,层层深入,得出公倍数与最小公倍数的意义。教学过程中运用集合图,不但形象直观,而且渗透了集合。
课后反思:
激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的,包罗万象,既有对学习方法的,又有对学习情感的,也有对自己的鞭策鼓励。这样的,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。
五年级数学教案12
教学目标
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3.培养学生的合作意识和探究兴趣。
教学重点:让学生经历观察、猜测、实验、推理的活动过程,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:观察归纳“找次品”这类问题的最优策略。
教学过程
(一)创设情境,导入新课
【课件播放有关次品的视频】
师:看了刚才那段视频,你们有什么想说的?
生自由回答。
师:生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板贴:次品。)
师:次品虽小,危害却大。今天咱们就一起去找轻重不合格的次品。(板贴:找。)
师:要找轻重不合格的次品,我们要用到什么工具?(天平)
(二)探究新课
1.有关比尔·盖茨与81个玻璃球的问题
【课件出示小比尔·盖茨的问题:这儿有81个玻璃球,其中有一个球比其他的球稍重,如果只能用天平来测量,至少要称多少次才能保证找出来呢?】
让生自由猜测称的次数。
师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,让我们从数量较小的来研究吧!
2.研究2个球
【课件演示:把2个球放在天平上】
师:有2个玻璃球,其中有一个球比正常的球稍重,如果只能利用天平来测量,怎样可以找出次品呢?
师:如果次品比正常的球稍轻呢?
3.讨论3个球的问题
【课件:这儿有3个玻璃球,其中有一个球比其他的球稍重,如果只能利用天平来测量,至少要称多少次才能保证找出来呢?】
生叙述称球的过程。
【课件再次演示过程,并板书枝状图。 】
师:次品可能是这三个“1”中的任意一个,但无论哪一个是次品,都只需要一次就可以保证找出次品了。
师将探究结果填入记录表中。
4.研究4个球的问题
【课件:这儿有4个玻璃球,其中有一个球比其他的球稍重,如果只能利用没天平来测量,至少要称多少次才能保证找出来呢?】
师:如果再增加一个球,4个球,一次可以保证找出次品吗?
生自由回答。
师:咱们还是动手去探究吧。
【课件出示如下小组活动要求。(1)四人一组,用棋子代替玻璃球,用尺子代替天平,摆一摆。(2)4个球被分成了几份?每份几个?(3)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?(4)想一想,你们组的方法是否既做到了“至少”,也做到了“保证”?】
生分组探究后,上实物展台汇报,师根据生的汇报板书枝状图,同时帮助生在此环节理解“至少”和“保证”的含义。
师小结:4个球,有两种不同的.测量方法,但测量的结果都是一样的,至少需要2次才能保证找出次品。
把结果记录在表格中。
师:如果只测量一次,最多可以保证在几个球中找出次品?
5.讨论9个球
【课件:这儿有9个玻璃球,其中有一个球比其他的球稍重,如果只能用天平来测量,至少要称多少次才能保证找出来呢?】
师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?
【小组活动要求如下。(1)请同学们用学具摆一摆,试试看,有几种不同的方法。(2)9个球被分成了几份?每份几个?(3)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?(4)哪种方法符合题目中的“至少”和“保证”? 】
生在实物展台上汇报9个球的测量方法,师板书在黑板上。
生可能出现的方法如下。
引导学生观察、比较板书,哪种方法符合题意?
师:为什么把9个球分成(3,3,3)只要2次就可以找出次品?
引导学生发现:第一种方法每份分出的数量是3,次品一定在某一份的3个球里,不管是哪一份,3个球只需要一次就只可以找出次品来,所以9个球只需要2次;但第二种分法有2份分出的数量是4,4个球需要2次才能找出次品,9个球就需要3次才能保证找出次品。
师:如果球的数量在9以内,你们觉得每份分出的数量是3好还是4呢?分的时候要注意什么?
引导学生发现:每份分出的数量不能超过3。
6.5~8个球的研究
师(出示记录表):4个球只需要2次可以保证找出次品,9个球也只需要2次就能保证找出次品来,那么大胆猜测一下,在4与9之间的5、6、7、8个球至少需要几次就能找出次品呢?
请生自由画图分析,然后汇报。(重点是8个球。)
将研究结果填入表格中。
(三)巩固应用,发现规律
1.10个球的研究
师:10个球,称2次还能保证找出次品吗?
请生试着自己画图分一分,然后汇报。(让生明确:10个球至少需要称3次,因为无论怎么分,至少有一份超过3个球。)
师将结果填入记录表。
师:2次最多可以在几个球中找出次品?(9个。)为什么?(利用板书中的枝状图让学生明白每份最多3个,3个3就是9。)
2.3次最多能在多少个球中找出次品?
