- 相关推荐
(推荐)等差数列教案
作为一位杰出的教职工,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。那么写教案需要注意哪些问题呢?以下是小编为大家整理的等差数列教案,欢迎大家借鉴与参考,希望对大家有所帮助。
教学目标
1、通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2、利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;
3、通过参与编题解题,激发学生学习的兴趣。
教学重点,难点
教学重点是通项公式的认识;教学难点是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑。
教学方法
研探式。
教学过程
一、复习提问
前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。
二、主体设计
通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求)。找学生试举一例如:“已知等差数列中,首项,公差,求。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。
1、方程思想的运用
(1)已知等差数列中,首项,公差,则-397是该数列的第______项。
(2)已知等差数列中,首项,则公差
(3)已知等差数列中,公差,则首项
这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。
2、基本量方法的使用
(1)已知等差数列中,求的值。
(2)已知等差数列中,求。
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量。
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。
如:已知等差数列中,…
由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知等差数列中,求;…。
类似的还有
(4)已知等差数列中,求的值。
以上属于对数列的项进行定量的研究,有无定性的判断?
3、研究等差数列的单调性,考察随项数的变化规律。着重考虑的情况。此时是的一次函数,其单调性取决于的符号,由学生叙述结果。这个结果与考察相邻两项的差所得结果是一致的
4、研究项的符号
这是为研究等差数列前项和的最值所做的准备工作。可配备的题目如
(1)已知数列的通项公式为,问数列从第几项开始小于0?
(2)等差数列从第________项起以后每项均为负数。
三、小结
1、用方程思想认识等差数列通项公式;
2、用函数思想解决等差数列问题。
四。板书设计
等差数列通项公式
1、方程思想的运用
2、基本量方法的使用