师:3次最多可以在多少个球中找出次品呢?(引导生发现每份最多放9个,3份就是3个9,即3×3×3=27个。)
师:28个球至少几次可以找出次品?
3.4次最多能在多少个球中找出次品?
(引导学生说出每份最多27个,3份就是3个27,即3×3×3×3=81,最多81个。呼应前面的小比尔盖茨的问题。)
4.观察记录表,发现规律
师:我们来仔细观察记录表,5次、6次分别能保证在多少个球中找到次品?最多多少个?
师:以此类推,测量的次数增加,可保证在更多的球中找出一个次品来。
(四)总结提升
师:今天这节课你们有什么收获?还有什么问题吗?
师:我们为什么要探究找次品?
师:我们所探究出的找次品的方法其实和以前所探究的烙饼问题、田忌赛马问题等一样,就是一个最优化的方法。生活中解决问题的方法很多,如果你发现了解决问题的最佳策略,那么解决问题时一定能够事半功倍!
五年级数学教案13
教学内容:教科书第85页练习十五的第5-10题。
教学目标:
1、使学生进一步掌握分数加减混合运算。
2、使学生了解整数加法的运算律和减法的运算性质,同样适用于分数加减法,并能应用运算律或运算性质进行一些分数加减法的简便运算。
3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心。
教学重难点:能正确应用运算律或运算性质进行一些分数加减法的简便运算。教学媒体:教学光盘
教学过程:
一、口算
练习十五第5题
3/8+1/85/9-2/95/6-5/61/3+1/21-5/87/10+5/10
集体口算后校对,并请做错学生说说错误原因。
二、用简便方法计算下面各题
2/7+3/8+5/83/7+5/6+4/75/8-(3/8+1/12)2/3-1/4-1/45/6+2/5+1/6+3/55/9+(4/5+4/9)
1、指出:整数加法运算律在分数中同样使用,整数减法运算性质在分数中也同样适用。
2、学生独立完成,六人板演。
3、交流计算方法、运用的知识与计算结果。
(1)加法结合律;(2)加法交换律;(3)(4)减法运算性质;(5)(6)加法交换律和结合律。
三、解方程
1/2+x=1x-3/7=1/2x+2/3=7/6
1、指出:方程中的x不仅可以是整数或小数,也可以是分数。
2、学生独立完成,三人板演。
3、交流计算方法、运用的知识与计算结果,并请错误的学生说说错误原因。
四、解决实际问题
1、练习十五第10题
学生独立完成后,交流算式意义与结果,强调单位“1”。
2、改变习题:将“小华调查了全班同学在母亲节送给***礼物”改成“小华调查了全班30位同学在母亲节送给***礼物”。
(1)该怎样解决问题?
(2)为什么方法不变?
强调:这两题都只要把全班人数看作单位“1”,从单位“1”里去掉送鲜花的1/3,再去掉送贺卡的.1/4,剩下的就是送图画的人占全班人数的几分之几,所求问题与全班实际的总人数没有关系。
五、总结延伸
完成书上思考题。
1、计算后找出规律。
2、应用规律直接写得数。
3、应用规律自编加法算式。
五年级数学教案14
第五课时
备课时间:20xx年12月11日。
教学内容:复习复式统计表和复式条形统计图,完成“练习与应用”1-3题。
教学目标:
1、使学生进一步学习和认识复式统计表,根据收集、整理的数据填写统计表,并能根据统计表中的数据进行简单的分析。
2、使学生进一步认识复式条形统计图,学习根据收集、整理的数据完成复式条形统计图。
3、感受数学与生活的密切联系,发展数学应用意识。
教具准备:统计图与统计表
教学进程:
一、复习。
小组讨论:
这一单元,你学习了那些知识?你有什么收获?
二、练习与应用。
1、完成第1题。
可以让学生根据教材提供的'数据独立填表,再进行适当交流。
要重点指导计算“人均耕地面积”的计算方法。知道根据问题,应该用全果耕地的总公顷数除以总人口数。
总结,得数大约是0.11公顷。
2、你知道吗。
先让学生自由阅读,再交流体会。
3、完成第2题。
学生观察后,可以要求说说这里的复式条形图与此前认识的复式条形图有什么不同,体会复式条形图的具体形式是可以变化的。
学生填表后,适当可以组织交流,使学生体会我国城乡社会经济正在不断发展、进步。
4、完成第3题。
可以先让学生根据复式统计表中的数据独立完成条形统计图,再组织对统计图的观察与分析。
要启发学生根据对条形统计图的直观观察从整体上评价这两只球队,看出红队的状态不够稳定,而蓝队的水平正在逐步提高。
三、课堂小结。
这节课你又收获了什么?
五年级数学教案15
教学内容:教材P89~90练习十九第4~11题。
教学目标:
知识与技能:熟练运用平行四边形的面积公式计算平行四边形的面积,解决相关的实际问题。能根据底、高、面积三个量中的任意两个量,用算术方法或方程计算第三个量。
过程与方法:通过猜测、验证、比较发现平行四边形的面积与底和高的直接关系。
情感、态度与价值观:体会数学的应用价值及数学与生活的紧密联系。
教学重点:运用所学知识解决有关平行四边形面积的应用题。
教学难点:逆用平行四边形面积的计算公式。
教学方法:学练结合。
教学准备:多媒体、一个平行四边形、一个长方形。
教学过程:
课前预习案:
1.计算下面每个平行四边形的面积。
(1)底是32cm,高是8cm。
(2)底是8.5cm,高4.2cm 。
2.测量出需要的数据,并计算下面图形的面积。
一、课前反思
通过昨天的学习,你都学会了什么,还有那些不懂的地方呢?
二、交流解惑
(一)自主学习
1、以小组为单位进行反思
2、以小组为单位回顾上节课学习的知识,说一说都学会了什么,还有哪些不懂的,在小组内解决,解决不了的班内汇报。
(二)汇报、解疑,进行组内交流、组际解疑,老师进行点拨。
(三)组内练习
1、你能想办法求出下面两个平行四边形的面积吗?(练习十九第4题)
动手操作:画出已知底的高。 指名学生展示自己的作品,请其余学生作点评。
教师在以上图形中填入底和高的数据,学生口答。
2、只列式不计算:选择合适的底和高求平行四边形的面积。
学生先独立解答,再小组交流。在解答中,教师提醒学生注意找准对应的底和高。
(四)指导练习
1、补充题:
一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(l)学生先独立列式解答,然后集体订正。
(2)如果问题改为“每公顷可收小麦7000千克,这块地共可收小麦多少千克”,必须知道哪两个条件?
学生先独立列式,然后集体讲评:
先求这块地的面积:250×78÷10000 =1.95(公顷),再求共收小麦多少千克:7000×1.95=13650(千克)。
(3)如果问题改为“一共可收小麦58500千克,平均每公顷可收小麦多少千克”,又该怎样求?
将(3)与(2)比较,从数量关系上看,哪里相同?哪里不同?
讨论归纳后,学生列式解答:58500÷(250×78÷10000)
(4)小结:上述几题,我们根据一题多变的思想进行练习,尤其是变式后的两道题,都是要先求面积,再变换成积后才能进入下一步计算,否则就会出现问题。
2、练习十九第6题。
(1)组织全班学生讨论这两个平行四边形的面积是否相等。
(2)引导学生观察,这两个平行四边形的'底和高分别是多少?
学生观察得出:这两个平行四边形的底都是2.8 cm,高都是1.5 cm。
(3)启发学生得出:等底等高的平行四边形的面积相等。
3、练习十九第7题。
让学生掌握平行四边形的底和高与正方形之间的关系。(平行四边形的底和高分别等于正方形的边长。)
4、练习十九第8题。
让学生观察、讨论什么不变,什么发生了变化(四条边的长度不变,底边上的高发生变化),从而得到它们的周长不变,但面积变小了。
(五)巩固练习
1、教材第89页练习十九第5题。
(1)学生读题,理解题意。
(2)引导学生讨论:根据哪两个条件可以求出这块麦田有多少公顷?
要求平均每公顷收小麦多少吨,必须知道哪两个条件?
(3)让学生自己列式,再全班集体订正。
2、教材第90页练习十九第11题。
(1)议一议:把两个小三角形拼接在一起,会有什么新的发现?
(2)拼摆的平行四边形和小平行四边形有什么关系?
引导得出:拼摆的平行四边形和小平行四边形等底等高,因此面积都是大平行四边形面积的一半:48÷2-24(cm2)。
四、课堂小结。组织学生认真回顾这节课的知识,说一说自己的收获。
布置作业:
板书设计:
平行四边形面积的练习
S=ah
等底等高的平行四边形的面积相等。
【五年级数学教案】相关文章:
五年级数学教案01-06
五年级的教案数学教案12-21
五年级下册数学教案11-09
五年级上册数学教案01-08
【荐】五年级数学教案01-18
【推荐】五年级数学教案01-25
五年级数学教案【热】01-24
五年级数学教案【精】01-24
五年级数学教案【热门】01-25
五年级数学教案【推荐】01-25